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A B S T R A C T   

All-inorganic solid-state batteries (AISSBs) have received considerable attention due to their excellent safety and 
high energy density. However, large interfacial challenges between oxide cathodes and inorganic solid elec-
trolytes dramatically hinder AISSB development. Here we successfully eliminate the long-standing interfacial 
challenges by in-situ interfacial growth of a highly Liþ-conductive halide electrolyte (Li3InCl6, LIC) on the 
cathode surface. Owing to strong interfacial interaction, high interfacial ionic conductivity (>1 mS cm� 1), and 
excellent interfacial compatibility, LiCoO2 with 15 wt% LIC exhibits a high initial capacity of 131.7 mAh.g� 1 at 
0.1C (1C ¼ 1.3 mA cm� 2) and can be operated up to 4C at room temperature. The discharge capacity retains 90.3 
mAh g� 1 after 200 cycles. Moreover, a high areal capacity of 6 mAh cm� 2 is demonstrated with a high loading of 
48.7 mg cm� 2. This work offers a versatile approach to eliminate interfacial challenges of AISSBs toward high- 
energy density and high-power density.   

1. Introduction 

All-inorganic solid-state batteries (AISSBs) have received consider-
able attention in recent years because of their significant improvements 
in safety and energy density over liquid cells [1–3]. However, several 
main challenges impede the development of AISSBs, including (1) 
insufficient ionic conductivity of inorganic solid-state electrolytes (ISEs) 
[4]; (2) large interfacial resistance between electrode materials and SEs, 
which originates from poor solid-solid contact and detrimental interfa-
cial reactions [5,6]; (3) lithium dendrite growth in ISEs [7]. With the 
continuous efforts over the past years, various ISEs have been developed 
with high ionic conductivity, such as sulfide electrolytes (Li10GeP2S12 
[4], 12 mS cm� 2, Li9.54Si1.74P1.44S11.7Cl0.3 [8], 25 mS cm� 2), their ionic 
conductivity even surpasses those of conventional liquid electrolytes 
and gel polymers [9]. To suppress the lithium dendrite growth in ISEs, 

various effective strategies have also been proposed, such as interface 
modification and chemical composition tuning of ISEs [10–15]. 

In contrast to the tremendous success in developing highly lithium- 
ion (Liþ)-conductive ISEs and suppressing lithium dendrite growth in 
ISEs, the interfacial challenges between oxide cathodes and ISEs have 
not been successfully addressed yet [16]. Until now, sulfide-based 
AISSBs still suffer from detrimental interfacial reactions and poor 
solid-solid contact between sulfide electrolytes and oxide cathodes. To 
suppress the interfacial reactions, interfacial coating such as LiNbO3, 
LiTaO3, and Li4Ti5O12 is indispensable [17–19]. However, the low ionic 
conductivity (10� 6–10� 9 S cm� 1) of these interfacial coating materials, 
which is several orders of magnitude lower than those of inorganic solid 
electrolytes themselves (including sulfide electrolytes and oxide elec-
trolytes), significantly restricts the electrochemical performance of 
AISSBs [20]. Besides, the uniformity of the interfacial coating layer on 
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the cathode particle surface is hard to control. Consequently, interfacial 
reactions would not be fully suppressed. To improve the solid-solid 
contact, 30% ISE is normally added into the cathode composites by 
mechanical mixing to achieve ample solid-solid contact between oxide 
cathodes and ISEs. The large amount of ISEs in the cathode composite 
dilutes the energy density of AISSBs [21–23]. Based on the pouch cell 
evaluation, the mass ratio of ISE in cathode composites should be no 
more than 15% to achieve a high energy density of 300–500 Wh kg� 1 

[22,23]. In recent years, the liquid-phase method has been developed to 
achieve sufficient solid-solid contact with a small amount of ISEs [24, 
25]. However, the solvent-involved process generally decreases the 
ionic conductivity of ISEs, consequently depressing the electrochemical 
performance of AISSBs [26,27]. All things considered, so far there is no 
versatile strategy that can simultaneously achieve both high interfacial 
ionic conductivity (>1 mS cm� 1) and intimate solid-solid contact with a 
small amount of ISEs (<15%). 

Inspired by the high ionic conductivity of halide electrolytes 
(Li3MX6, M ¼ Y, In et al., X ¼ Cl, Br) and their excellent stability against 
high-voltage cathodes [28–31], here we report an in-situ interfacial 
growth of halide electrolytes (Li3InCl6, LIC) on electrode materials 
(LiCoO2, LCO) from aqueous solution for the first time. As little as 15 wt 
% LIC was uniformly distributed in the cathode composite, which con-
structs a three-dimensional (3D) continuous Liþ conduction pathway 
and guarantees the high energy density of AISSBs. Moreover, the high 
ionic conductivity (1.5 mS cm� 1) and high-voltage stability of LIC, as 
well as intimate solid-solid contact, ensure the ultra-small interfacial 
resistance between LCO and LIC (5.3 Ω cm2). As a result, the 
LIC@LCO-15 wt% electrode exhibits a high initial discharge capacity of 
131.7 mAh.g� 1 with an initial Coulombic efficiency of 92.7% at 0.1C. 
The gravimetric energy density of AISSBs is up to 512 Wh.kg� 1 (elec-
trode-based). Even at a high rate of 4C (5.2 mA cm� 2), 28.5 mAh.g� 1 can 
be obtained, which corresponds to 1300W kg� 1. Furthermore, a high 
areal capacity of 6.0 mAh.cm� 2 can be realized with a high LCO loading 
of 48.7 mg cm� 2. This work provides a versatile approach to eliminate 

the interfacial challenges between oxide cathodes and ISEs toward 
high-energy-density and high-power-density AISSBs. 

2. Results and discussion 

Synthesis and Characterization of LIC and LIC@LCO: In-situ 
interfacial growth of LIC on LCO is schematically shown in Fig. 1a. 
InCl3 and LiCl with a stoichiometric ratio of 1:3 were dissolved in 
deionized water, forming a transparent Li3InCl6.nH2O solution. Subse-
quently, LiCoO2 was added into the transparent solution. After evapo-
ration of water solution under 100 �C, the obtained dry powder was 
transferred to a vacuum oven and heated at 200 �C for 5 h to dehydrate. 
Then yielded Li3InCl6-coated LiCoO2 (LIC@LCO) cathode composites 
were used for AISSBs directly. Detailed synthesis procedures can be 
found in Supplementary Information. It should be noted that the 
thickness of the LIC layer can be adjusted by controlling the LIC-to-LCO 
ratio. In general, the less ISE content in the electrode composite, the 
higher the energy density of solid-state batteries [23]. However, too 
little ISEs in electrode composites limits the ionic contact between 
electrode materials and ISEs. Therefore, the best ratio between LIC and 
LCO requires optimization. As shown in Fig. S1, LCO surface is not fully 
covered with 5 wt% LIC but can be completely coated with 10 wt% LIC. 
With 15 wt% LIC (Fig. 1b–c), not only is the surface covered but also the 
gap between LCO particles is filled, thus constructing 3D continuous 
Liþ-conduction pathways in the cathode composites (labeled as 
LIC@LCO-15 wt%) (Fig. S1i). Fig. 1b–d presents an SEM image of 
LIC@LCO-15 wt% and its corresponding energy-dispersive X-ray spec-
troscopy (EDX) elemental mapping of O and Cl, respectively, confirming 
the uniform distribution of LCO in the LIC matrix. To reveal the 
solid-solid contact beneath the surface, a cross-section of LIC@LCO-15 
wt% was fabricated by focused ion beam (FIB) and the corresponding 
EDS mappings of Co, O, In, Cl are displayed in Fig. 1e–g, respectively, 
showing that LCO is surrounded by LIC with 3D continuous Liþ perco-
lation networks. Furthermore, X-ray diffraction (XRD) was also 

Fig. 1. (a) Illustration of the in-situ synthesis of Li3InCl6 on LiCoO2 (LIC@LCO). (b) SEM image of LIC@LCO-15 wt%. (c) Elemental O mapping. (d) Elemental Cl 
mapping. (e) Cross-sectional SEM image of LIC@LCO-15 wt%. (f) Elemental Cl and O combined mapping. (g) Elemental In and Co combined mapping. 
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conducted to determine the crystallinity of the LIC layer. As displayed in 
Fig. S2, all the LIC@LCO electrodes exhibit strong XRD patterns asso-
ciated with LCO. A small peak (131) at 34.3� originating from the LIC is 
identified in LIC@LCO-15 wt% and LIC@LCO-10 wt% while 5% 
LIC@LCO does not shows the (131) peak due to the lower amount of LIC 
on the LCO surface, suggesting that the crystalline LIC is successfully 
coated on LCO. Considering that copper X-ray radiation yields a strong 
fluorescence background of LCO, which may hide some information of 
LIC@LCO composites, particularly decomposed phases and/or impu-
rities of LIC. To double confirm the successful synthesis and interfacial 
compatibility of LIC on the LCO surface, LIC@LCO composites were 
further analyzed by micro-XRD using cobalt radiation (Fig. S3), in which 
only LCO and LIC phases were identified, further confirming that LIC is 
successfully grown on the LCO surface. 

Electrochemical impedance spectroscopy (EIS) analysis in 
Figs. S4a–4b reveals the high ionic conductivity of LIC (1.5 mS cm� 1) at 
25 �C and the small activation energy of 0.35 eV, which is comparable 
(or surpassing) to that of current-mainstream oxide and sulfide elec-
trolytes [16]. LIC precipitated from water is consisted of lots of small 
particles, as displayed in Figs. S4c–4d. The primary particle size of LIC is 
approximately 300–500 nm. Fig. S5 shows the slow-scanned XRD 
pattern and Rietveld refinement results, showing that LIC has a mono-
clinic unit cell (C2/m (12), ICSD No.04-009-9027) with the cell pa-
rameters of a ¼ 6.403395 Å, b ¼ 11.065896 Å, c ¼ 6.379085 Å, α ¼ γ ¼
90.0000�, β ¼ 109.8138�. The detailed structural parameters are tabu-
lated in Table S1. The high ionic conductivity and low activation energy 
of LIC is due to high Liþ vacancy content (33.3%) in its distorted 
monoclinic rock-salt structure [31–33]. 

Interfacial Interaction between LIC and LCO: It should be 
mentioned that the LIC on the LCO surface is not particle-like but a 
continuous film, implying that the nucleation process of LIC in water is 
different from the LCO surface. The underlying reason is possibly related 
to the interfacial interaction between LCO and LIC. X-ray photoelectron 
spectroscopy (XPS) was performed to analyze the interface interaction. 
In 3d 5/2 and In 3d 3/2 peaks are located at 446.2 eV and 453.8 eV, 
respectively, which corresponds to the In3þ bonding state of LIC (Fig. 2a) 
[30,34]. There is no energy shift found in the In 3d spectra between 

LIC@LCO and pure LIC, suggesting that the chemical states of In on 
LIC@LCO surface are the same as that in pristine LIC. This result also 
indicates the successful synthesis of LIC on the LCO surface. For the O 1s 
spectra (Fig. 2b), the green peak at 529.7 eV is characteristic of O atoms 
in the LCO crystal lattice [35], while the orange peak at a relatively 
higher binding energy of 531.7 eV is associated with oxygen-containing 
species or dangling oxygen bonds at the LCO surface [35]. Interestingly, 
the intensity of the orange peaks increases from 60% to 77% in 
LIC@LCO, suggesting that more oxygen-rich species are formed at the 
LIC/LCO interface, which may be originated from the interaction be-
tween Cl and O. In Cl 2p spectra (Fig. 2c), pure LIC only shows a pair of 
red peaks (Cl 2p3/2 and Cl 2p1/2) at 199.6 eV and 201.2 eV, respec-
tively, which are associated with In–Cl and/or Li–Cl bonds in LIC. 
However, a pair of blue peaks at higher binding energy (200.6 eV and 
202.2 eV) are found after coating LIC on LCO, implying that Cl of LIC is 
involved in the interfacial interaction between LIC and LCO. Based on 
the O1s and Cl 2p spectra, we presumed that the O of LCO interacts with 
the Cl of LIC at the LIC@LCO interface. This interfacial interaction as-
sists the uniform nucleation process of LIC on the LCO surface. There-
fore, LIC tends to conformably grow on the LCO surface. Resultantly, the 
LIC on the LCO surface is a continuous film, not particles. To further 
confirm the interfacial interaction LIC and LCO with the same mass ratio 
(15%:85%) were mechanically mixed and further analyzed by XPS 
(Fig. S6), no such interfacial reaction was identified, further confirming 
the interfacial interaction is originated from the in-situ interfacial syn-
thesis. Therefore, the in-situ interfacial growth of LIC on the LCO surface 
is a unique interface-assisted process, which is completely different from 
the dissolution-precipitation process that previously demonstrated in 
sulfide-based AISSBs [24,26,36]. 

To verify the interfacial interaction, a density functional theory 
(DFT) calculation was performed. The schematic views of LCO and LIC 
are shown in Fig. S7 and their lattice parameters are summarized in 
Table S2. Furthermore, the lattice parameters and surface energies of 
LCO(110), LIC(100), LIC(010), LIC(001), LIC(110) and LIC(111) are 
calculated and listed in Table S3. The experimental measurements and 
previous DFT simulations indicate the existence of energetically favored 
(110)-oriented LCO surface [37–39]. Furthermore, (110) surfaces in 

Fig. 2. Chemical Interaction between LIC and LCO. XPS spectra of LIC@LCO-15 wt%. (a) In 3d spectra. (b) O 1s spectra. (c) Cl 2p spectra. (d) The binding energy 
between the LCO (110) and different LIC surfaces. (e) PDOS of s, p, d orbitals of O, Cl, In, and Co. (f) Differential charge density of the LCO(110)/LIC(100) interface. 
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LCO particles provide Liþ conduction paths along with the (110) di-
rection [38,39]. Therefore, we selected (110) face as a representative 
surface of LCO, and the surface energy of LCO(110) was calculated to be 
10.60 eV nm� 2. Fig. 2d displays the binding energies between the LCO 
(110) and different LIC faces, which indicates that LCO has high binding 
energy with LIC, and the strongest binding energy of � 0.34 eV/atom is 
found between the LCO(110) and LIC(100) (Table S4). Fig. 2e shows the 
partial density of state (PDOS) of Co, In, Cl, and O, respectively. The 
absence of an energy gap at the Fermi level indicates the good electronic 
conductivity of LIC@LCO composites. Also, the p orbital overlap of Cl 
and O indicates the interaction between Cl and O, as highlighted by the 
green shadow region. Furthermore, the differential charge density of the 
LCO(110)/LIC(100) interface clearly showed the charge overlap of Cl 
and O at the interface (Fig. 2f), indicative of the coordination between Cl 
and O at the LCO/LIC interface. The strong interfacial interaction also 
assisted the nucleation process of LIC on the LCO surface. That is why 
the LIC on the LCO surface is a continuous film, not particle-like. 

Electrochemical Performance of LIC@LCO in AISSBs: LIC@LCO- 
based AISSBs were evaluated at 0.1C (1C ¼ 1.3 mA cm� 2) at room 
temperature due to high ionic conductivity of LIC (1.5 mS cm� 1). The 
initial charge and discharge curves are presented in Fig. 3a. With the 
increase of the LIC-to-LCO ratio, the polarization between charge and 
discharge curves is suppressed and the discharge capacity is significantly 
increased. With 15 wt% LIC, the initial charge capacity is 142.1 mAh g� 1 

and the initial discharge capacity is 131.7 mAh.g� 1 with an initial 

Coulombic efficiency of 92.7%. The corresponding energy density is up 
to 513 Wh kg� 1. If mechanically mixing 15% LIC with 85% LCO, the 
initial discharge capacity is only 68.1 mAh g� 1 because of the insuffi-
cient solid-solid contact between LCO and LIC (Fig. S8). It should be 
highlighted that the charge/discharge curves of LIC@LCO-15 wt% are 
overlapping with those of LCO in liquid electrolytes at the same current 
density of 0.13 mA cm� 2 (Fig. S9), which implies the full utilization of 
LCO in AISSB with ultrafast interfacial Liþ conduction as fast at that in 
liquid cells. With 10 wt% and 5 wt% LIC, LCO discharges at 90.9 mAh 
g� 1 and 39.9 mAh g� 1, respectively, which is caused by the large 
interfacial resistance of LIC@LCO-10 wt% and LIC@LCO-5wt% 
(Fig. S10). To determine the change in the interfacial resistance, in-situ 
EIS was performed on LIC@LCO-15 wt% electrodes during the initial 
charge/discharge process (Fig. S11). The first semi-circle at the high- 
frequency region represents the resistance of the LIC layer, which is 
close to 78 Ω. The resistance of the LIC layer does not undergo obvious 
change, implying the excellent stability of LIC upon cycling. The small 
semi-circle at the middle frequency represents the interfacial resistance 
between LIC@LCO, which is only 6.8 Ω [29]. It should be mentioned 
that the ultra-small interfacial resistance is significantly smaller than 
those of sulfide/oxide-based AISSBs, which generally shows the inter-
facial resistance of hundreds or thousands of ohms [21,25,40], implying 
that LIC@LCO-15 wt% electrodes have the fastest interfacial Liþ trans-
port among all the AISSBs reported so far [5,16,21,40]. The 
middle-frequency semi-circle keeps stable during the initial 

Fig. 3. Electrochemical performance of LIC@LCO electrodes. (a) initial charge/discharge curves of LIC@LCO electrodes with various ratios. (b) Cycling stability. 
(c) CV curves. (d) Rate Performance of LIC@LCO. (e) Discharge curves of LIC@LCO-15 wt% and LIC@LCO-10 wt% under various current densities. (f) Charge/ 
discharge curves of high-loading LIC@LCO electrodes. (g) Ragone plot. 
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charge/discharge process, indicating that no interfacial reactions 
occurred between LIC and LCO upon cycling, which is due to the wide 
electrochemical window (up to 4.3V vs. Liþ/Li) of LIC [31,32]. 

Fig. 3b displays the cycling performance of LIC@LCO with different 
LIC contents. After 200 cycles, LIC@LCO with 15 wt% LIC keeps at 90.3 
mAh.g� 1 with a CE of 99.3% while the LIC@LCO with 10 wt% LIC only 
remains at 39.1 mAh g� 1 and LIC@LCO with 5 wt% LIC cannot be 
reversibly charged/discharged. Besides, LIC@LCO-15 wt% also 
demonstrated excellent cycling stability at 0.5C for 400 cycles 
(Fig. S12). The post-cycling analysis by SEM displays the well- 
maintained electrode structure after 100 cycles (Fig. S13), which also 
corroborates the excellent cycling stability of LIC@LCO-15 wt%. Fig. 3c 
shows the CV curves of LIC@LCO with 15 wt% LIC. The overlap of CV 
curves also indicates the stable cycling performance of LIC@LCO in 
AISSBs. Fig. 3d displays the rate-performance of LIC@LCO with 15 wt% 
LIC. Even at 4C (5.2 mA cm� 2), LIC@LCO still shows a capacity of 28.5 
mAh g� 1. Fig. 3e displays the corresponding discharge curves under 
different current densities. The corresponding power density of 
LIC@LCO-15 wt% is up to 1300 W kg� 1. Considering the high-loading 
electrode (13 mg cm� 2) in AISSBs, the rate-performance of LIC@LCO 
is astonishing [41]. 

To determine the Liþ kinetics of LIC@LCO-15 wt%, which is closely 
related to the power density of AISSBs, the galvanostatic intermittent 
titration technique (GITT) was performed. The charge/discharge GITT 
curves, the small polarization curves, and the high Liþ diffusion 

coefficient (~10� 9 cm2 S� 1) are presented in Fig. S14. The high Liþ

diffusion coefficient is even comparable with that in liquid cells [42]. 
That’s why LIC@LCO-15 wt% demonstrates a high-rate performance up 
to 4C. The fast Liþ kinetics of LIC@LCO-15 wt% is ascribed to the inti-
mate solid-solid contact, high interfacial ionic conductivity, ultra-small 
interfacial resistance, as well as excellent interfacial stability. To meet 
the standards required for practical applications, a high areal capacity of 
LIC@LCO of 6 mAh.cm� 2 is also demonstrated with a high LCO loading 
of 48.7 mg cm� 2 (Fig. 3f). Fig. 3g compares the power density and en-
ergy density of LIC@LCO-based AISSBs with all previously reported 
results in the Ragone plot [4,17,21,25]. The sources of the data are listed 
in Table S5. Comparatively, LIC@LCO-15 wt% demonstrated the highest 
both energy density and power density of AISSBs. Furthermore, the 
practical energy density of LIC@LCO composites was also fairly pre-
dicted as per practical pouch cell parameters [23]. As shown in Fig. S15, 
a high energy density over 300 Wh.kg� 1 (>700 Wh L� 1) can be realized 
as long as a 50 μm ISE layer is provided. 

In-situ/operando Raman spectroscopy was further performed to 
examine the interfacial stability between LIC and LCO upon cycling. The 
LIC@LCO electrode can be successfully charged to 118 mAh g� 1 

(Fig. 4a). LIC shows a broad peak at 191 cm� 1 and a sharp and strong 
peak at 269 cm� 1, while LCO shows 478 cm� 1 and 596 cm� 1, which are 
ascribed to Eg and A1g vibrational modes of LCO, respectively [43]. 
These four peaks are detected and remain stable until 4.0V (Fig. 4b). The 
intensity of LCO peaks begins to decrease after 4.0V (highlighted by a 

Fig. 4. In situ/operando Raman and ex-situ XAS spectra of LIC@LCO-15 wt% in AISSBs. (a) Charging curves of LIC@LCO electrodes at the current density of 0.13 mA 
cm� 2. (b) Raman spectra of the LIC@LCO electrode during the charging process. (c) Contour plot of LIC@LCO during the charging process. (d) Discharging curves of 
LIC@LCO electrodes at the current density of 0.13 mA cm� 2. (e) Raman spectra of LIC@LCO electrodes during the discharging process. (f) Contour plot of LIC@LCO 
during the discharging process. (g) XANES of Cl K-edge. (h) XANES of In L3-edge. (i) XANES of Co K-edge. 
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red dash line), while LIC peaks remain the same, suggesting that the LIC 
is stable even at the high cut-off voltage (Fig. 4b). The contour plot of 
LIC@LCO during the charging process in Fig. 4c clearly shows the in-
tensity decrease of peaks at 478 cm� 1 and 596 cm� 1 after charging to 
4.0V, which is closely related to the de-lithiation of LCO upon charging 
and LCO lattice expansion [43]. No new peaks are detected during the 
charging process, suggesting that there are no side reactions between 
LIC and LCO upon charging. Fig. 4d shows the discharge capacity of 100 
mAh g� 1. Fig. 4e shows the Raman spectra of LIC@LCO during the 
discharge process, the reduced peaks at 478 cm� 1 and 596 cm� 1 grad-
ually recover from 4.2V to 4.0V and remain the same afterward, sug-
gesting Liþ is reversibly intercalated into the LCO layered structure. 
During the whole discharge process, LIC peaks remain the same, 
implying LIC is stable against LCO during the electrochemical cycling 
process. 

Furthermore, ex-situ X-ray absorption spectroscopy was performed 
to investigate the interfacial stability between LIC and LCO after 
different cycles. Fig. 4g and h displays the Cl K-edge and In L3-edge of 
LIC@LCO-15 wt%, respectively. Compared to the pristine Cl K-edge and 
In L3-edge, the Cl K-edge and In L3-edge of LIC@LCO-15 wt% do not 
change even after 100 cycles, suggesting excellent interfacial stability 
during the electrochemical cycling. Fig. 4i shows the XAS spectra of Co 
K-edge, which also remains the same after the first cycle, implying the 
excellent electrochemical stability. The slight difference between the 
pristine Co K-edge and that after 1 cycle is ascribed to irreversible ca-
pacity loss during the first cycle. The in-situ Raman and ex-situ XAS 
analyses consistently confirm the excellent interfacial compatibility 
between LCO and LIC. 

To further explore the interfacial stability between LCO and LIC, we 
calculated the binding energies of LCO(110)/LIC(100) and simulated 
their interfacial structure change under external electric fields of �0.3 
V/Å, � 0.2 V/Å, and �0.1 V/Å. As shown in Fig. 5b, the binding energy 
of the LCO(110)/LIC(100) interface generally increases with the electric 
field intensity, suggesting that the strength of interactions at the inter-
face decrease under external electric fields. Especially, the LCO(110)/ 
LIC(100) interface becomes more disordered for high electric field in-
tensity and even breaks down under a potential of 0.3 V/Å. Furthermore, 
we explored the variation of the Fermi level of interface structure, and it 
shows a similar trend as the binding energy (Fig. S16a). Besides, we also 
found that the LCO(110)/LIC(100) interface under 0.3 V/Å shows an 
obvious bandgap (Fig. S16c), as compared with that for interface 

structure under - 0.3 V/Å (Fig. S16b), indicating that the LCO/LIC 
interface structure is unstable under extremely high electric field in-
tensity. In general, the actual electric field intensity that the battery 
undergoes is significantly smaller than �0.1 V/Å, in which the interfa-
cial binding between LCO and LIC is very strong, which means the strong 
interfacial interaction can be well-maintained upon battery operation. 
The strong interfacial interaction also explains the ultra-stable long- 
cycling performance as shown in Fig. 3. The simulation results advance 
the understanding of the stability of the LCO/LIC interface and the 
structural evolution under external voltage. 

3. Discussion 

Here, we reported an in-situ interfacial growth of halide electrolytes 
(Li3InCl6, LIC) on electrode materials (LiCoO2, LCO) directly from 
aqueous solution, which simultaneously improves the interfacial ionic 
conductivity and solid-solid ionic contact. To the best of our knowledge, 
this is the first time to demonstrate an interfacial-assisted in-situ syn-
thesis of solid-state halide electrolytes on electrode materials with an 
ultrahigh ionic conductivity (1.5 mS cm� 1). There are several 
outstanding advantages of the in-situ interfacial growth of Li3InCl6 on 
electrodes for AISSBs. Firstly, in-situ interfacial growth of LIC on LCO 
can form intimate solid-solid contact due to strong interfacial binding, 
thus constructing 3D Liþ-transport pathways in LIC@LCO cathode 
composites. Secondly, no extra interfacial modification on LCO is 
required due to excellent interfacial stability between LCO and LIC. Due 
to the high ionic conductivity of LIC (1.5 mS cm� 1), the ultra-fast 
interfacial Liþ-transport kinetics can be guaranteed. The average Liþ

diffusion coefficient is up to 10� 9 cm� 2 S� 1, which is even comparable to 
that of liquid cells. Therefore, LIC@LCO electrodes exhibited a high rate 
performance of 4C. The corresponding powder density is 1300 W kg� 1, 
which overtakes previous results. Thirdly, LIC@LCO-15 wt% demon-
strates an ultra-small interfacial resistance of 6.8 Ω. The interfacial 
resistance is several orders of magnitude lower than those of mainstream 
sulfide/oxide-based AISSBs [16]. Last but not least, as less as 15 wt% LIC 
is dispersed into cathode composites, which is significantly less than 
those in previous references (30% ISEs) [4,8,22], Thus the high energy 
density (513 Wh.kg� 1) of AISSBs is achieved in our case. We believed 
this method could be easily developed in pouch cells by in-situ 
solidification. 

In summary, we successfully eliminated the interfacial resistance of 

Fig. 5. (a) Illustration of a schematic view of LCO(110)/LIC(100) interface under the electrical field of � 0.3V/Å, � 0.2V/Å, � 0.1V/Å, 0V/Å, 0.1V/Å, 0.2V/Å, and 
0.3V/Å. (b) The variation of binding energy of LCO(110)/LIC(100) interface as a function of electric field strength. 
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AISSBs by the in-situ interfacial growth of LIC. A strong interfacial 
interaction between LCO and LIC was found by XPS and DFT calcula-
tions, which is beneficial for the in-situ interfacial growth of LIC and the 
long-term cycling stability of AISSBs. Benefiting from the high ionic 
conductivity (1.5 mS cm� 1) of LIC, intimate solid-solid contact, and 
high-voltage stability, the ultra-small interfacial resistance, LIC@LCO- 
15 wt% exhibited a high initial discharge capacity of 131.7 mAh.g� 1 

with an initial Coulombic efficiency of 92.7% at 0.1C. After 200 cycles, a 
capacity of 90.3 mAh.g� 1 can be retained. Furthermore, the high-rate 
performance (28.5 mAh.g� 1 at 4C) was achieved. Moreover, a high 
areal capacity of LIC@LCO up to 6 mAh.cm� 2 was demonstrated with a 
high mass loading of 48.7 mg cm� 2 (LCO). This facile approach offers a 
new route to overcome longstanding interfacial challenges in AISSBs, 
enabling high-energy-density and high-power-density AISSBs at room 
temperature. 
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