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Abstract—Concurrent multipath transfer (CMT) using the stream control transmission protocol (SCTP) can exploit multihomed devices
to enhance data communications. While SCTP is a new transport layer protocol supporting multihomed end-points, CMT provides a
framework so that transport layer resources are used efficiently and effectively when sending to the same destination with multiple IP
addresses. In this paper, we present two techniques for modelling the expected throughput of a CMT session; while one is based on
renewal theory, the other uses a Markov chain. As far as we know, ours is the first paper to model CMT whilst considering practical
transport layer resources like a shared receive buffer (RBUF). A comparison of the models showed the Markov chain to be more
accurate, but suffered from scalability issues. Alternatively, the renewal model was more cost effective, but also less accurate. We also
applied our models to a new problem called congestion window management, where the size of each congestion window is reconfigured
for optimal performance. Again, we compared two approaches: a dynamic method that makes decisions based on instantaneous
throughput, and a static method that uses an integer linear program (ILP) to generate a global solution. Results showed the static
method outperforming the dynamic approach by as much as 12%.
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1 INTRODCUTION

ADDING more than one network interface to a com-
puting device, like a smartphone, is called multi-

homing. Devices that are multihomed are advantageous
as they can provide a layer of redundancy in case of
network failure (e.g., service disruption). Furthermore,
one network may outperform another depending on
location. For instance, when a smartphone user is at
home, he may choose to connect to the Internet through
a WLAN for higher data rates but lower fees. Alterna-
tively, the cellular network is best while users are in
transit. The larger coverage area of a cellular network can
offer guarantees on connectivity, but at a much higher
price and with lower bandwidth potential.

Assuming either network’s (i.e, WLAN or cellular)
data rates are independent, so that one does not affect the
other; why then do we not use both network interfaces
simultaneously? Certainly, if two men could do the work
of one in half the time, the same could be said about
interfaces and download times. Unfortunately, due to
the architectural constraints of standard transport layer
protocols like the transmission control protocol (TCP),
an Internet application (e.g., file transfer) can only use
one access network at a time.

Due to recent developments, however, concurrent
multipath transfer (CMT) using the stream control trans-
mission protocol (SCTP) can exploit multihomed devices
to enhance data communications. While SCTP is a new
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transport layer protocol that supports end-points with
multiple IP addresses (i.e., a multihomed device), CMT
provides a framework so that transport layer resources
are used efficiently and effectively when sending to the
same destination with multiple IP addresses. TCP/SCTP
congestion control relies on packet loss to detect network
congestion. Current wireless networks, e.g., 3G/4G net-
works, are over-buffered (termed as bufferbloat), which
void the TCP/SCTP congestion control algorithm [1].
Hence, current smartphone devices set the maximum re-
ceive buffer size relatively small when compared to inter-
mediate networking devices (e.g., routers found within
these over-buffered networks). While others [2], [3] have
directed their work toward desktop implementations
(i.e., those with a surplus of computing resources), we
believe CMT will have the most success with mobile
devices, such as smartphones. Therefore, given limited
resources and the need to set the maximum receive
buffer small (i.e., to mitigate the problem of bufferbloat),
the computing resources of a mobile device must be
optimized in order to accommodate multiple transport
layer sessions. Furthermore, since a fixed size receive
buffer (RBUF) is allocated to each transport layer session,
it is imperative to include the RBUF in a model of CMT.
In this paper, we present two techniques for modelling
the expected throughput of a CMT session; while one
is based on renewal theory, the other uses a Markov
chain. As far as we know, ours is the first paper to
model CMT whilst considering practical transport layer
resources like a shared RBUF.

We then apply our models to a new problem we call
congestion window management. In this problem, packets
are transmitted to multiple destination addresses, but
always arrive at the same RBUF, where they are re-
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ordered before being passed to the application layer. Fur-
thermore, the RBUF is limited, so flow control prevents
packet transmission when the sum of all congestion
windows (CWNDs) is greater or equal to the size of the
RBUF. Consequently, optimal performance can be linked
to the size of each CWND. As a result, we propose an
integer linear program (ILP) to solve the problem of con-
gestion window management, from a global standpoint.

The rest of the paper is organized as follows: Section
2 provides a brief literature review on transport layer
modelling and concurrent multipath transfer; Section 3
outlines the network scenario and describes the system
of study; Section 4 presents the respective analytic mod-
els; Section 5 introduces static congestion window man-
agement; Section 6 provides numerical results; finally,
Section 7 gives conclusions.

2 LITERATURE REVIEW

2.1 Transport Layer Modelling
Even though our work is geared toward SCTP, the mod-
els in this paper are closely related to TCP; so much so,
a comprehensive review of TCP literature is warranted1.

Arguably, renewal theory is the most popular tech-
nique for modelling TCP throughput. The seminal ideas
for renewal theory as a TCP throughput model were first
discussed by Mathis et al. in [5]. The authors developed
a simple model for long-lived TCP connections with
periodic independent packet losses. In that work, only
linear CWND growth and fast recovery were considered.
Moreover, it was assumed timeouts were avoided and
the congestion window was only ever halved following
a loss. Although loss events were assumed independent,
a train of packets following the first loss were also
assumed to be lost. Thus, packet losses were considered
to be correlated using the implicit assumption of drop-
tail queues along the path of a TCP connection. The
work in [5] was later cultivated by Padhye et al. [6]
to fit a more realistic implementation of TCP Reno.
This model assumed both triple duplicate losses as well
as timeout events, with exponential back-off periods
following a timeout. Other authors again revisited this
model to address some inaccuracies and incorporate
the slow-start process after timeout events [7], [8]. This
work is now known as the PFTK-model (PFTK being
an acronym for the last name initials of all four authors
in [6]). More recently, the PFTK model was transformed
to use available bandwidth instead of loss rate as a
modelling parameter [9]. The authors argue bandwidth
is a more efficient way to characterize the network
in order to quickly approximate throughput potential.
More research based on renewal theory can be found in
[10]–[13].

Next, using Markov chains and fixed-point methods,
a relatively newer source of TCP modelling has evolved

1. Only renewal theory and Markovian models will be evaluated.
The interested reader, looking for additional transport layer models,
should consult a more thorough treatise on the matter, such as [4].

[14]–[16]. Starting from an arbitrary arrival rate, the
solution to an M/M/1/K queue provides a Markov
chain with average delay and probability of packet loss.
Feeding these parameters back into the Markov chain
creates a new arrival rate for the M/M/1/K queue.
The model converges by iterating through arrival rates
until some minimum error, between input and output,
is satisfied. Using this same methodology, Fu et al. [2]
developed a model to capture some of SCTP’s multihom-
ing features. Later, the same Markov chain was updated
to include the number of losses in a previous round [17].
Although tracking the number of losses increases state
space, the model can now estimate transmissions in
the interim round, i.e., between congestion avoidance
and fast recovery; results showed improved accuracy
for single source transfers. Other TCP models based on
Markov chains can be found in [3], [18].

2.2 Concurrent Multipath Transfer

Multihomed devices can increase application throughput
by taking advantage of additional resources available
through multiple network interfaces [19]. Currently, the
research community refers to this process as concurrent
multipath transfer (CMT), but other terms have been
used like bandwidth aggregation, resource pooling, in-
verse multiplexing, load sharing, and even striping in
similar contexts. Although CMT is still in its infancy,
some of the better known problems include: unnecessary
fast retransmission, crippled congestion window growth,
and receive buffer blocking. While concrete solutions
have been found for the first two problems [20]–[22],
receive buffer blocking still remains an open issue.

Receive buffer blocking was first shown in [23]. The
authors demonstrated poor transfer times using a shared
RBUF between high and low bandwidth paths. In fact,
in some circumstances using only the higher bandwidth
path gave better results. Effectively, receive buffer block-
ing is caused when the sender pauses transmissions to
one destination while packets with cumulative sequence
numbers travel slowly along a different route. Initially,
little progress was made on the receive buffer blocking
problem as researchers tried various retransmission poli-
cies [24], [25]; only when scheduling became a topic of
interest, could CMT capitalize on the additional network
resources of multihomed devices.

Proposed in [26], a mechanism called the bandwidth
aware scheduler (BAS) attempts to minimize receive
buffer blocking through intelligent packet scheduling.
Using bandwidth and delay measurements, BAS assigns
new packets to the destination with the earliest esti-
mated delivery time; assigned packets are then placed
into a virtual send queue prior to transmission. Another
scheduler, also based on BAS, assigns packets to a desti-
nation using a new metric called the reception index [27].
The reception index of a destination is calculated by
dividing the size of the cumulative packet, any outstand-
ing packets, and any buffered packets by a destination’s
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bandwidth estimate. As it turns out, however, BAS can
be ineffective, especially when the difference between
destination RTTs becomes significantly large. To cir-
cumvent these shortcomings, the on-demand scheduler
(ODS) was developed in [28]. Unlike BAS, ODS waits for
a transmission opportunity before assigning packets to a
destination address. When congestion and flow control
allow transmission to a destination, ODS searches the
send buffer in a recursive manner, looking for a packet
that cannot be delivered to another destination sooner.

More recently, modelling techniques were applied to
CMT in an attempt to avoid receive buffer blocking
altogether. In [29], Yang et al. modify the well known
PFTK model to calculate a minimum receive buffer size,
such that receive buffer blocking is nonexistent. The
same authors, moreover, used a similar model in [30],
to choose a configuration of destination addresses that
will maximize throughput for a given receive buffer. We
should point out that neither of these studies considered
congestion window management; in other words, the
sum of CWNDs was allowed to go beyond the size of
the RBUF. Unfortunately, unless the sum of CWNDs is
less than or equal to the size of the RBUF, unnecessary
loss will still persist.

3 SYSTEM DESCRIPTION

3.1 System Comparison: Singlehomed vs. Multi-
homed
Ordinarily, the transport layer is modelled as a dumbbell
topology, that is, one bottleneck link dividing a set of
senders from their respective receivers. More specifically,
however, we typically study only one sender/receiver
pair, while another m make up background traffic
sources. This model is true for singlehomed end-points
only (i.e., one network interface). The dumbbell topology
for a singlehomed connection is shown in Fig. 1.

When an end-point is multihomed (i.e., more than
one interface), the singlehomed dumbbell topology is no
longer valid, since more than one network path exists be-
tween sender and receiver. For multihomed end-points,
rather, the network is modelled as a series of dumbbells,
where the function m(n) returns the maximum number
of background sources sharing the nth bottleneck link.
Transmission and buffering capacity, moreover, are as-
sumed to be independent of bottleneck link, so that loss
rate and end-to-end delay may differ from path to path.
The network topology for a mulithomed system is given
in Fig. 2.

3.2 Stream Control Transmission Protocol
We now make the following assumptions regarding the
stream control transmission protocol (SCTP) [31].

1) The amount of DATA the sender is allowed to
transmit to address a at time t is controlled by
the address’s CWND, its number of outstanding
bytes (OUT) (i.e., any unacknowledged data), and

the RWND. At any given time, this amount is the
lesser of the CWND minus OUT and RWND. Thus

DATAa,t = min(CWNDa,t −OUTa,t,RWNDt). (1)

2) Depending on mode, SCTP increases a CWND in
two ways:

a) An address is in slow-start (SS) mode if its
CWND is less than the slow-start threshold
(SSTHRSH). Every time a CUMACK is re-
ceived, the CWND is increased by at most, the
lesser of 1) the number of outstanding bytes
being newly acknowledged (NEWACK) (i.e.,
the number of packets removed from the send
buffer), and 2) the maximum transmission unit
(MTU). The new CWND is thus

CWNDa,t+1 = min(NEWACKa,t,MTU). (2)

b) An address is in congestion avoidance (CA)
mode if its CWND is greater than or equal
to its SSTHRSH. In this mode the CWND is
incremented by one MTU every time a sender
receives an acknowledgement that advances
the CUMACK, and the CWND is less than
or equal to the partially acknowledged bytes
(PBA) and OUT. This is accomplished by re-
ducing the number of PBA by the previous
size of the CWND (i.e., the size of the CWND
before the increase). The new CWND is calcu-
lated by

CWNDa,t+1 = CWNDa,t + MTU. (3)

3) Every time the sender receives a SACK, NEWACK
is subtracted from OUT. In other words, the CWND
is opened so that new packets may be sent without
increasing its size.

4) When gaps are found in a SACK, the sender in-
crements the missing count for any packets con-
tained within a gap. If the SACK indicates that
a packet has been missing four times, the packet
is considered lost. In response, the sender halves
the CWND of the address to where the packet was
sent, then retransmits any lost packets. Moreover,
the address’s SSTHRSH is also set to the size of the
halved CWND, in case of a timeout event.

5) Each time new data is sent to an address, a timer
called the retransmission timeout (RTO) is set.
If this timer expires before an acknowledgement
arrives for the transmitted data, the CWND is
dropped to one and RTO is doubled. This process
continues for every consecutive packet loss until
some maximum RTO is reached.

6) RTO is calculated from two variables: the smoothed
RTT, sRTT; and the average variation in RTT, vRTT.
Every time there is a CWND update new values for
sRTT and vRTT are computed using exponential
weighted moving averages. While the variation in
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Fig. 1. Singlehomed network topology. Fig. 2. Multihomed network topology.

RTT is given by

vRTT = (1− β)vRTT + β|sRTT− RTT|, (4)

the smoothed RTT will be

sRTT = (1− α)sRTT + αRTT, (5)

where α = 1
8 , and β = 1

4 .

4 MODELLING CMT
The objective of the model is to approximate the
throughput of a reliable transport layer protocol em-
ploying CMT. Strictly speaking, we aim to model the
performance of an SCTP session, transferring a large file
from a singlehomed sender to a multihomed receiver.
Our work, however, should be viewed as supplemental
work to traditional transport layer modelling (e.g., a
TCP connection with two singlehomed end-points), since
great effort has been taken to exploit the well-known
techniques of past research ventures.

4.1 Model Discrepancies
Before presenting our models, we need to highlight the
differences between our implementations and those of
past research efforts.

4.1.1 Markov Model
First, our model is for a single source only, therefore we
do not use any queueing theory (e.g., M/M/1/k) nor
implement a fixed-point method. The reason behind a
single source model lies in our requirements for CMT.
Since CMT specifies a shared RBUF, we assume at any
given time the sum of CWNDs must be less than or equal
to the size of the RBUF. Unfortunately, the solution to
a queue model with multiple sources cannot offer loss
rate or delay information unless every source (sharing
the network path) is identical. Moreover, if we want
CMT to manage CWNDs on a destination basis, we
cannot expect every source to have the same statistical
properties (e.g., average CWND); therefore, we must use
a single source model in this endeavour.

Another difference is an increase in state-space. In
previous models, the Markov chain predicts fast recov-
ery (FR) and timeout (TO) events during congestion
avoidance rounds that have yet to experience packet
loss. In this way, the model will predict a FR event
immediately following a round with losses. While this
is not impossible, it is unlikely, and if a correlated loss
model is used (e.g., if a packet is lost all remaining
packets transmitted in the same round are also lost),
this is most certainly untrue. Furthermore, if the model
jumps from a round without losses to a round that has
already invoked FR, the accuracy of the model suffers
[17].

4.1.2 Renewal Model
For the most part, our renewal model is derived using
a method similar to past TCP implementations, with the
exception of TO probability and the exponential back-
off period. Since SCTP requires 4 SACKs to trigger a
TO, compared to TCP’s 3 duplicate acknowledgements,
the formula for the probability of a TO event needs to
be modified. Previous TCP models, moreover, limit the
doubling of RTO to 7 iterations, without specifying a
maximum. We, on the other hand, assume RTOmax is
given; so RTO can double any number of times.

4.2 Basic Modelling Assumptions
Given a multihomed network topology, we assume a
set of network paths connect an SCTP sender/receiver
pair, so that the sender may transmit over any path and
all successful packets will arrive at the receiver. Each
network path, moreover, is defined by its bandwidth
(i.e., maximum transmission rate), probability of packet
loss, and additional packet delay (made up from other
delay sources like propagation, processing, and queue-
ing effects). What is more, we assume a path to be in-
dependent of all other paths as well as its characteristics
to remain constant.

Similar to past research, we also model the behaviour
of our system in terms of discrete rounds. A round
starts with the transmission of packets, and ends with
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the reception of a SACK. Depending on the state of the
system, the length of time between rounds may take as
little as one RTT, one RTO, or up to the maximum allow-
able retransmission timeout (RTOmax). During a round,
moreover, packets can be lost, where packet losses are
characterized by assuming one of two loss models: 1) in-
dependent, or 2) correlated. An independent loss model,
for example, assumes each packet transmitted in a round
will have the same probability of being lost, regardless of
when it is transmitted during the round. An independent
loss model can be used when links are lossy (e.g., over
a wireless channel). The probability of losing γ packets
when ξ are transmitted under an independent loss model
is given by

P (γ, ξ) =

(
ξ

γ

)
pγ(1− p)ξ−γ , (6)

where p is the probability of packet loss on the network
path.

Alternatively, a correlated loss model assumes a packet
is lost with probability p as long as no other packet
has been lost in the same round. Assuming a packet
has already been lost, all remaining packet transmissions
are lost with probability 1. This loss model represents a
drop-tail queue where packets are lost when a bottleneck
queue reaches capacity, thereby dropping any packets
arriving after capacity has been reached. Under the
correlated loss model, the probability of losing γ packets
when ξ are transmitted is calculated by

P (γ, ξ) =


(1− p)ξ, γ = 0

p(1− p)ξ−γ , 0 < γ ≤ ξ
0, otherwise.

(7)

Packet RTTs are calculated using the following equa-
tion

RTT =

{
d+ 1

b , if b · d ≥ CWND
CWND
b , otherwise,

(8)

where b is the bandwidth of a bottleneck link (in pack-
ets/second), and d is a constant delay experienced along
the path. By assuming delay to be constant, including
queueing delay from background traffic sources, at least
the first case of Eq. (8) should be considered adequate.
With that said, queueing delay from the same source can
vary; for example, when the number of transmissions
exceeds the BDP, packets will be backlogged as the path
becomes congested. This creates a queueing effect and
increases RTT. If the number of packets in the queue, q,
were known ahead of time, we would have

RTT = d+
q

b
. (9)

Even if q is unavailable, we know that acknowledge-
ments should start arriving at regular intervals when the
CWND is greater than the BDP. When this happens, a
packet leaves the path every 1/b seconds. Assuming a
packet leaves the moment a new round begins, another

CWND/b iterations will occur before the packet can
leave the path and end the round.

Finally, we assume the variation in RTT to be RTT/2.
Therefore the initial RTO will always be 3 · RTT since

RTO = RTT + 4 · Var[RTT]. (10)

4.3 Markov Model
Our first model uses a discrete-time Markov chain
(DTMC) to model the behaviour of a multihomed net-
work path; the goal of which is to generate a state-
transition probability matrix Q, and solve the steady-
state probability distribution π for the DTMC.

We first define a state to be a round where the CWND
is ω packets, ξ packets will be transmitted, and τ is the
current SSTHRSH. At the end of a round, the system
transitions from state i to i′, or (ξ, γ, τ) to (ξ′, γ′, τ ′),
where the transition probability is defined by element
Q(i, i′) and the steady-state probability distribution is
computed as

π = πQ. (11)

Next, and for the sake of convenience, we will clas-
sify and group each state into one of the following
descriptive subsets: Congestion Avoidance (CA), Slow-
start (SS), and Exponential Back-off (EB). Finally, we
formulate a throughput expression based on the steady-
state probability.

4.3.1 Congestion Avoidance
We begin our rendering of CA mode by defining the set
of CA states as

C = {(ω, ξ, 1) : 2 ≤ ω ≤ ωmax, 1 ≤ ξ ≤ ω, ω ∈ Z, ξ ∈ Z},
(12)

where ξmax is the size of the RBUF in packets2.
During CA mode, transition probabilities are depen-

dent on ω, ξ, and γ. If ω = ξ, however, we need only to
concern ourselves with ω and γ since it means that no
packets were lost in the previous round; allowing us to
ignore FR events. Assuming that ω = ξ and γ < ω, the
system will stay in CA, and after one RTT will transition
from (ω, ξ, 1) to (ω′, ξ′, 1) with probability P (γ, ω), where
ω′ = ω and

ξ′ =


ω − γ, if γ ≥ 1

ω + 1, if γ = 0, ω < ωmax

ω, otherwise.
(13)

Alternatively, if γ = ω, no packets will be ac-
knowledged and a TO event will send the system into
EB mode. In this case, the system will transition to
(1, 1, 2blog2 ω/2c) with probability P (ω, ω) in one RTO.

If ω > ξ, then packets must have been lost in the
previous round. Whether or not the system stays in CA
is now conditional on ω and γ as well as ξ. Given that
ω > ξ, the system will stay in CA mode only if a FR

2. State (1,1,1) is reserved for EB.
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event is triggered. To invoke a FR event, the sender
must receive four out-of-order SACKs in the next round.
Regardless of γ and ω, as long as ξ < 4, a TO is inevitable
and the system will transition into state (1, 1, 2blog2 ω/2c)
with a probability of 1 after one RTO.

Even if ξ ≥ 4, however, there remain two conditions
for which a TO event can still occur. The first is intuitive,
if less than 4 packets are acknowledged, so that ξ−γ < 4,
a TO event occurs simply because a FR did not. The
second condition, on the other hand, happens when too
many packets are lost in the current round, so that the
number of outstanding packets is greater or equal to
the size of the CWND after FR. Following a FR event,
the CWND is divided by 2, so the number of packets
transmitted in the next round will be ω/2− γ. Clearly, if
γ ≥ ω/2, then no packets will be transmitted in the next
round and a resulting TO event will occur. Assuming
that ω > ξ and ξ ≥ 4, after the duration of one RTT the
system will transition to (ω/2, ω/2−γ, 1) with probability
P (ξ, γ) as long as ξ − γ > 3 and ω/2− γ > 0; otherwise,
after one RTO it will transition to (1, 1, 2blog2 ω/2c) with
probability

ξ∑
i=1

P (ξ, i), if i ≥ ξ − 3 or i ≥ ω/2. (14)

4.3.2 Slow-start (SS)

A SS state exists when the CWND is less than its
SSTHRSH (i.e., ω < τ ). During a SS round, moreover,
every CUMACK increases the CWND by one MTU; so
if no packets are lost, the CWND is doubled between
SS rounds. The set of SS states for our Markov model is
defined as

S = {(ω, ξ, τ) : ω = ξ = 2i, 1 ≤ i ≤ log2(τ),

τ ∈ T , τ > 1, i ∈ Z}, (15)

where T is the set of slow-start thresholds, given by

T = {2i : 0 ≤ i ≤ blog2 (ξmax/2)c, i ∈ Z}. (16)

Assuming that ω < τ and γ = 0, the system will either
remain in SS or move into CA, depending on the values
of ω and τ . If τ > 2ω, the system will stay in SS and
transition to (2ω, 2ξ, τ); otherwise, the system will start
CA mode and transition into (2ω, 2ξ, 1). In either case,
the transition probability will always be P (0, ω), and the
duration of time between transitions will be one RTT.

On the other hand, if γ > 0, the system can either
remain in SS until a FR, or TO and move into EB. In
an attempt to reduce state space, when 1 ≤ γ < ω we
move the system into CA by letting τ ′ = 1. Although
this simplifies the model, we believe this should have
little if no impact on throughput since a pending FR (in
the following rounds) would move the system into CA
anyways. Therefore, assuming 1 ≤ γ < ω, the system
will transition to (2ω − γ, 2(ω − γ), 1) with probability
P (γ, ω) after one RTT.

Finally, if γ = ω, the system will TO and move into
EB by transitioning to (1, 1, 2blog2 ω/2c) with probability
P (ω, ω) after one RTO.

4.3.3 Exponential back-off
EB mode starts immediately following a TO event and
continues until a packet is successfully delivered to the
receiver. We define the set of EB states by

E = {(0, ξ, τ) : (2 ≤ ξ ≤M, τ = 1) ∪ (ξ = 1, τ ∈ T )} (17)

where M is the maximum number of consecutive TO
events, calculated as

M = max

(
1,

⌊
log2

RTOmax

RTO

⌋)
. (18)

To understand our definition of E , we actually redefine
ξ to mean the number of consecutive TO events instead
of the number of packets that are sent in a round.
Although this is unorthodox, we should mention that
the number of packets transmitted during an EB round
will always equal the size of the CWND (i.e., ω = 1).
What changes, rather, is the time between consecutive EB
rounds. Following every TO event, the RTO is doubled
until RTO reaches some maximum value (i.e., RTOmax).
Later on, it will become necessary for us to generate an
approximation for the duration of time between rounds;
and since the time between EB rounds doubles after
every consecutive TO event, we will need to know the
probability of being in any particular EB round.

Since we only need to consider the transmission of
one packet, the transition probability out of an EB state
will always be P (0, 1), with a round time of one RTT. In
fact, the system will always transition to (2, 2, τ) after a
successful packet delivery3. Furthermore, as long as M >
ξ+1, a failed transmission attempt will always transition
the system into (1, ξ+1, 1) with probability P (1, 1) after
2ξRTO. But if M = ξ + 1 or M = ξ, another TO event
will keep the system in the same EB state, (1,M, 1), every
RTOmax.

4.3.4 Throughput
In this model we express throughput as the number
of packets received per unit time, denoted by η. The
average throughput of a source will then be

η =
E[ξ]− E[γ]

E[δ]
, (19)

where E[ξ] is the expected number of packets transmit-
ted per round, E[γ] is the expected number of packets
lost per round, and E[δ] is the expected duration of time
between rounds.

The expected number of packets transmitted per
round is given by

E[ξ] =
∑

i∈{C,S}

π(i)ξ(i) +
∑
i∈E

π(i), (20)

3. In this case we are assuming ξmax > 1.
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where π(i) returns the probability of being in state i and
ξ(i) is the number of packets transmitted in state i.

Using either Eq. (6) or (7), the expected number of
packets lost per round can be expressed by

E[γ] =
∑

i∈{C,S}

π(i)

ξ(i)∑
j=1

jP (j, ξ(j)) +
∑
i∈E

π(i)P (1, 1). (21)

Before we provide our expression for E[δ], we first
define D to be a matrix of round times (i.e., the time
between state transitions), and A to be the set of all states
(i.e.,A = {C,S, E}). Finally, the expected duration of time
between rounds is calculated by

E[δ] =
∑
i∈A

∑
i′∈A

π(i)D(i, i′), (22)

where D(i, i′) is an element of D representing the time
it takes to transition from state i to i′.

4.4 Renewal Model
Our second model uses renewal theory: an assump-
tion that a stochastic process continually restarts at
regular intervals. When we consider the additive in-
crease/multiplicative decrease (AIMD) algorithm used
for congestion control, a continuous sawtooth pattern
begins to form. Our goal, therefore, is to represent this
pattern as an average interval in order to formulate a
closed-form expression for the throughput of a single
network path.

By letting St and Lt be the number of packets trans-
mitted and lost in the time interval [0, t] : t > 0, we can
express the average throughput of an SCTP session by

η = lim
t→∞

St − Lt
t

, (23)

or
η =

E[S]− E[L]

E[T ]
, (24)

where E[S], E[L], and E[T ] are the expected packets
sent, the expected packets lost, and the expected time
of an interval, respectively.

Similar to the Markov model, the renewal model is
also broken into three descriptive modes of transmission:
congestion avoidance (CA), exponential back-off (EB),
and slow-start (SS).

4.4.1 Congestion Avoidance Mode
We begin our discussion of CA mode by focusing our
attention on Fig. 3; a depiction of a continuous series of
CA periods. Each CA period consists of R transmission
rounds where S packets are sent and L packets lost.
Using renewal theory, our goal is to approximate the
throughput of the ith CA period. During CAi, new
packets are sent every RTT, where the number of packets
transmitted equals the current CWND, W . If no packets
are lost, W increases until some maximum window
is reached. Following a round of losses, however, W

Fig. 3. A continuous series of congestion avoidance
periods.

remains unchanged but in the next round the number of
packets transmitted equals W−L. Typically, a CA period
ends with FR and the process begins all over again with
a CWND of W/2 packets.

We observe that CAi will always begin with Wi =
Wi−1/2, increasing by one packet every round thereafter.
The number of packets transmitted during CAi can now
be expressed by

SCA
i =

Xi−1∑
k=0

(
Wi−1

2
+ k

)
+Bi

=
Xi

2
(Wi−1 +Xi − 1) +Bi, (25)

where Bi is the number of packets sent in a round
following a loss.

Now if we let Ai be the send count when the first loss
occurs and assume a correlated loss model, we can also
write

SCA
i = Ai +Wi − 1. (26)

By assuming a correlated loss model, packets are (suc-
cessfully) received according to a geometric distribution.
Therefore, the probability that Ai = k packet transmis-
sions can easily be calculated by p(1 − p)k−1. So the
expected send count after the first loss will simply be

E[A] =

∞∑
k=1

pk (1− p)k−1 =
1

p
. (27)

From (26) and (27) it follows that

E[SCA] =
1− p
p

+ E[W ]. (28)
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Fig. 4. Evolution of the CWND constrained by Wmax.

Since the CWND at the end of CAi can be written as

Wi =
Wi−1

2
+Xi − 1, (29)

when using (29) in (25), we get

SCA
i =

Xi

2

(
Wi−1

2
+Wi

)
+Bi. (30)

By assuming {Xi} and {Wi} to be mutually indepen-
dent sequences with i.i.d. random variables, equating
(28) and (30) yields

1− p
p

+ E[W ] =
E[X]

2

(
E[W ]

2
+ E[W ]− 1

)
+Bi. (31)

Applying this assumption to (29) also gives

E[W ] =
E[W ]

2
+ E[X]− 1

= 2E[X] + 1. (32)

Furthermore, if we assume Bi to be uniformly dis-
tributed between 1 and Wi−1, E[B] simplifies to E[W ]/2.
Likewise, since Li = Wi − Bi, then E[L] will also be
E[W ]/2. Finally, solving (31) for E[X], then substituting
into (32) yields

E[W ] =

√
8(1− p)

3p
+

1

9
− 1

3
. (33)

Similarly, we will also have

E[X] =

√
2(1− p)

3p
+

1

36
+

5

6
. (34)

Finally, since the number of transmission rounds in
CAi will always be

E[R] = E[X] + 1, (35)

the expected duration of CAi is just

E[T ] = E[R] · RTT. (36)

Before moving on, however, we need to address the
possibility of a constrained RBUF. During connection
setup, the receiver advertises a maximum buffer size,
which ultimately determines the sender’s maximum
CWND, Wmax; so when W =Wmax, the send count (per
round) stays the same. With respect to Fig. 4, we will

now describe how to model this effect. During the first
CA period, the CWND grows linearly from 1 to Wmax

for U1 rounds, then remains constant for V1 rounds until
a FR event. Finally, the CWND drops to Wmax

2 , the sender
recovers, and the process repeats, only this time starting
from Wmax

2 , so

Wmax =
Wmax

2
+ Ui − 1. (37)

The calculation for the number of packets sent during
CAi will now have the form

SCA
i =

Ui
2

(
Wmax

2
+Wmax

)
+ ViWmax +Bi. (38)

Substituting (37) into (38), moreover, gives

E[SCA] =
3

8
W 2

max +WmaxE[V ] +
1

4
Wmax. (39)

Then using (28) and solving for E[V ] yields

E[V ] =
1− p
pWmax

− 3

8
Wmax +

3

4
. (40)

From Fig. 4, we see that Xi = Ui + Vi, so

E[X] =
1− p
pWmax

+
Wmax

8
+

3

4
. (41)

We now have two throughput expressions for CA mode:
(1) when E[W ] < Wmax, and (2) when E[W ] ≥Wmax

4.

4.4.2 Exponential Back-off
Every time a new round begins, the sender starts a
timer and waits up to one RTO to receive an ac-
knowledgement. If this timer expires before receiving
an acknowledgement, the sender triggers a TO event.
Following a TO, the sender enters exponential back-off
(EB) mode, dropping the CWND to one and doubling
RTO. This process is continued for every subsequent TO
until reaching RTOmax, where it remains constant until a
packet is finally acknowledged. Based on this situation,
throughput is calculated by

η =
E[SCA]− E[LCA]

E[TCA] + P TOE[T EB]
. (42)

In (42), E[SCA], E[LCA], and E[TCA] are the expected
number of packets transmitted, the expected number of
packets lost and the length of time during CA mode,
respectively; E[T EB] is the duration of an EB period; and
P TO is the probability of a TO event.

There are now two possible outcomes at the end of a
CA period: FR or TO. To invoke a FR event, the sender
must receive at least four acknowledgements no more
than rounds after the first loss round; otherwise a TO
will occur. Given the certainty of at least one loss, we
can express the probability that the first j packets are
acknowledged after W were sent as

P (j,W ) =
p(1− p)j

1− (1− p)W
. (43)

4. The informed reader will notice this is the same result as the PFTK
model [6].
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If we now apply (43) to all scenarios that would end
a CA period, we can calculate the probability of a TO
event by

P TO =

3∑
j=0

P (j,W ) +

W−1∑
j=4

P (j,W )

3∑
k=0

p(1− p)k

=
1− (1− p)8 − (1− (1− p)4)(1− p)W

1− (1− p)W
. (44)

We will now calculate the average duration of an
EB period. Recalling that RTO is doubled for each
unsuccessful retransmission until some maximum RTO
is reached, the duration of j consecutive TO events is
expressed by

T TO
j =

{
(2j−1)RTO, j ≤M
(j −M)RTOmax, j > M,

(45)

where M is solved using Eq. (18). In this case, however,
we are constrained by RTOmax ≥ 2RTO. The expected
duration of an EB period would then be

E[T EB] =

∞∑
j=1

T TO
j (1− p)pj−1

=
(1− p)(1− 2MpM )

1− 2p
RTO +

pM

1− p
RTOmax. (46)

Following EB, the sender will increase its CWND
according to slow-start (SS) mode, i.e., the number of
packets transmitted per round will double every RTT.
The number of packets transmitted in SS period i is
calculated by

SSS
i = 1+2+22+ · · ·+2Hi−1 =

Hi∑
k=1

2k−1 = 2Hi − 1, (47)

where Hi is the number of SS rounds before CA resumes.
Hi is easily solved by rearranging (47) so that

Hi = log2
(
SSS
i + 1

)
. (48)

Assuming the last term in (47) should be Wi/2, we can
write

Wi = 2Hi . (49)

Then substituting (49) into (47) gives

Sssi =Wi − 1, (50)

and (50) into (48) yields

Hi = log2Wi. (51)

Since there must be at least one SS round, (51) is rewrit-
ten as

Hi = max(1, log2Wi). (52)

From (50) we can write the expected number of packets
transmitted during slow-start as

E[SSS] = E[W ]− 1. (53)

Finally, the expected duration of SS mode will be

E[T SS] = max(1, log2E[W ]) · RTT. (54)

Combining each of SCTP’s transmission modes, the
final throughput equation using renewal theory will be

η =
E[SCA]− E[LCA] + P TOE[SSS]

E[TCA] + P TO(E[T EB] + E[T SS])
. (55)

5 CONGESTION WINDOW MANAGEMENT

In this section we present two ways of tackling the
congestion window management problem. While one
method is greedy, taking only instantaneous throughput
into account, the other uses average throughput to place
limits on the CWND of each destination address.

5.1 Dynamic Optimization
Presented in [28], the first method tries to maximize
throughput in a greedy fashion by adjusting CWNDs
based on instantaneous throughput; from here on out we
will refer to this method as dynamic congestion window
management. For example, if the sum of CWNDs is
equal to the size of the RBUF, but the destination with the
highest available bandwidth can improve throughput
by increasing its CWND; intuitively, another destination
address will first have to lower its CWND before another
can be raised.

Dynamic congestion window management seeks to
improve instantaneous throughput by simultaneously
lowering one CWND while raising another when the
sum of CWNDs is equal to the size of the RBUF. This is
accomplished by ranking each destination; a destination
with a higher rank can reduce the CWND of one that is
ranked lower. Moreover, destination rank is decided by
available bandwidth, with delay breaking a tie.

5.2 Static Optimization
What if a higher ranked destination also had a higher
loss rate, so its CWND grew rapidly but was also cut
back on a more frequent basis? In that case, lowering
one CWND to raise another would still improve in-
stantaneous throughput, but over the long run, average
throughput could be suffering. To address this issues, we
suggest a more static approach to congestion window
management where a limit is placed on the CWND of
a destination address. In this way ranks are eliminated,
and an optimization technique is used to find the CWND
limit of each destination address that will maximize
throughput. In this subsection, we present an integer
linear program (ILP) that calls either of the models
from Section 4 to search for the best configuration of
CWND limits; we call this static congestion window
management.

Additionally, even though all CWNDs will have a
limit, they are not always bound to this limit. For ex-
ample, a destination can grow its CWND above its limit
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if the following two conditions are true: 1) the sum of
the CWNDs is less than the RBUF, and 2) the CWND
is less than its BDP. Limits are still the rule, however,
so if another destination tries to increase its CWND and
finds the sum of CWNDs equal to the RBUF, a CWND
operating above its limit will be reduced.

An ILP will now be formulated to maximize
the throughput of CMT. First, we let the function
η(bi, di, pi, t

max
i , cmax

i ) return the expected throughput5 of
a single path transfer; provided that i ∈ N = {1, . . . , n}
and bi, di, pi, tmax

i , and cmax
i are respectively the band-

width (in packets/second), delay (in seconds), loss rate,
RTOmax (in seconds), and CWND limit (in packets) of
destination i. Assuming, furthermore, the size of the
RBUF (in packets) is given by r, our ILP for static
congestion window management is expressed in just five
equations:

maximize
n∑
i

η(bi, di, pi, c
max
i , tmax

i ) (56)

s.t.
n∑
i

cmax
i ≤ r, (57)

1 ≤ cmax
i ≤ dbi · di + 1e, (58)

cmax
i ∈ Z, (59)
∀i ∈ N. (60)

5.3 Complexity
Using brute force, our ILP can only be solved in expo-
nential time. For example, assuming dbi ·di+1e ≥ r, ∀i ∈
N , then solving the static congestion window manage-
ment problem will have a computational complexity of
O(rn). Alternatively, the problem could be solved in
polynomial time if we assumed n to be constant (e.g.,
n = 2 for a smartphone with 802.11 and GSM interfaces).
Even still, if r is large enough, a real-time system could
find an exhaustive search intolerable.

In a real-time system, deadlines are critical; so process
runtimes are always deterministic. If it so happens that
the runtime to solve our ILP is intolerable (i.e., the
real-time system cannot wait for a solution), finding
an optimal solution may not be possible. As a com-
promise, however, a heuristic can usually find one or
two satisfactory solutions – albeit suboptimal – in a
reasonable amount of time. Next, we will describe a
simple heuristic to solve the static congestion window
management problem when finding an optimal solution
proves too costly.

Our heuristic simply reduces the number of searches
needed to find a solution by using a subset of values
available for cmax

i . For example, if n = 2, r = 100 packets,
b1 = b2 = 1000 p/s, and d1 = d2 = 100 ms, both cmax

1 and
cmax
2 could take on any value in the set C = {x : x ∈ Z :
1 ≤ x ≤ r}. An exhaustive search, therefore, would need

5. Approximated using either the Markov or renewal model (see 4.3
and 4.3).

a total of 10000 iterations to generate an optimal solution.
Alternatively, if we used the set {2x : x ∈ C, x ≤ |C|

2 },
the total number of iterations drops to 2500. Moreover, if
we used the set {10x : x ∈ C, x ≤ |C|10 }, just 100 iterations
are needed. A general formula for our heuristic (i.e., a
subset of CWND limits for destination i), is given by

{kx : 1 ≤ x ≤
⌊a
k

⌋
, a = min(r, dbi · di + 1e), k ≤ a}. (61)

6 NUMERICAL RESULTS

6.1 Model Comparison
We will now compare the accuracy of either model
with simulated results6. Previously, we established a
framework allowing each network path to be modelled
independently, therefore we only need to use the single-
homed network topology when evaluating accuracy.

6.1.1 Simulation and Model Parameters
We varied the following four parameters in order to
generate a range of scenarios: probability of loss event
(p), bandwidth (b), delay (d), and receive buffer size
(r). With that said, simulation parameters were focused
around p = 0.1%, b = 21 Mbps, d = 40 ms, and r = 128
KB. We chose these parameters for the following reasons:

1) Measurement studies have produced a wide range
of statistics, but there is little consensus on average
loss rates [32]–[34]. In our work, we assume lower
loss rates for ideal conditions.

2) Even though 4G LTE is currently being rolled out,
the best available service for most of North Amer-
ica is still only evolved high speed packet access
(HSPA+). Under ideal conditions, HSPA+ can offer
speeds as high as 21 Mbps.

3) We compared packet RTTs from the University of
Western Ontario to a number of other institutions
(e.g., the University of Toronto, Princeton Univer-
sity, the University of California, Berkeley). While
RTTs varied anywhere between 10 and 100 ms, we
decided on a delay of 40 ms because this was the
average among institutions within our timezone.

(4) A minimum RBUF of 128 KB for an SCTP session
employing CMT was recommended in [24].

Furthermore, each packet was 1500 bytes long, the max-
imum RTO was 60 seconds, and the send buffer was
assumed to be infinitely large. In terms of network topol-
ogy, we used the dumbbell topology from Fig. 1, where
a source and destination are separated by a bottleneck
link.

6.1.2 Results and Discussion
The results of our comparison are shown in Figs. 5 - 8.
While in all scenarios the Markov model proved most
accurate at estimated throughput, renewal theory did
a reasonable job despite some areas of deviation. For
example, in Fig. 6 the renewal model overestimated

6. Simulated results were generated using ns-2.
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Fig. 8. Model comparison: p = 10−3, b = 21 Mbps, d = 40
ms.

throughput by a margin of at most 14.7% (or 2.6 Mbps),
but percent difference never exceeded 1.1% (or 0.23
Mbps) when using the Markov model.

Since the Markov model takes all considerations into
account, its pinpoint accuracy should come as no sur-
prise. Therefore, if model parameters were to be sampled
in real-time, the Markov model should guarantee a good
estimate on throughput potential. Unfortunately, since
the Markov model needs to solve a system of linear
equations, it suffers from scalability issues. For instance,
Fig. 8 shows the limitations of the Markov model; when
the RBUF is 176 KB, the state-space becomes so large
that we can no longer solve for the stationary probability
distribution7.

Even with more memory, however, the Markov model
will still face longer processing delays as the number
of states increase. To put this into context, π = πQ is
typically solved using Gaussian Elimination (GE), where
multiplication and subtraction operations are considered
units of computation. Assuming there are n equations,

7. The Markov model was implemented using MATLAB R2009b 32-
bit on a Linux desktop computer with 3 GB of RAM.

the total number of operations on the left side of the
system of equations require 1

3 (n
3 − n), while the right

side needs n2 [35]; giving GE a computational complex-
ity of O(n3). In the Markov model, n represents the total
number of valid states, i.e., all CA, SS, and EB states.
Since the number of CA and SS states are dependant on
ωmax, n increases with ωmax

8. In addition, the number
of EB states is controlled by the difference in RTO and
RTOmax, so n also increases with abs(RTO − RTOmax).
Therefore, if memory and processing power are in short
supply, the Markov model may prove too costly to
employ in real-time.

Alternatively, the renewal model has minimal com-
putational requirements, making it advantageous when
processing power and memory are limited. Still, the
renewal model is less accurate; making results ques-
tionable. On the contrary, we believe a more favourable
result is possible if L (i.e., the number of packets lost
at the end of a CA period), had better characterization.

8. In these experiments ωmax is a function of the packet size and the
RBUF.
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Fig. 10. Static vs. Dynamic: b2 = 20 Mbps, d2 = 40 ms,
p2 = 10−4.
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Fig. 11. Static vs. Dynamic: b2 = 20 Mbps, d2 = 40 ms, r
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Fig. 12. Static vs. Dynamic: b2 = 20 Mbps, p2 = 10−4, r =
128 KB.

Currently, L is assumed to be uniformly distributed
between 1 and W , so E[L] = W/2; when in fact, the
expected number of losses should be expressed by

E[L] =

W∑
i=1

ip(1− p)i−1 =
1− (1 + pW )(1− p)W

p
. (62)

Unfortunately, the exponent in Eq. (62) complicates the
relatively straightforward solution of W (see Eq. (31) -
(33)). If (62) were used instead of E[L] =W/2, numerical
methods might be the only way to solve for W ; possibly
increasing processor demand or memory requirements.

6.2 Congestion Window Management

Using the multihomed network topology from Fig. 2
with n = 2, we will now evaluate the performance
of static vs. dynamic congestion management. For easy
comparison, we simply calculated the percent gain, in
terms of throughput, when using the static approach
instead of the dynamic one. For brevity, moreover, we

only implemented static congestion window manage-
ment using the Markov model9.

6.2.1 Simulation Parameters
In all tests the probability of packet loss to destination
1 (i.e., p1) was varied between 10−4 and 10−1, with the
following four parameters remaining constant: 1) b1 =
21 Mbps, 2) d1 = 40 ms, 3) tmax

1 = tmax
2 = 60 seconds,

and 4) packet size = 1500 bytes. Furthermore, to create a
variety of scenarios, in each test we changed one of the
following: r, p2, b2, and d2.

6.2.2 Results and Discussion
The results of our findings are shown in Figs. 9 - 12. In
most cases the static approach improved performance,
even as high as 12%. Unfortunately, there were some in-
stances where no improvement could be made, and some
cases where dynamic congestion window management
yielded even better results.

9. Since the Markov model can support both independent and
correlated loss models, we now assume all losses are independent and
p to be the probability of packet loss.
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In the case of Fig. 9, the RBUF is 128 KB and destina-
tion 1 will use up to 108 KB; leaving just 20 KB available
for destination 2. When b2 is low, destination 2 does not
need a very high CWND to maximize throughput (e.g.,
at 5 Mbps, cmax

2 = 26 KB), so the static method has little
impact. But when b2 is larger, destination 2 will need
a higher CWND, and therefore more of the RBUF to
leverage performance. Furthermore, the static approach
is always more effective when p1 ∈ [10−3, 10−2] because
it makes sense to increase the CWND of a stable (yet
lower ranked) destination when a higher rank becomes
volatile.

A similar explanation can be made for Fig. 10. Again,
destination 1 is ranked highest (i.e., b1 > b2); so when the
RBUF is lower than cmax

1 and p1 is minimal, destination 2
will send very little. In any event, both destinations have
comparable bandwidth, so the difference in choosing one
over the other is marginal. As p1 increases, however, the
dynamic scheme will let destination 2 grow its CWND,
but only temporarily. Every time destination 1 lowers its
CWND (e.g., due to packet loss) destination 2’s CWND
can grow again, but it is for this reason that the static
method is better; raising its CWND only to lower it again
at the behest of another–more unstable destination–is an
inefficient use of resources. Of course, static congestion
window management becomes less significant once the
RBUF becomes large enough to support both destina-
tions’ bandwidth potentials, regardless of loss rate.

In Fig. 11, improvement goes to zero as loss rate
increases on path 2. The main reason, however, does
not change; as loss rate increases, average CWND re-
duces and less of the RBUF is needed by a destination.
Therefore, when the RBUF is large enough, or even
underutilized, static management can do no better.

Contrary to what we have seen so far, Fig. 12 shows us
that static management is not always the better choice.
For the majority of the plot, however, static manage-
ment is dominant; boosting performance more than 8%.
But when the delay on path 2 is considerably large
(compared to path 1), there are areas where dynamic

management is more desirable (e.g., p1 < 10−3). Clearly,
path 1 is most volatile when p1 ∈ [10−3, 10−2], and in
Figs. 9 - 11, static management was able to capitalize.

6.3 Heuristic
Before leaving this section we offer some results using
our simple heuristic. In this experiment, we varied b1,
but kept the following parameters constant: r = 128 KB,
b2 = 10 Mbps, d1 = 25 ms, d2 = 50 ms, tmax

1 = tmax
2 =

60 seconds, and packet size = 1500 bytes. Moreover, we
looked at how the heuristic faired with increasing values
of k. Figs. 13 and 14 display the results of this test.

Not surprisingly, the size of k makes little difference
in terms of throughput when b1 is small. This is because
the scope of the problem (or the search space) is already
quite low, and lowering it any any further will have
marginal impact. Nevertheless, increasing bandwidth
will increase BDP which creates more CWND limits
to choose from. Therefore, using a smaller value of k
ensures a more refined choice during static congestion
window management, and leads to higher throughput
values as is shown in Fig. 13.

Unfortunately, a smaller k also means more iterations
which takes more time to find an optimal solution.
Finally, Fig. 14 shows how lowering the value of k can
save a considerable amount of time to solve the static
congestion window management problem.

7 CONCLUSION

In this paper, we developed a framework to model, as
well as optimize, a CMT session. First, two modelling
techniques were evaluated; one based on a Markov
chain, and the other using renewal theory. Although
either model makes a number of assumptions regarding
the mechanics of CMT, approximations were shown to
be consistent with simulated results. Unfortunately, the
Markov model had scalability issues, limiting any real-
time implementation, despite being more accurate. On
the other hand, renewal theory was more cost effective in
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terms of computational complexity, but approximations
were not always accurate.

The second contribution of this paper includes the
design of an ILP for congestion window management.
Using one of our proposed models, the ILP can generate
a set of CWND limits so that average throughput is
maximized during a CMT session. We called this a
“static” approach to congestion window management
and compared it to another method which is more
dynamic. Since the dynamic approach adjusts the size
of CWNDs based on instantaneous throughput, the static
approach typically yielded improved results by evaluat-
ing the connection over the long run.
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