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A B S T R A C T   

Lithium halide electrolytes with high ion conductivity and good cathode compatibility have shown great po-
tential for solid-state batteries. Li3YBr6, with a conductivity of 0.39 mS/cm at room temperature, synthesized by 
mechanical milling (BM-Li3YBr6), which can be further increased by heat treatment. The annealing parameters 
are tailored to obtain pure Li3YBr6 (AN-Li3YBr6) with a higher conductivity of 3.31 mS/cm by annealing the BM- 
Li3YBr6 at 500 �C for 5 h. The higher conductivity of AN-Li3YBr6 compared to the previously-reported results is 
due to the lower activation energy. NMR and simulation results show that the lithium ion migration between Li-1 
and Li-2 sites along the [001] direction is the major obstacle for lithium diffusion in AN-Li3YBr6. The K- and L3- 
edge X-ray absorption near-edge structure (XANES) of Y for BM-Li3YBr6 and AN-Li3YBr6 showed that Y exists 
with similar local structures. The increased vibrations of AN-Li3YBr6 due to increased temperatures increase the 
rate of lithium jumping from one site to another, yielding higher lithium ion mobility. Lithium nuclear density 
maps prove that the mobile lithium on the 4g(Li) site is more sensitive to the varying temperatures. Both BM- and 
AN-Li3YBr6 are incompatible with Li, however, an annealing process can improve the electrochemical stability. 
Both the experimental and simulation results confirm the anode incompatibility between In and AN-Li3YBr6. To 
mitigate the cathode and anode incompatibility with AN-Li3YBr6, a LiNbO3 coating layer and a Li5.7PS4.7Cl1.3 
buffer layer are introduced at the cathode side and anode side, respectively, to assemble all-solid-state batteries 
with improved capacity and cyclability.   

1. Introduction 

Current lithium ion batteries suffer from severe safety issues origi-
nating the intrinsic flammability and toxicity of organic liquid electro-
lytes as well as their chemical reactivity under stressful operating 

conditions [1–4]. Therefore, all-solid-state batteries with improved 
safety and durability have drawn significant attention due to the high 
melting temperature and inflammability of solid electrolytes [2,5–7]. 
However, the lower room temperature lithium ion conductivity of the 
inorganic solid electrolyte compared to current organic liquid 
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electrolytes has limited the development of solid-state batteries [2]. 
Among the various solid electrolytes, sulfide electrolytes show great 
potential as a promising candidate due to their ultrafast ionic conduc-
tivity, which is comparable to that of current organic liquid electrolytes 
(10 mS/cm vs. 25 mS/cm at room temperature, respectively) [5,8]. 
However, the poor compatibility between the active materials and sul-
fide electrolytes limit their applications [9–11]. Other solid electrolytes, 
such as oxides, suffer from low ionic conductivity and poor ductility, as 
well as large interfacial resistance between the electrode and electrolyte 
[9]. The undesirable trade-off between ionic conductivity and chem-
ical/electrochemical stability of sulfide and oxide electrolytes are crit-
ical hurdles in the application of solid-state batteries. 

Recently, Asano et al. [12] have reported a new kind of lithium 
halide electrolyte with high lithium ion conductivity up to 0.5 mS/cm 
for Li3YCl6 and 1.7 mS/cm for Li3YBr6 at 300 K, respectively. These 
electrolytes showed good electrochemical stability in 4 V class bulk-type 
all-solid-state batteries. However, several details about the optimal 
synthesis of the lithium halides are unclear [10,11]. A new kind of 
lithium halide, Li3InCl6, with high ionic conductivity up to 1.49 mS/cm 
at room temperature and excellent stability with cathode have been 
reported by Li et al. [10]. Later, they found a water-mediated synthesis 
route to prepare this material with an even higher lithium ion conduc-
tivity (2.04 mS/cm) [13]. More recently, Wang et al. [14] have pre-
dicted the lithium ion conductivity of Li3YCl6 and Li3YBr6 based on 
AIMD simulations results, showing a value of 14 mS/cm and 2.2 mS/cm 
at 300 K, respectively. The discrepancy of ionic conductivity in Li3YCl6 
and Li3YBr6 obtained from AIMD simulations and experimental results 
makes the ability to tune the mobility during synthesis necessary for 
further research. There are two kinds of lithium sites in Li3YBr6 struc-
ture, 4h(Li) and 4g(Li) sites [10,12,14]. Obtaining more information on 
the lithium diffusion kinetics in these two sites can help us to enhance 
the lithium conductivity and to explore new analogues. However, due to 
the low scattering power of Li atoms, it is difficult to characterize 
Li-containing materials, such as inorganic lithium solid electrolytes with 
X-ray techniques [15]. Alternatively, neutron diffraction is a powerful 
technique to probe lithium structure information for lithium-containing 
materials [16,17]. Nuclear density mapping at various temperatures can 
provide useful structural and dynamic information to investigate solid 
electrolytes [18]. It should be noted that in Asano et al.‘s paper, Li3YCl6 
was chosen as the electrolyte in the cathode mixture to enhance the 
lithium ion conductivity, showing good compatibility between Li3YCl6 
and 4 V high voltage cathode. However, the electrode compatibility 
between Li3YBr6 and electrode materials, including both 4 V cathode 
materials and anode (In) is unclear. The information pertaining to the 
ion transport and (electro)chemical reactivity of these materials can 
promote the synthesis and application of Li3YBr6 electrolytes in 
all-solid-state batteries. Additionally, current lithium ion conduction 
information comes from AC impedance spectroscopy, which only re-
flects the macroscopic diffusion. The only reported micro-diffusion in 
the Li3YBr6 system was obtained based on simulation results [14]. 
Unraveling the lithium diffusion of Li3YBr6 in the local diffusion length 
scale within the bulk can help us tailor the ion mobility. 

In this work, the lithium ion conductivity of Li3YBr6 was tuned by 
tailoring the milling and annealing parameters to obtain a pure phase 
with optimized conductivity. Lithium diffusion behavior was studied 
with a combination of AC impedance, AIMD simulations with 7Li 
temperature-dependent spin-lattice relaxation NMR, unraveling lithium 
ion mobility of Li3YBr6 at both bulk diffusion and local diffusion length 
scales. Neutron diffraction and lithium nuclear density maps at 223, 
253, 298 K, and 393 K were performed to reveal the relationships be-
tween lithium ion conductivity and different lithium occupancies. 
Electrode compatibility of Li3YBr6 with both the cathode and anode 
were also investigated by both experiment and simulations. Possible 
solutions are proposed to improve electrode compatibility. LiNbO3 
coating layer and Li5.7PS4.7Cl1.3 buffer layer is introduced to mitigate the 
side reaction in both cathode and anode sides, respectively. Finally, all- 

solid-state batteries using the optimized Li3YBr6 electrolyte in combi-
nation with LiNbO3-coated LiNi0.8Mn0.1Co0.1O2, Li5.7PS4.7Cl1.3 buffer 
layer, and indium anode were fabricated and characterized. 

2. Results and discussion 

Previous research has shown that BM-Li3YBr6 can be obtained by 
mechanochemically milling with planetary mixer for 50 h over 500 rpm 
[12]. However, the milling parameters have not been optimized. During 
the high rotation speed milling process, the inherent softness of the 
starting powders and the interfacial shear stress makes the sticky pre-
cursors strongly adhere to the ZrO2 balls and the inner walls of the jar, 
increasing the difficulty to achieve homogenous powders with high ionic 
conductivity. To find the optimal milling duration to get BM-Li3YBr6 
with the highest lithium ion conductivity, the milling speed is fixed at 
550 rpm and the jar is opened every 2 and 4 h to hand grind the mixture, 
ensuring homogeneity. The impedance spectra for the mixtures obtained 
when the jar opened every 4 h are shown in Fig. 1a. The resistance of the 
pressed pellet for both cases decreases first to a minimal value and then 
starts to increase. The resulting changes in conductivity are shown in 
Fig. 1b. As shown in the figure, for the mixture opened every 2 h, the 
largest ionic conductivity is achieved after milling for 38 h, while for the 
mixture opened every 4 h, the largest lithium ion conductivity is reached 
after milling for 32 h. Moreover, a sustainable milling duration can 
enhance the ionic conductivity of BM-Li3YBr6, while milling for too long 
will decrease lithium ion conductivity. Unfortunately, we have no 
explanation yet to unravel the milling durations dependence of lithium 
ion conductivity of the BM-Li3YBr6, especially why the lithium ion 
conductivity decreases with the increase of milling time after 32 h. 
Boulineau et al. [19] have also found similar behavior for Li6PS5Cl 
during the milling processes, in which the lithium conductivity de-
creases for longer durations. Based on their explanation, the decrease of 
lithium ion conductivity for Li6PS5Cl at high ball-milling time is asso-
ciated with a coalescence of divided particles with high surface tensions 
[19]. Hereby, the milling parameter was fixed to 550 rpm for 32 h and 
the interval time to open the jar was fixed to 4 h. Fig. 1c shows the XRD 
patterns for the mixture prepared by milling LiBr and YBr3 at 550 rpm 
for 4, 32, and 50 h. These major diffraction peaks of the patterns can be 
indexed to BM-Li3YBr6 as reported in the literature [12]. The broad peak 
locates at 18� 2θ range due to the reflection of Kapton film to prevent the 
contact between BM-Li3YBr6 and moisture. The above XRD results 
indicate that the BM-Li3YBr6 is formed after milling at 550 rpm for 4 h. 

The ionic conductivity of the ion conductor is greatly influenced by 
the crystallinity of inorganic solid electrolytes prepared using the me-
chanically milling route [15,20]. The conductivity of BM-Li3YBr6 can be 
enhanced by annealing due to the improvement of its crystallinity [12]. 
The ball milled mixture, BM-Li3YBr6, was annealed at various temper-
atures (250, 300, 400, 450, 500, and 550 �C) for 5 h to promote 
improved crystallinity. The influence of the annealing temperatures on 
the lithium ion conductivity was investigated by impedance spectros-
copy, the results of which is shown in Fig. 1d. The impedance spectrum 
consists of a small arc and a straight line, which makes it difficult to 
distinguish the contribution from the bulk and the grain boundary part 
of the electrolyte due to the machine limitation. The impedance spec-
trum measured at � 20 and 75 �C of Li3YBr6 annealed at various tem-
peratures is also shown in Fig. S1 for comparison. The resistance of the 
AN-Li3YBr6 decreases sharply with increasing temperature (from 200 to 
500 �C) until a minimum value is obtained at 500 �C for 5 h. As shown in 
Fig. 1e, the lithium ion conductivities at 30 �C are 1.18 � 10� 3 S/cm, 
1.26 � 10� 3 S/cm, 1.42 � 10� 3 S/cm, 3.31 � 10� 3 S/cm, and 1.76 �
10� 3 S/cm for BM-Li3YBr6 annealed at 250 �C, 300 �C, 400 �C, 500 �C, 
and 550 �C, respectively. The AN-Li3YBr6 with the highest lithium ion 
conductivity at 30 �C was obtained after 500 �C for 5 h. The major 
reflection peaks of the AN-Li3YBr6 obtained from annealing at various 
temperatures (250 �C, 300 �C, 400 �C, 500 �C, and 550 �C) for 5 h can be 
indexed to the cubic close-packed (ccp)-like hc-Li3YBr6 [12] as shown in 
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Fig. 1f, suggesting that the pure phase was achieved after annealing 
processes. To further confirm the changes of ionic conductivity of 
BM-Li3YBr6 annealed at various temperatures, the corresponding 
Arrhenius plots are plotted and shown in Fig. 1g. The AN-Li3YBr6 
annealed at 500 �C for 5 h shows much higher lithium ion conductivities 
at various temperatures compared to the sample annealed at different 
heat treatment temperatures. As shown in the inset of Fig. 1g, the acti-
vation energy of BM-Li3YBr6 annealed at 250 �C, 300 �C, 400 �C, 500 �C, 
and 550 �C are 0.406 eV, 0.363 eV, 0.347 eV, 0.299 eV, and 0.298 eV, 

respectively. The higher lithium ion conductivity of AN-Li3YBr6 
annealed at 500 �C for 5 h is due to the lower activation energies. To 
optimize the annealing durations, the heat treatment temperature was 
fixed at 500 �C and the annealing duration was chosen to be 3, 5, 8, 10, 
12 h, and 15 h, respectively. Fig. 1h shows the corresponding lithium ion 
conductivity at various temperatures for BM-Li3YBr6 annealed at 500 �C 
for different durations. The sample annealed for 5 h shows much higher 
lithium ion conductivities and extremely smaller activation energies 
than that of samples annealed for different durations. The optimal 

Fig. 1. (a) Complex impedance plots for the mixture milled with the rotation speed of 550 rpm for different durations at room temperature: (a) The milling jar was 
opened and hand ground every 4 h. (b) The corresponding ionic conductivity changes during the mechanical milling processes. The milling jar opened and hand 
ground every 2 h was also shown for comparison. (c) XRD patterns of the mixture ball milled after 4, 32, and 50 h when the milling jar was opened and hand ground 
every 4 h. (d) Complex impedance plots for the mixture milled with 550 rpm for 32 h followed by annealing at various temperatures. All of these impedance 
measurements were performed at 30 �C. (e) The corresponding ionic conductivities of the annealed samples changes versus the annealing temperatures. (f) The XRD 
patterns of these samples annealed at various temperatures. (g) Arrhenius plots of the ionic conductivity of pellets made from the mixture milled 550 rpm/32 h 
followed by annealing at various temperatures. The inset in the figure shows the activation energies deduced from the ionic conductivity as a function of annealing 
temperatures. (h) Arrhenius plots of the ionic conductivity of pellets made from the mixture annealed at 500 �C for various durations. The inset in the figure shows 
the activation energies deduced from the ionic conductivity as a function of annealing durations. (i) Variations of the lattice parameters (a, b, c) and cell volume (V) 
of AN-Li3YBr6 (500 �C/5 h) obtained from the Rietveld refinement of temperature-dependent neutron diffraction data. 
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annealing parameter for AN-Li3YBr6 to achieve the highest lithium ion 
conductivity is 500 �C for 5 h. Thus, the AN-Li3YBr6 solid electrolyte 
obtained based on these synthesis conditions are used for dynamics 
analysis and battery performance evaluation. Due to the low scattering 
power of Li atoms, X-rays cannot give enough structural information 
compared to neutron diffraction for lithium-containing materials. To 
reveal the relationship of lithium conductivity changes of AN-Li3YBr6 
with structure at different temperature ranges, powder neutron 
diffraction of AN-Li3YBr6 was performed at 223, 253, 298 K, and 392 K, 
as shown in Fig. S2. The lattice parameter changes of AN-Li3YBr6 ob-
tained from the Rietveld refinement of neutron diffraction data 
measured at various temperatures are shown in Fig. 1i. As shown in the 

figure that the lattice parameters (a, b, c, and V) increase with enhanced 
temperatures. The anharmonicity of the vibrations increases as a func-
tion of the temperatures, yielding an expanded lattice. In parallel, the 
mean squared displacements increase for the lithium atoms on the lat-
tice position, increasing the chance of lithium jumps between different 
sites and therefore enhance the lithium jump diffusion in the whole 
crystal. Lithium jumping from one site to another site becomes more 
possible in Li3YBr6 at higher temperature, thus yielding a higher lithium 
mobility. The nuclear densities of lithium in the lithium-containing 
materials can be extracted from the structure factors obtained from 
the neutron diffraction refinement [18,21]. To investigate the lithium 
nuclear density changes in AN-Li3YBr6 at various temperatures, the 

Fig. 2. (a) The Nyquist AC impedance spectroscopy plots of the BM-Li3YBr6 (550 rpm/32 h) and AN-Li3YBr6 (500 �C/5 h) using stainless steel as the blocking 
electrode at 293K. (b) The Arrhenius plots of lithium ion conductivities of BM-Li3YBr6 and AN-Li3YBr6, respectively. (c) The evolution of the FWHM of the static 7Li 
NMR resonance with temperature. The Larmor frequency for 7Li is 155.248 MHz. (d) Temperature-dependent 7Li spin-lattice relaxation rates of AN-Li3YBr6. (e) 
Crystal structure of AN-Li3YBr6 with fcc-type anion lattice. The light purple, red and cyan balls represent Li, Br, and Y atoms respectively. (f) The energy barriers for 
lithium ion migration in the (001) plane from one site to the neighbor site. (g) The energy barrier for lithium ion migration between Li-1 and Li-2 sites along the 
[001] direction. The light purple and the grey balls represent Li-1 and Li-2 sites respectively. (h)Y K-edge and (i) Y L3-edge XANES of BM-Li3YBr6 and AN-Li3YBr6, 
respectively. 
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structure factor obtained in the neutron refinement were further pro-
cessed with GSAS [22–24], which performs the Fourier transformation 
and calculates the lithium nuclear densities as shown in Fig. S3. As 
shown in the figure, the lithium nuclear distribution between 223 and 
392 K does not show significant changes on the 4h(Li) site, while the 
lithium nuclear densities on 4g(Li) site shows a strong increase with 
increasing temperatures, suggesting that the mobile lithium site on the 
4g(Li) site are more sensitive to temperature compared to the lithium on 
the 4h(Li) site in AN-Li3YBr6. 

To explore the annealing effect, the BM-Li3YBr6 (550 rpm/32 h) and 
AN-Li3YBr6 (500 �C/5 h) are investigated by temperature-dependent 
impedance spectroscopy, the results of which are shown in Fig. 2a and 
Fig. 2b. As shown in Fig. 2a, the AN-Li3YBr6 shows much smaller re-
sistances at 293 K compared to that of the BM-Li3YBr6. The lithium ion 
conductivity of AN-Li3YBr6 at � 20, 20, and 70 �C are 3.40 � 10� 4, 2.18 
� 10� 3, and 1.21 � 10� 2 S/cm, while the corresponding ionic conduc-
tivity of BM-Li3YBr6 are 6.48 � 10� 5, 3.92 � 10� 4, and 2.01 � 10� 3 S/ 
cm, respectively. As shown in Fig. 2b, the activation energies of the 
lithium ion conductivities of BM-Li3YBr6 and AN-Li3YBr6 are 0.281 and 
0.299 eV, respectively. The conductivity of Li3YBr6 increased by 
improving the crystallinity, while the activation energy deduced from 
the temperature-dependent impedance spectroscopy slightly increases 
after heat treatment. The lithium ion conductivity of the annealed 
sample in our work is much higher than previous reported [12], 3.31 
mS/cm at 30 �C vs. 1.70 mS/cm at 25 �C, which is associated with the 
lower activation energy, 0.30 eV vs. 0.37 eV. The activation energy 
obtained in this work is slightly smaller than the estimated activation 
energy [14], 0.30 eV vs. 0.28 � 0.02 eV. 

The macroscopic conductivity includes the contributions from both 
the bulk and the grain boundaries parts due to the attributes of the 
characterization method [25]. Unlike AC impedance spectroscopic, 
solid-state NMR is a powerful tool to unravel the lithium ion dynamics at 
a local diffusion length scale [20,25]. To quantitatively determine the 
lithium ion jump frequencies and the activation energy barrier in a local 
length scale, temperature-dependent 7Li line shape and static 
spin-lattice relaxation (SLR) rates in the laboratory frame are measured 
and shown in Fig. 2c and d. The full width at half maximum (FWHM) of 
the spectrum for AN-Li3YBr6 shown in Fig. 2c decrease with increase 
temperature, indicating increased lithium ion mobility, which is asso-
ciated with the motional narrowing effect. At lower temperature, the 
larger FWHM value reflects the broad resonances due to the 7Li–7Li 
dipolar interactions. With increasing measuring temperature, the 
observed resonances are averaged out when the lithium-ion hopping 
frequency exceeds the dipolar interaction strength, which is reflected as 
the unchanged FWHM in the higher temperature range. However, due to 
the equipment limitation, the onset temperature of the motional nar-
rowing curves was not reached, even at 173 K. The spin-lattice relaxa-
tion (SLR) rates, 1/T1, are related to the spectral density function on the 
Li-ion jumping processes. Therefore, the temperature-dependency of the 
SLR rates in the Larmor frequency can be applied to quantify the Li-ion 
jump frequency and the corresponding activation energy. As shown in 
Fig. 2d, the maximum SLR rate is reached at 363 K, in which the 
maximum condition is fulfilled, τωo � 1 [20,25]. The asymmetry of a 
SLR rates peak is taken into account in the above analysis when the 
exponent β is allowed to adopt values in the interval 1< β � 2 [26,27]. 
The exponent β in this work is 1.75, suggesting the fulfill of the 
maximum condition. Assuming an Arrhenius behavior of the lithium ion 
residence time of Li3YBr6, the SLR rates in Fig. 2d yield activation en-
ergies of 0.117 � 0.01 and 0.088 � 0.01 eV, respectively. The activation 
energy deduced from the SLR NMR is much smaller than the value ob-
tained from temperature-dependent impedance result, which is due to 
the fact that impedance spectroscopy probes both the bulk and grain 
boundary lithium ion diffusion in Li3YBr6, while the VT SLR NMR probes 
the shorter range lithium jumps in the bulk of Li3YBr6 [20,25]. The 
residence time τ at 363 K can be calculated based on the Larmor fre-
quency, 155.248 MHz, which is 1.026 � 10� 9 s. The Liþ diffusion in 

AN-Li3YBr6 was studied with ab initio molecular dynamics (AIMD) 
simulations. As shown in Fig. 2e, the lithium ion diffusion in AN-Li3YBr6 
structure through a 3D isotropic framework is based on the hopping of Li 
ions to the other lithium sites in two channels; the (001) plane between 
different Li-1 sites, and along the [001] direction between Li-1 and Li-2 
sites. Simulation results showed that the estimated activation energy for 
lithium ion transport between different Li-1 sites in the (001) plane is 
between 0.11 and 0.19 eV (Fig. 2f), while the estimated energy barrier 
for lithium ion diffusion between Li-1 and Li-2 sites along the [001] 
direction is 0.39 eV (Fig. 2g). The short cation-cation distance in the 
(001) plane for AN-Li3YBr6 between Li-1 and Li-1 sites are 3.71 Å. 
Assuming random translational jump diffusion of lithium atoms in the 
Li3YBr6 lattice, the microscopic diffusion coefficient at 363 K is, D(363K) 
¼ a2/6τ, 2.236 � 10� 7 cm2/s. The comparison of 
temperature-dependent SLR rates and the AIMD simulations indicates 
that the high-temperature flank of the NMR SLR rates for AN-Li3YBr6 
reflects lithium ion mitigation between Li-1 and Li-1 sites in the (001) 
plane. It should be mentioned that the spin-lattice time of BM-Li3YBr6 
(550 rpm/32 h) was also investigated, yielding a value of 2.045 s at 
room temperature, which is much longer than that of AN-Li3YBr6, 0.095 
s. This result is in good agreement with the above conclusion that heat 
treatment can enhance the lithium ion conductivity of the milled 
BM-Li3YBr6. To distinguish the local chemical environment difference of 
Y in BM-Li3YBr6 and AN-Li3YBr6, the Y K-edge and L3-edge X-ray ab-
sorption near edge structure (XANES) spectra were acquired with 
transmission and fluorescence yield (FLY) modes, respectively, shown in 
Fig. 2h and i. Y K-edge XANES spectrum corresponds to electron tran-
sitions from 1s orbital to the unoccupied 5p orbital, while the L3-edge 
XANES spectrum is related to the electron transitions from 2p3/2 to 
unoccupied 5s and 4d orbitals, according to the dipole selection rule. 
The probing depth of Y K- and L3-edges is hundreds and several mi-
crometers, respectively, owing to the different attenuation degree of the 
FLY X-ray with different photon energies. It is reasonable to get the 
chemical information at the surface from the Y L3-edges while the Y 
K-edge XANES can present the chemical information of the bulk mate-
rials. Since XANES spectra are very sensitive to the chemical state and 
coordination environment, both Y K- and L3-edges XANES spectra can 
reveal the local chemical environment around Y elements. Comparing 
both XANES spectra of BM-Li3YBr6 and AN-Li3YBr6, no obvious changes 
are observed in the spectrums, showing that they have Y existing similar 
local environments at the atomic scale. However, the big differences of 
the spin-lattice relaxation time (T1) based on the 7Li NMR suggests that 
the Li diffusion at the local structure are quite different. 

To investigate the anode compatibility, AC impedance spectroscopy 
was conducted over different time intervals for various battery config-
urations. Firstly, the commonly used lithium metal anode was chosen as 
the electrodes to assemble the Li/BM-Li3YBr6/Li and Li/AN-Li3YBr6/Li. 
The resistance evolution of these two cells as a function of storage time 
were investigated. As shown in Fig. S4, resistance increases intensely 
with the increasing storage time due to the appearance of new interfaces 
for both cells, suggesting that both BM-Li3YBr6 and AN-Li3YBr6 are 
chemically incompatible with lithium metal. Moreover, the electro-
chemical behavior of the Li/BM-Li3YBr6/Li and Li/AN-Li3YBr6/Li sym-
metrical cells were also investigated to evaluate the electrochemical 
stability of Li3YBr6 against Li metal. As shown in Fig. S5, both sym-
metrical cells were cycled at 0.1 mA/cm2 with a limited capacity of 0.1 
mAh/cm2, showing relatively low initial overpotential of 0.096V for 
BM-Li3YBr6 cell and 0.06 V for AN-Li3YBr6 cell, respectively. The 
overpotential of BM-Li3YBr6 cell increases significantly in the following 
cycles, while the overpotential of the AN-Li3YBr6 cell is first gradually 
increased in the initial 50 h and then begins to stabilize, suggesting that 
AN-Li3YBr6 is more stable against Li metal than that of BM-Li3YBr6. The 
increased resistance with time and the increased overpotential of 
Li3YBr6 cells suggests that Li metal is not a suitable anode for Li3YBr6- 
based solid-state lithium batteries. Indium foil is a typical anode 
candidate for inorganic solid electrolyte due to its highly stability. Thus, 
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indium is also chosen as an electrode material for Li3YBr6-based battery. 
As shown in Fig. 3a, the resistance of In/AN-Li3YBr6/In increase with the 
storage time, indicating that the indium anode is unstable with AN- 
Li3YBr6. Besides all of those described in the manuscript, we have also 
disassembled Li/Li3YBr6/Li, In/Li3YBr6/In, Bare 811/Li3YBr6/In, and 
LiNbO3_NCM811/Li3YBr6/In batteries after impedance measurements, 
and found that the color of the surface of Li3YBr6 electrolyte pellets 
contact with lithium metal or indium foil changed from light grey to 
deep black. This also proves that Li3YBr6 is unstable with both lithium 
and indium anode. To confirm the compatibility between indium and 
AN-Li3YBr6, DFT based molecular dynamics simulations are performed. 
The timescales of these structural transformations are fixed at 0 and 41 
ps. The radial distribution functions of AN-Li3YBr6 after the simulations 
are shown in Fig. 3b, in which two Li atoms migrate in to the lattice of 
indium layer after 41-ps thermodynamic equilibration. The increase 
density of the Li–In distance a 41-ps equilibrated structure compared to 
the initial stage implies that indium and AN-Li3YBr6 are extremely un-
stable, which is in good agreement with the above experimental results. 
To further investigate the changes between AN-Li3YBr6 electrolyte and 
indium under electrochemical potential, solid-state batteries using both 
the bare LiNi0.8Co0.1Mn0.1O2 and LiNbO3-coated 811 as the active ma-
terials in a combination with AN-Li3YBr6 electrolyte and indium were 
fabricated. For the bare 811/AN-Li3YBr6/In solid-state battery, as shown 
in Fig. 3c, the resistance increases intensely after 6 h. The possible 

reasons for this are the cathode incompatibility between bare LiNi0.8-

Co0.1Mn0.1O2 and AN-Li3YBr6 electrolyte, and the anode incompatibility 
between AN-Li3YBr6 electrolyte and indium metal. Besides the above 
description, the In/AN-Li3YBr6/In and bare 811/AN-Li3YBr6/In batte-
ries after these measurements have been disassembled and found that 
the color of the surface of AN-Li3YBr6 electrolyte pellets changes from 
light grey before measurement to deep black, suggesting that indium foil 
is unstable with AN-Li3YBr6 electrolyte. Fig. 3d shows the resistance 
changes of the LiNbO3-coated NCM811/AN-Li3YBr6/In solid-state bat-
tery, where the resistance increases in 17 h, suggesting that side re-
actions still occurs in this battery configuration. To mitigate the 
interfacial instability between indium and Li3YBr6, a Li5.7PS4.7Cl1.3 
buffer layer was introduced in the battery configuration to fabricate 
LiNbO3-coated 811/AN-Li3YBr6/Li5.7PS4.7Cl1.3/In solid-state battery. 
This battery shows negligible changes in resistance after 20 h, as shown 
in Fig. 3e, indicating that Li5.7PS4.7Cl1.3 can effectively mitigate the side 
reaction between AN-Li3YBr6 electrolyte and indium anode, thus im-
proves the interfacial stability. 

Previous research has shown excellent solid-state battery perfor-
mance using Li3YCl6 and/or Li3YBr6 as solid electrolyte in a combination 
with LiCoO2 cathodes and Li–In alloy anodes [12]. However, the low 
capacity and the difficulty in preparing repeatable Li–In alloy limits its 
applications. High nickel layered materials, such as LiNi0.8Co0.1Mn0.1O2, 
deliver high discharge capacities up to 200 mAh/g [28] and are 

Fig. 3. EIS Spectra of (a) In/AN-Li3YBr6/In, (c) Bare 811/AN-Li3YBr6/In, (d) LiNbO3 coated 811/AN-Li3YBr6/In, and (e) LiNbO3 coated 811/AN-Li3YBr6/ 
Li5.7PS4.7Cl1.3/In as a function of the storage time at open circuit voltages (OCVs). (b) Radial distribution function (RDF) of the Li–In bonds in AN-Li3YBr6 obtained 
from molecular dynamics simulations of indium and AN-Li3YBr6. The top figures show the relaxed structure of AN-Li3YBr6 after an 800 K DFT-MD simulation. The 
violet, wine, cyan, and brown spheres indicate Li, Y, Br, and In, respectively. 
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promising cathodes for solid-state batteries. Hereby, LiNi0.8-

Co0.1Mn0.1O2 with and without LiNbO3 coating were chosen as the 
cathode in combination with AN-Li3YBr6 and indium anode to fabricate 
solid-state batteries. The assembled solid-state batteries were cycled at 
127.4 μA/cm2 between 1.88 and 3.78 V versus In (2.50–4.40 V vs. 
Li/Liþ). The charge/discharge curves of the first three cycles and the 
cycling results of which are shown in Fig. 4a and Fig. 4b, respectively. 
The initial charge and discharge capacities for solid-state batteries using 
bare LiNi0.8Co0.1Mn0.1O2 as the active material are 110.5 and 76.3 
mAh/g, yielding an initial coulombic efficiency of 68.99%. It should be 
noted that this battery suffers from significant voltage polarization 
during the first three cycles, as shown in Fig. 4a. To quantify the voltage 
polarization of the bare and LiNbO3-coated electrode in AN-Li3YBr6--
based solid-state batteries, the galvanostatic intermittent titration 
technique (GITT) was employed to track the voltage polarizations for 
both solid-state batteries. Transient voltage profiles and voltage polar-
ization curves for LiNi0.8Co0.1Mn0.1O2/AN-Li3YBr6/In and LiNbO3 
coated LiNi0.8Co0.1Mn0.1O2/AN-Li3YBr6/In solid-state batteries are 
plotted in Fig. 4c-e. As shown in Fig. 4c-e, the whole range for both the 
charge and discharge processes show much higher polarization voltages 
for the bare LiNi0.8Co0.1Mn0.1O2 electrode compared to that for the 
LiNbO3-coated LiNi0.8Co0.1Mn0.1O2 electrode, which is in good agree-
ment with the charge/discharge curve analysis described above. 

LiNbO3 is an effective buffer layer to improve the electrochemical 
performance of layered cathode, such as LiCoO2 and LiNixCoyMnzO2 (x 
þ y þ z ¼ 1) [29–32]. As shown in Fig. 4a-b, the charge and discharge 
capacity are highly improved due to the LiNbO3 coating with an initial 
charge and discharge capacity of 264.9 and 163.8 mAh/g, respectively. 
However, the initial Coulombic efficiency is smaller for the coated 
electrode than that of the bare electrode. The much lower initial 
Coulombic efficiency (smaller than 70%) showed here compared to that 

using bare LiCoO2 as the cathode in the literature [12] suggests that 
there are side reactions in this solid-state battery configuration. After 20 
cycles, the charge and discharge capacity for the bare electrode are 11.7 
and 11.4 mAh/g, while the corresponding capacities for the LiNbO3 
coated electrode are 58.8 and 57.9 mAh/g. The fast decay of the charge 
and discharge capacities during cycling for solid-state batteries using the 
bare and LiNbO3 coated LiNi0.8Co0.1Mn0.1O2 in Fig. 4b is also a sign that 
AN-Li3YBr6 is unstable with cathode or anode materials. Previous 
research has proven that Li3YCl6 is highly stable against 4 V class 
cathode active materials [12]. To further confirm the stability of 
AN-Li3YBr6 in the battery, bare LiCoO2 and LiNbO3 coated LiCoO2 were 
chosen as the cathode materials in a combination of AN-Li3YBr6 elec-
trolyte and In anode to assemble solid-state batteries. As shown in 
Fig. S6, although LiNbO3 coating can mitigate the charge/discharge 
capacity decay during cycling, both the bare LiCoO2 electrode and the 
LiNbO3-coated electrode suffer from serious capacity decay in the first 
20 cycles. This indicates that AN-Li3YBr6 is unstable in the LiCoO2 or 
LiNbO3 coated LiCoO2/AN-Li3YBr6/In battery configuration. As shown 
in Fig. 4b, the LiNbO3 coated electrode shows slightly smaller 
Coulombic efficiencies compared to that of the bare electrode during 
cycling, which is associated with the LiNbO3 coating layer on the surface 
of the electrode particle. The existence of the LiNbO3 coating layer im-
pedes the diffusion of lithium ions, thus decrease the Coulombic effi-
ciency. Since the LiNbO3 coating layer can stop the diffusion of lithium 
ions between the active particle and the AN-Li3YBr6 electrolyte, it can 
also impede the side reaction between them. Previous research has 
shown that the existence of carbon additives can cause the decomposi-
tion of solid electrolyte in the cathode side and yield seriously capacity 
decay during cycling [29,33,34]. It should be mentioned here that in our 
battery configuration, there is no carbon additive in the cathode 
mixture, thus there should be no side reaction in the cathode mixture. A 

Fig. 4. (a) Galvanostatic cycling voltage profiles for the first three cycles of LiNi0.8Co0.1Mn0.1O2/AN-Li3YBr6/In (the short dotted line), LiNbO3-coated LiNi0.8-

Co0.1Mn0.1O2/AN-Li3YBr6/In (the solid line), and LiNbO3-coated LiNi0.8Co0.1Mn0.1O2/AN-Li3YBr6/Li5.7PS4.7Cl1.3/In (the dashed line) at the current density of 127 
μA/cm2 between 1.88 and 3.78 V vs. In (2.5–4.4 V vs. Li/Liþ), respectively. (b) The corresponding charge/discharge capacity retention and the Coulombic efficiency 
changes during the first 20 cycles. (c) Transient charge/discharge voltage profiles and (d–e) their corresponding polarization voltage plots obtained by GITT for 
LiNi0.8Co0.1Mn0.1O2/AN-Li3YBr6/In and LiNbO3-coated LiNi0.8Co0.1Mn0.1O2/AN-Li3YBr6/In. 
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possible side reaction in this battery configuration comes from the 
interface between AN-Li3YBr6 electrolyte and indium anode. 

To evaluate the effect of battery performance due to the 
Li5.7PS4.7Cl1.3 buffer layer, 50 mg of Li5.7PS4.7Cl1.3 layer was introduced 
as the buffer layer in solid-state batteries using the bare electrode and 
the LiNbO3 coated electrode. As shown in Fig. 4a, after introduction of 
the Li5.7PS4.7Cl1.3 buffer layer, the initial charge and discharge capac-
ities are 119.9 and 68.6 mAh/g with an initial Coulombic efficiency of 
57.21% for the bare LiNi0.8Co0.1Mn0.1O2 electrode, while the initial 
charge and discharge capacities are 253.7 and 180.2 mAh/g with a 
corresponding Coulombic efficiency of 71.0%. The bare LiNi0.8-

Co0.1Mn0.1O2 electrode with the Li5.7PS4.7Cl1.3 buffer layer shows 
slightly lower charge and discharge capacities in the first three cycles 
compared to the battery without the Li5.7PS4.7Cl1.3 layer, indicating that 
the side reaction between the bare LiNi0.8Co0.1Mn0.1O2 electrode and 
the AN-Li3YBr6 electrolyte also damages the electrochemical perfor-
mances of solid-state batteries. The initial discharge capacity and 
Coulombic efficiency of the solid-state battery using the LiNbO3-coated 
electrode with the Li5.7PS4.7Cl1.3 buffer layer is much higher compared 
to the battery using the LiNbO3-coated electrode without the buffer 
layer as well as the battery using bare LiNi0.8Co0.1Mn0.1O2 electrode 
with the buffer layer, suggesting that Li5.7PS4.7Cl1.3 layer can effectively 
mitigate the side reaction between the AN-Li3YBr6 electrolyte and in-
dium anode. Moreover, the bare LiNi0.8Co0.1Mn0.1O2 is unstable with 
AN-Li3YBr6 electrolyte and the LiNbO3 coating layer can effectively 
improve the electrochemical performances. Due to the fact that lithium 
ions can be reversibly inserted/extracted between the interface of 
lithium argyrodite and indium, more lithium ions from the active 
cathode can be involved in the electrochemical insertion/extraction 
processes, thus increasing the Coulombic efficiency. As shown in Fig. 4b, 
the charge and discharge capacities after 20 cycles are 113.5 and 112.1 
mAh/g, both of which are higher than that of the solid-state batteries 
without this Li5.7PS4.7Cl1.3 buffer layer. The improved cycling perfor-
mance and enhanced charge/discharge capacities implies that the 
electrochemical performances of AN-Li3YBr6-based solid-state batteries 
can be greatly improved due to the introduction of the Li5.7PS4.7Cl1.3 
buffer layer. 

3. Conclusions 

BM-Li3YBr6 and AN-Li3YBr6 solid-state electrolytes with ionic con-
ductivities of 0.39 and 3.31 mS/cm at room temperature, respectively, 
were obtained by mechanical milling and annealing. The conductivity 
measurement showed that the heat treatment process can effectively 
increase the lithium ion conductivity of Li3YBr6. The Y K-edge and L3- 
edge XANES showed that BM-Li3YBr6 and AN-Li3YBr6 have similar Y 
local structures at the atomic scale. NMR and simulation analysis have 
revealed that the sluggish lithium diffusion kinetics between Li-1 and Li- 
2 sites along the [001] direction are due to the larger energy barrier, 
which is the major obstacle for lithium migration in AN-Li3YBr6. 
Neutron diffraction at various temperatures suggested that the lattice 
expansion of AN-Li3YBr6 can provide a larger lithium ion conductivity at 
higher temperature due to the improved lithium diffusion framework. 
Lithium nuclear density analysis clarified that the 4g(Li) site is more 
mobile than that of the 4h(Li). The electrochemical behavior of lithium 
symmetrical battery tests for both BM-Li3YBr6 and AN-Li3YBr6 showed 
that Li metal is electrochemical unstable with Li3YBr6. Both DFT simu-
lation and experiment results confirmed that indium is incompatible 
with Li3YBr6. The cyclability and capacity of LiNi0.8Mn0.1Co0.1/AN- 
Li3YBr6/In were effectively improved due to the introduction of the 
LiNbO3 coating layer and Li5.7PS4.7Cl1.3 buffer layer in the cathode and 
anode side, respectively. The LiNbO3-coated LiNi0.8Mn0.1Co0.1O2/AN- 
Li3YBr6/Li5.7PS4.7Cl1.3/In delivered an initial discharge capacity of 
180.2 mAh/g at 0.127 mA/cm2 between 2.5 and 4.4 V vs. Li/Liþ and 
67.8 mAh/g after 90 cycles. These results showed in this work lead to a 
significant step towards the development of solid-state batteries using 

Li3YBr6 solid electrolytes. 
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