

MME 3350B - System Modeling and Control

COURSE OUTLINE – 2025-2026

CALENDAR DESCRIPTION:	Basic analytical techniques for modeling and control of dynamic systems. Solve for response as well as design controllers to shape response of systems. Applications to vibratory, thermo-fluidic, hydraulic, pneumatic and electro-mechanical systems.
COURSE INFORMATION:	<p>Instructor: Dr. Samuel Asokanthan Professor Room: SEB 2059A Email: sasokant@uwo.ca</p> <p>Lecture, tutorial and lab schedules: https://draftmyschedule.uwo.ca/login.cfm</p>
PREREQUISITES:	NMM 2270A/B or the former Applied Mathematics 2270A/B, MME 2273A/B, MME 3381A/B. Unless you have either the requisites for this course or written special permission from your Dean to enroll in it, you will be removed from this course and it will be deleted from your record. This decision may not be appealed. You will receive no adjustment to your fees in the event that you are dropped from a course for failing to have the necessary prerequisites.
ANTIREQUISITES	CBE 3310A/B.
ACCREDITATION UNITS:	Engineering Science = 100%
TOPICS:	<ol style="list-style-type: none">1. Brief discussions of the history of automatic control systems; Application of Laplace Transformations and the Inverse Transformation;2. Modelling of Rigid-body, Spring-Mass, Electromechanical, Thermal, Hydraulic, and Pneumatic Systems.3. Simulation of response using MATLAB and SIMULINK4. Transfer functions, Block-Diagram Reduction, Response of First and Second Order Systems to Impulse, Step, Ramp and Decaying Exponential Inputs. Dominant-pole design based on time-domain response.5. Stability analysis via Routh's stability criterion; use of feedback-control design to shape system response6. Analysis of three-term PID (Proportional+Integral+Derivative) Controllers;7. Root Locus Method; Controller design via Root Locus; Control design tools in MATLAB8. Bode Plot; Controller design in the Frequency-Domain; Control design tools in MATLAB

LEARNING OUTCOMES:

The Mechanical and Materials Engineering Program has been accredited by Canadian Engineering Accreditation Board (CEAB) of Engineers Canada. Accredited programs provide the academic requirements for licensure as a professional engineer in Canada. Western Engineering has defined indicators of the 12 Graduate Attributes (GAs) that the CEAB expects graduating engineering students to demonstrate. The connections between course learning outcomes and [Western Engineering's GA Indicators](#) are identified below.

Upon completion of this course students will be able to:

1. Establish dynamic models that represent practical control problems that arise in automotive, aerospace and power-generation industries. KB3, PA 2
2. Employ the developed models to predict dynamic behavior as well as design suitable controllers to shape system response. PA 2, PA 3
3. Analyze as well as design model-based controllers using computer-aided tools available within MATLAB/SIMULINK environment and understand the implementation issues. ET3

UNITS: S.I

CONTACT HOURS: 3 lecture hours, 2 tutorial hours, 2 Lab activities, each 0.75 hours in-lab, 5 hrs pre/post lab duration, half course

TEXT: G. F. Franklin, J.D. Powell and A. Emami-Naeini, *Feedback Control of Dynamic Systems*, 8th Edition, 2019, Prentice Hall, New Jersey ISBN-13: 9780134726076. Online edition available from the publisher at a lower price.

For pricing information, refer to the publisher's website <https://www.pearson.com>

REFERENCES: TBA

EXAMINATIONS AND QUIZZES: Mid-term and Final Examination

EVALUATION: The final grade is computed as follows:

Individual Assignments	10%
Assignment 1: Due week of Jan 27 (tentative)	2.5%
Assignment 2: Due week of Feb 24 (tentative)	2.5%
Assignment 3: Due week of Mar 17 (tentative)	2.5%
Assignment 4: Due week of Mar 31 (tentative)	2.5%

Quizzes (45 mins each)	12%
Quiz 1: Week of Feb 3(tentative)	7.5%
Quiz 2: Week of Mar 24 (tentative)	4.5%

Laboratories (Two Labs) (6.5% each)	13%
Lab 1: Weeks 8 and 9 Lab 2: Weeks 10 and 11	

Due: In-lab reports at the end of the designated lab session

Due: Pre/Post lab reports ONE Week after completion of in-lab session

Mid-term Examinations (2 hours) (Designated Assessment)	20%
Week of Mar 10 (tentative)	

Final Examination (3 hours)	45%
Date during examination period TBA	

All examinations will be **closed-book**. A **Formula sheet will be provided (single side sheet for the mid-term and double-sided sheet for the final exam)**. **Quizzes will be OPEN-BOOK/OPEN NOTES**.

If a minimum mark of 50% is not obtained on the final examination, the student cannot receive a final mark greater than 48%.

Assignments will provide minimal (but sufficient) experience to master each aspect of the course. Assignment marks will be composed of **completion (80%)** and **mark for ONE randomly selected question (20%)**. Marks will be deducted for late submissions of assignments.

CONSULTATION HOURS:

Office hours: TBA (or by appointment)

COURSE POLICIES:

The following course-specific policies will be enforced throughout the course:

Assignments

- Late submission by up to 48 hours accepted without penalty

Laboratory

- Participation in laboratory sessions is mandatory. Both in-lab and Pre/post lab report submissions must be handed in by the set deadlines.

Midterm examination

- The exam will be administered using the most appropriate modality practiced at the time.
- Only non-programmable calculators will be allowed during the midterm examination.
- The midterm is the Designated Assessment for this course. Requests for academic consideration without supporting documentation (such as a doctors note) will be denied. Students who miss the midterm without receiving academic consideration will receive a grade of 0. Students who miss the midterm with academic consideration will have the weight of the midterm shifted to the final.
- If cheating during the midterm is suspected, the Associate Chair Undergrad will investigate and will determine an appropriate resolution. This may range from completing a one-on-one oral examination with the instructor, to receiving a grade of zero on the midterm, to further academic penalties for scholastic offences applied by the Associate Dean Undergrad.
- Students are required to contact the instructor of the course for any other circumstances that appear to not be covered by the non-exhaustive list above.

Final examination

- The exam will take place during the Spring examination period. Its timing will be announced in advance.
- The exam will be Limited open book with instructor provided formula sheet.
- The exam will be administered using the most appropriate modality practiced at the time
- The length of the final exam will be three hours.
- If a minimum of 50% is not obtained on the final examination, the student cannot receive a final mark greater than 48%.
- If cheating during the final examination is suspected, the Associate Chair Undergrad

will investigate and will determine an appropriate resolution. This may range from completing a one-on-one oral examination with the instructor, to receiving a grade of zero on the exam, to further academic penalties for scholastic offences applied by the Associate Dean Undergrad.

- Students are required to contact the instructor of the course for any other circumstances that appear to not be covered by the non-exhaustive list above.

Final course grade – alternative weighting scheme

- For eligible students, the contributions of the midterm and final exam to the final course grade will be automatically selected from the two options below, based on whichever is most beneficial for the student's final course grade:
 - Option 1: Midterm and final exam grades contribute to final course grade according to the distributions described in the "Evaluation" section.
 - Option 2: Midterm grade is ignored, and weight is shifted to the final exam.
- To be eligible for Option 2, students must have attempted and received a grade of at least 50% on the midterm, and received a cumulative grade of at least 50% for the Assignments, quizzes and the labs.
- Students with academic accommodations for the midterm and those who experienced severe technical difficulties during the midterm which could not be resolved after contacting the proctor or course instructor will automatically be graded according to Option 2, regardless of other course component grades.

ATTENDANCE:

Any student who, in the opinion of the instructor, is absent too frequently from class or laboratory periods in any course, will be reported to the Dean (after due warning has been given). On the recommendation of the Department concerned, and with the permission of the Dean, the student will be debarred from taking the regular examination in the course.

CHEATING:

University policy states that cheating, including plagiarism is a scholastic offense. The commission of a scholastic offence is attended by academic penalties which might include expulsion from the program. If you are caught cheating, there will be no second warning. Scholastic offences are taken seriously and students are directed to the appropriate policy, specifically, the definition of what constitutes a Scholastic Offence, at the following Web site: uwo.ca/univsec/pdf/academic_policies/appeals/scholastic_discipline_undergrad.pdf

SSD:

Please contact the course instructor if you require material in an alternate format or if any other arrangements can make this course more accessible to you. You may also wish to contact Services for Students with Disabilities (SSD) at 661-2111 x 82147 for any specific question regarding an accommodation.

NOTE:

The above topics and outline are subject to adjustments and changes as needed. Students who have failed an Engineering course (ie.<50%) must repeat all components of the course. No special permissions will be granted enabling a student to retain laboratory, assignment or test marks from previous years. Previously completed assignments and laboratories cannot be resubmitted for grading by the student in subsequent years.

General Faculty / University Policies

The Faculty of Engineering and Western University have overarching policies that prescribe how undergraduate courses should run. The course-specific policies described above should be considered *in addition to* those overarching policies, or as course-specific interpretations of them. In the event of contradictions or confusion between course-specific policies above and general Faculty / University policies, please contact your course instructor for clarification.

Western Engineering's undergraduate policies can be found by navigating to:

<https://www.eng.uwo.ca/undergraduate/academic-support-and-accommodations/policies.html>

and then clicking the “*Engineering Undergraduate Policies framework*” link.

January 6, 2026