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Introduction:

Reinforcement Learning and
the Q-learning algorithm
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Reinforcement Learning (RL)

:[Agent

e How agents derive efficient
representations of the environment
from high-dimensional inputs and state reward action
use them to generalize past 5 R, A,
experience to new situations PN ]<

e Applicability limited to domains in __.L_ Environment
which features can be handcrafted or | \
with fully observed, low-dimensional
state spaces

Source: doi: 10.1109/ICSMC.2009.5346114

Humans and other animals seem to solve this problem through a harmonious
combination of RL and hierarchical sensory processing
systems
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Q-learning Algorithm

Learning rule:

l
Choose an action
l possible actions reward next action
Perform action l , L
l Q(S,Cl)::Q(S,a)+a[r+ymaxa,Q(S,a)—Q(S,Cl)]
Measure reward I | |
current state learning factor discount factor  next state

|
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Action-value (Q)-function

maximum sum of rewards

|

Q*(S,Cl) — IMnax ff[”t_l—yrt—}-l +V2rt+2 + ... ‘St:S, a —dad, 7{]

behaviour policy r = P(a|s)

Q-function is estimated separately for each sequence, without any
generalization. Then, it is common to use a linear function approximator to
estimate the Q-function
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The Deep Q-network Method

Deep Neural

Replay Memory Network

Parameterized Outputs: predicted Q-values of the

R S s individual actions for the input
state. Q-values are computed for all
possible actions in a given state
with only a single forward pass
through the network
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Inputs: complete sequences of
actions and observations at time t.
Finite MDP in which each
sequence is a distinct state




Q-function Parametrization

Loss function for Q-learning weights of the Q-network

update: l

Li(Qi) :Iﬂsja,r [([ES" Ms,a] - Q(s,a; QI))Z}
|

approximate target values

Targets depend on the network weights (not fixed before learning begins). At
each stage of optimization, the weights from the previous iteration are fixed
when optimizing the ith loss function
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Q-network Architecture

Convolution Convolution Fully connected Fully connected
v v v v

84x84x4 preprocessed

image (4 most recent
frames of RGB luminance
channel rescaled to
84x84)

Separate output
unit for each valid
action (4 to 18
actions)

No input

Rectifier
nonlinearity,
max(0, x)

dédoonh  dodoob

©
LA

The state
representation is an
input to the neural

network
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Training Algorithm for DON

Training Loop - Hopiay Mamory [ random batch

1. choose random / policy action

2. sample env

3. rec:or? memory update Optimize (4)
. optimize

5. occasional target_net update '\choosc____

action Policy Net

Target Net

https://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html
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Training Algorithm for DON (detailed)

Algorithm 1: deep Q-learning with experience replay.
DQN Agent In%t'%al:rz,e replza}r memory [ .to capac.it}r N |
Initialize action-value function Q with random weights 0

e e Initialize target action-value function Q with weights 6~ =6
For episode = 1, M do
Initialize sequence s; = {x; } and preprocessed sequence ¢, = ¢(s;)
Fort=1,Tdo
g-greedy policy <— With probability ¢ select a random action a,

otherwise select a; =argmax_ Q(¢(s;).a: 0)

Execute action a; in emulator and observe reward r; and image x; ; ,
Set S¢4 1 = S¢,a¢,%; 41 and preprocess ¢, ; =¢(s;41)

Store transition (¢,.az.71,¢, 1) in D

<+«——— Sample random minibatch of transitions ( 0150 T 4 1) from D

if episode terminates at step j+ 1

To break correlations

between samples

r,

Sety; = 4 _

OEL)j v MAX. .
ri+7 max, Q( )ip10': 0 ) otherwise

2
Perform a gradient descent step on ( yi— Q(cj:vj,aj; H)) with respect to the

To improve stability network parameters
of the network Every Csteps reset 0= O
End For
End For
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Evaluation of DQN
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Demos

Improvement in the performance of DQN over training. After
600 episodes DQN finds and exploits the optimal strategy in
this game, which is to make a tunnel around the side, and
then allow the ball to hit blocks by bouncing behind the wall.

Westernt® Engineering

Performance of the DQN agent while playing the game
of Space Invaders. The DQN agent successfully clears
the enemy ships on the screen while the enemy ships
move down and sideways with gradually increasing
speed


https://static-content.springer.com/esm/art%3A10.1038%2Fnature14236/MediaObjects/41586_2015_BFnature14236_MOESM124_ESM.mov
https://static-content.springer.com/esm/art%3A10.1038%2Fnature14236/MediaObjects/41586_2015_BFnature14236_MOESM123_ESM.mov

Training Curves
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Effects of DQON Agent Components

Game Vi.Iith replay, .With replay, Wiiihout replay, \A_Fithout replay,
with target Q without target Q with target Q without target Q
Breakout 316.8 240.7 10.2 3.2
Enduro 1006.3 831.4 141.9 29.1
River Raid 7446.6 4102.8 2867.7 1453.0
Seaquest 2894.4 822.6 1003.0 275.8
Space Invaders 1088.9 826.3 373.2 302.0
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Hyperparameters Values

Hyperparameter Value Description

minibatch size 32 Number of training cases over which each stochastic gradient descent (SGD) update
is computed.

replay memory size 1000000 SGD updates are sampled from this number of most recent frames.

agent history length 4 The number of most recent frames experienced by the agent that are given as input to
the Q network.
The frequency (measured in the number of parameter updates) with which the target

target network update frequency 10000 network is updated (this corresponds to the parameter C from Algorithm 1).

discount factor 0.99 Discount factor gamma used in the Q-learning update.

. Repeat each action selected by the agent this many times. Using a value of 4 results

action repeat 4 : . -
in the agent seeing only every 4th input frame.
The number of actions selected by the agent between successive SGD updates.

update frequency 4 Using a value of 4 results in the agent selecting 4 actions between each pair of
successive updates.

learning rate 0.00025 The learning rate used by RMSProp.

gradient momentum 0.95 Gradient momentum used by RMSProp.

squared gradient momentum 0.95 Squared gradient (denominator) momentum used by RMSProp.

min squared gradient 0.01 Constant added to the squared gradient in the denominator of the RMSProp update.

initial exploration 1 Initial value of € in €-greedy exploration.

final exploration 0.1 Final value of € in £-greedy exploration.

final exploration frame 1000000 Thle number of frames over which the initial value of € is linearly annealed to its final
value.

replay start size 50000 A unlf_orm rand_om po_llcy is run for this number of frames before learning starts and the
resulting experience is used to populate the replay memory.
Maximum number of “do nothing” actions to be performed by the agent at the start of

no-op max 30
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Open Discussion
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