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Intelligent Consensus Modeling for Proline 
Cis-Trans Isomerization Prediction 

Paul D. Yoo, Sami Muhaidat, Kamal Taha, Jamal Bentahar, Abdallah Shami 

Abstract—Proline cis-trans isomerization (CTI) plays a key role in the rate-determining steps of protein folding. Accurate 
prediction of proline CTI is of great importance for the understanding of protein folding, splicing, cell signaling, and 
transmembrane active transport in both the human body and animals. Our goal is to develop a state-of-the-art proline CTI 
predictor based on a biophysically motivated intelligent consensus modeling through the use of sequence information only (i.e., 
position specific scores generated by PSI-BLAST). The current computational proline CTI predictors reach about 70–73% Q2 
accuracies and about 0.40 Matthew Correlation Coefficient (Mcc) through the use of sequence-based evolutionary information 
as well as predicted protein secondary structure information. However, our approach that utilizes a novel decision tree-based 
consensus model with a powerful randomized-metalearning technique have achieved 86.58% Q2 accuracy and 0.74 Mcc, on 
the same proline CTI dataset, which is a better result than those of any existing computational proline CTI predictors reported in 
the literature. 

Index Terms—proline cis-trans isomerization; machine-learning; intelligent systems; ensemble methods;   
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1 INTRODUCTION

T remains an importance and relevant problem to accu-
rately predict proline cis-trans isomers of proteins based 

on their amino acid sequences only. The importance of the 
cis-trans isomerization (CTI) as rate-determining steps in 
protein folding reactions has been well reported in the litera-
ture [1–3]. Prolyl CTI can be catalyzed by prolyl isomerizes, 
an enzyme found in both prokaryotes and eukaryotes that 
interconverts the cis-trans isomers of peptide bonds with the 
amino acid proline [4]. These enzymes are involved not only 
in the catalysis of folding [4–5] but also in regulatory pro-
cess [6–7]. The CTI of prolyl peptide bonds has been sug-
gested to dominate the folding of the alpha subunit of tryp-
tophan synthase from Escherichia coli (aTS) [8]. A CTI, 
which is necessary to achieve the final conformational state 
of the prolyl bonds for such proteins, has often been found 
as the rate-limiting step in vitro protein folding [9]. 

The international research effort called Human Genome 
Project started in 1990s has produced a massive amount of 
biological data, and consequently, accurate and efficient 
computational modeling methods that can find useful pat-
terns from the massive data have gained much attention. The 
first attempt to predict the CTI of proline using a computa-
tional model from amino acid sequences was made by 
Frömmel and Preissner in 1990 [10]. They had taken adja-
cent/local residues (±6) of prolyl residues and their physico-
chemical properties into account, and found six different 
patterns that allow one to assign correctly about 72.7% (176 
cis-prolyl residues in their relatively small dataset of 242 

Xaa-Pro bonds of known cis-prolyl residues), where by no 
false positive one is predicted.  

Since Frömmel and Preissner’s seminal work, support 
vector machines (SVMs) seemed to be the most suitable for 
proline CTI prediction task. The first SVM-based computa-
tional predictor was built by Wang et al [11]. They con-
structed a SVM with polynomial kernel function and used 
amino acid sequences as input, and achieved the Q2 accura-
cy of 76.6%. Song et al [12] also built a SVM with radial 
basis function, and used evolutionary information represent-
ed in position-specific-scoring matrix (PSSM) scores gener-
ated by PSI-BLAST [13] and predicted secondary structure 
information obtained from PSI-PRED [14] as input. They 
reached the Q2 accuracy of 71.5%, and Mcc of 0.40. Pahlke 
et al’s [15] showed the importance of protein secondary 
structure information in the prediction of proline CTI res-
idues. Their computational algorithm called COPS—the 
first attempt to predict for all 20 naturally occurring ami-
no acids whether the peptide bond is a protein is in cis or 
trans conformation—used secondary structure infor-
mation of amino acid triplets only. Most recently, Exar-
chos et al [16] used a SVM with a wrapper feature selec-
tion algorithm, on evolutionary information (i.e., PSSM 
scores), predicted secondary structure information, real-
valued solvent, and accessibility level for each amino ac-
id, and the physicochemical properties of the neighboring 
residues as input. They achieved 70% accuracy in the 
prediction of the peptide bond conformation between any 
two amino acids only. 

As seen above, the recent development of computational 
modeling for proline CTI prediction has mostly been based 
on SVM and its variants, and evolutionary (i.e., PSSM 
scores), and secondary structure information as input. These 
models showed about 70–73% Q2 accuracies and 0.40 Mcc. 
This observation is aligned with the results of other compu-
tational biology studies [17–21]. SVMs showed great results 
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in the prediction/classification tasks in the fields of compu-
tational biology and bioinformatics [17–21]. 

In this paper, we introduce a novel approach that utilizes 
biophysically-motivated intelligent consensus model (Meth-
od I) with a powerful randomized metalearning technique 
(Method II) through the use of sequence information only 
(i.e., PSSMs generated by PSI-BLAST) for the accurate and 
efficient prediction of proline CTI residues. The proposed 
model has been built based on the idea of RandomForest 
data modeling [22], and evolutionary information, and its 
predictive performance is compared with the most widely 
used SVM and its variants on the same dataset as used in 
Song et al’s study. 

2 METHODS 
Our experiment consists of four consecutive phases. First, 

collect and pre-process the proline CTI data. Second, con-
struct each model and tune its parameters. In this phase, a 
standard SVM (a.k.a. Lib-SVM), a SVM variant, the pro-
posed consensus models with Method I and II are construct-
ed through a set of experiments that help to choose a proper 
kernel function and other parameters. Third, the predictive 
performance of the proposed methods is compared with 
those of SVMLIB (Lib-SVM) and SVMADA (Adaboosted-Lib-
SVM) for Q2 accuracy, Sensitivity (Sn), Specificity (Sp), 
Mathew’s correlation coefficient (Mcc), Type I and II Error 
Rates, and StDev for Model stability/generalization ability 
on the proline CTI dataset built in the first phase. Lastly, we 
then compare those results with the consensus results from 
literature.  

2.1 Evolutionary Dataset Construction 
To make a fair comparison with existing proline CTI pre-

diction models, we have chosen Song et al’s [12] dataset. 
The dataset has 2424 non-homologous protein chains, ob-
tained from the Culled PDB list provided by PSICES server 
[23]. All the tertiary structures in the dataset were deter-
mined by X-ray crystallography method with resolution bet-
ter than 2.0Å and R-factor less than 0.25. In addition, the 
sequence identity of each pair of sequences is less than 25%, 
and the protein chains with sequence length shorter than 60 
amino acids were excluded in the dataset. In total, there are 
609,182 residues, and every sequence contains at least one 
proline residue. The PDB codes, CisPep PDB codes, proline 
cis peptide records, corresponding dihedral angles and pro-
tein sequences of the 2424 protein chains used in this study 
are available on request.  

In addition, evolutionary information in the form of 
PSSMs was included in the windows as direct input. Evolu-
tionary information in form of PSSMs is the most widely 
used input form for protein structure prediction in 1D, 2D 
and 3D, as well as other computational/structural proteomic 
prediction/classification tasks [14–21]. The idea of using 
evolutionary information in the form of PSSMs was first 
proposed by Jones et al [24], and it has improved its predic-
tion accuracy about 3–5% in their prediction tasks. 

To generate PSSM scores, we used the nr (non-redundant) 

database and blastpgp program obtained from NCBI [25]. 
We run blastpgp program to query each protein in our da-
taset against the nr database to generate the PSSMs with the 
following setup: 1) three iterations, 2) cutoff e-value of 
0.001. Finally, the PSSM scores were scaled to the range 
between 0–1 by the following standard logistic function: 

 
f (x) = 1

1+ exp(−x)
, 

 
where x is the raw profile matrix value. The scaled PSSM 
scores were used as direct input to the learning models. A 
PSSM is generated for each protein sequence, and has a 
M×20 matrix, where M is the target sequence length, and 20 
is the number of amino acid types. Each element of the ma-
trix represents the log-odds score of each amino acid at one 
position in the multiple alignments. The window size 2l+1 
indicates the scope of the vicinity of the target prolyl peptide 
bonds, determining how much neighboring sequence infor-
mation is included in the prediction. We selected the win-
dows size (l) of 9, and built our models as it produced the 
best predictive results, aligned with Song et al’s experi-
mental result. 

When a large difference between positive and negative 
samples is observed in training set, data imbalance problem 
exists [26]. Our dataset is composed of 1,265 cis and 27,196 
trans residues. There are two general approaches to reduce 
such imbalance problem. First, increasing the number of 
under-samples by random resampling. Second, decreasing 
the number of over-samples by random removal. In this 
study, we adopted the first approach, and made 1 to 1 ratios 
between the sizes of positive (cis) and negative (trans) train-
ing samples. 

2.2 Protein Secondary Structure Information 
The recent computational proteomic studies report 

that protein secondary structure information is useful in 
various protein sequence-based classifica-
tions/predictions [14–21]. Although the mutations at se-
quence level can obscure the similarity between homo-
logs, the secondary-structure patterns of the sequence 
remain conserved. That is because changes at the struc-
tural level are less tolerated. The recent studies mostly 
use the probability matrix of secondary structure states 
predicted from PSI-PRED [14]. PSI-PRED is a well-known 
computational predictor, and it predicts protein second-
ary structures in three different states (α-helix, β-sheet, 
and loop). However, there is one significant limitation with 
using predicted secondary structure information. The best 
secondary-structure prediction model still cannot reach the 
upper boundary of its prediction accuracy. In other words, it 
is not good enough yet to be used as a cofirmation tool. It 
shows about 75–80% Q3 accuracies only. Clearly, incorrect-
ly predicted secondary structure information if presented in 
input dataset of a computational prediction/classification 
model leads to the poor learning and, eventually to the incor-
rect prediction of proline CTI residues. Although predicted 
secondary information may be useful in some extent, it 
should not be used if one attempts to reach better than 80% 
Q2 accuracy. We therefore, used evolutionary information in 
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the form of PSSMs obtained from protein amino-acid se-
quences only. To achieve above 80% Q2 accuracy, we be-
lieve that accurate and correct information encoding pre-
sented in input dataset is critical, especially if used with in-
telligent/model-free modeling like machine-learning. In oth-
er words, noise presented in input dataset could lead to sig-
nificant degrading in the performance of the models. 

2.3 Method I: Intelligent Voting 
This new intelligent voting/consensus approach to 

RandomForest data modeling combines a number of 
methods and procedures to exploit homology infor-
mation effectively. If we take a large collection of weak 
learners, each performing only better than chance, then 
by putting them together, it is possible to make an en-
semble learner that can perform arbitrarily well. Ran-
domness is introduced by bootstrap resampling [27] to 
grow each tree in the ensemble learner, and also by find-
ing the best splitter at each node within a randomly se-
lected subset of inputs. Method I grows many decision 
trees (DTs) [28] as in Figure 1. To classify a new input 
vector x, put the input vector down each of the DTs in the 
ensemble learner. Each DT is trained on a bootstrap sam-
ple of the training data.  

To estimate the performance of the ensemble learner, 
Method I performs a kind of cross-validation by using 
Out-of-Bag (OOB) data. Since each DT in the ensemble 
grows on a bootstrap sample of the data, the sequences 
left out of the bootstrap sample, the OOB data, can be 
used as legitimate test set for that tree. On average 1–e–

1≅1/3 of the training data will be OOB for a given tree. 
Consequently, each PSSM in the training dataset will be 
left out of 1/3 of the trees in the ensemble, and use these 
OOB predictions to estimate the error rate of the full en-
semble. 

Like CART [29], Method I uses the gini index for de-
termining the final class in each DT. The gini index of 
node impurity is the measure most commonly chosen for 
classification-type problems. If a dataset T contains ex-
amples from n classes, gini index G(T) is defined as:  

 
G(T ) =1− (Pj )

2

j=1

n

∑ ,  
 

where pj is the relative frequency of class j in T. If a data 
set T is split into two subsets T1 and T2 with sizes N1 and 
N2 respectively, the gini index of the split data contains 
examples from n classes, the G(T) is defined as:  

 
Gsplit (T ) = N1

N
G(T1)+

N2

N
G(T2 ).  

 

The attribute value that provides the smallest Gsplit(T) is 
chosen to split the node.  
 

Figure 2 shows the key three steps of the Method I En-
semble. First, a random seed is chosen which pulls out at 
random a collection of samples from the training dataset 
while maintaining the class distribution. Second, with this 
selected dataset, a random set of attributes from the orig-
inal dataset is chosen based on user defined values. All 
the input variables are not considered because of enor-
mous computation and high chances of overfitting. In a 

dataset where M is the total number of input attributes in 
the dataset, only R attributes are chosen at random for 
each tree where R<M. 

Figure 1. A General Architecture of Method I Ensemble 

The collection of decision trees (DTs) {h(x, �k ), k = 1...}, where the �k are 
independently, identically distributed random DTs, and each DT casts “a 
unit vote” for the final classification of input x.  

Third, the attributes from this set create the best possi-
ble split using the gini index to develop a DT model. The 
process repeats for each of the branches until the termina-
tion condition stating that leaves are the nodes that are 
too small to split. In this study, Method I Ensemble was 
constructed and implemented with the Weka RF package 
[30].  
 
Figure 2. A Flowchart of Method I Ensemble 

 

 

 
The left-hand side shows the main flow of the Method I Ensemble while 
the right-hand side flowchart is the expantion of the process, Build The 
Next Split, of the main flowchart of left-hand side.   

2.4 Method II: Randomized Metalearning  
Method II builds an ensemble of randomized base clas-

sifiers (i.e., Method I), and averages their classification. 
Each one is based on the same input data, but uses a dif-
ferent ramdom-number seed. Some leanring algorithms 
already have a built-in random component. For example, 
when learning multiplayer perceptrons using the back-
propagation algorithm, the initial network weights are set 
to small randomly chosen values. The learned classifier 
depends on the random numbers because the algorithm 

g
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may find a different local minimum of the error function. 
One way to make the outcome of classification more sta-
ble is to run the learner several times with different ran-
dom number seeds (i.e., initial weights) and combine the 
classifiers’ predictions by voting or averaging. Learning 
in Method I builds a randomized DT in each iteration of 
the bagging algorithm, and often produces excellent pre-
dictors. Although bagging [27] and randomization yield 
similar results, it sometimes pays to combine them be-
cause they introduce randomness in different, perhaps 
complementary, ways. Randomization demands more 
work than bagging because the learning algorithm must 
be modified, but it can profitably be applied to a greater 
variety of learners. 

The Method II input vector is formed by three seeds, 
and ten number of iterations. The steps involved in deci-
sion-making are depicted in Figure 2. Tables 1 and 2 show 
their experimental results related to Methods I and II 
predictions. Using Method II to combine all the DTs, the 
system reduced Type I error rate significantly as depicted 
in Table 2. 

2.5 Model Validation and Testing 
For the system model to be useful, it must be validated 

to ensure that it emulates the actual system in the desired 
manner. This is especially true for empirical models, such 
as statistical machine-learning models, which primarily 
rely on observed data rather than analytical equations 
derived from first principles. The validation of these 
models using problem-specific information, such as theo-
retic relationships or experimental knowledge, should be 
performed. There are several methods to perform the val-
idation task. The most common statistical methods are re-
substitution, cross-validation, bootstrapping, and their 
variants.  

To accurately assess the predictive performance of each 
model, we adopted a cross-validation scheme for our 
model evaluation. First, we apply the holdout method to 
our proline CTI dataset. However, the holdout method 
has a key drawback in that the single random division of 
a sample into training and testing sets may introduce bias 
in model selection and evaluation. Since the estimated 
classification rate can be very different depending on the 
characteristic of the data, the holdout estimate can be mis-
leading if we happen to get an unfortunate split. Hence, 
in our experiment, we adopted multiple train-and-test 
experiments to overcome the limitation of the holdout 
method. We created 7 to 11-fold dataset, and only one of 
each fold was used for testing. The result of each fold is 
provided in Tables 1 and 2. 

2.6 Parameter Tuning 
All of the stages contain parameters or variables that 

need to be given appropriate values. Some of these pa-
rameters are so delicate that they have to be selected by 
an expert in the field, and kept constant thereafter. How-
ever, profoundly more interesting are the parameters the 
system is able to learn autonomously from training with 
available data. In our experiments, we used a semi-
autonomous approach. We first used the Weka’s meta-

learner, CVParameterSelection searches, and again checked 
the neighboring values of the best parameters found by 
the search. The list of the full parameters that we have 
used in our experiments is provided with Table 1. 

3 MODEL EVALUATION AND ANALYSIS 
The performance of the models used in this study are 

measured by the accuracy (Q2: the proportion of true-
positive and true-negative residues with respect to the total 
positives and negatives residues), the sensitivity (Sn: also 
called recall, the proportion of correctly predicted isomeri-
zation residues with respect to the total positively identified 
residues), the specificity (Sp: also called precision, the pro-
portion of incorrectly predicted isomerization residues with 
respect to the total number of proline isomerization resi-
dues), and Mathew’s correlation coefficient (Mcc: a correla-
tion coefficient between the observed and predicted binary 
classifications, between −1 and +1). In Mcc, a coefficient of 
+1 represents a perfect prediction, 0 no better than random 
prediction and −1 indicates total disagreement between pre-
diction and observation. Hence, a high value of Mcc means 
that the model is regarded as a more robust prediction mod-
el. The above measures can be obtained using the following. 

Q2 = TP +TN

TP +TN + FP + FN
,

Sp = TN

TN + FP
,

Sn = TP

TP + FN
,

Mcc = TP ×TN − FP × FN

(TP + FP)(TP + FN )(TN + FP)(TN + FN )
,

 
where TP is the number of true postives, FN is the number 
of false negatives or under-predictions, TN is the number of 
true negatives, and FP is the number of false positives or 
over-predictions. We adopted the polynomial kernel func-
tion and radial basis function (rbf kernel) to construct the 
SVM classifiers, which is aligned with the existing proline 
CTI prediction studies [12].  

K(x
�

i ⋅ x
�

j +1)d,

K(x
�

i ⋅ x
�

j ) = exp(−r x
�

i − x
�

j

2
),

 

where the degree d needs to be tuned as for polynomial 
function, and the gamma and the regulator parameters for 
RBF need to be regulated. See the footnote of Table 1 for 
the parameters settings used for this study. For the optimal 
learning of the prediction models, the most suitable data fold 
for each model should be sought. 

Table 1 shows the comparison of our proposed methods 
results with those of SVMLIB and its variant, SVMAB. The 
best score in each category is underlined, and the best fold 
scores in each model are bolded. As seen from the table, 
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Table 1. Model Performance Comparisons in Different Fold 
Models Fold Ac Sp Sn Mcc 

SVMLIB 

7 0.7613 0.5604 0.9621 0.5712 

8 0.7633 0.5623 0.9645 0.5757 

9 0.7672 0.5722 0.9622 0.5813 
10 0.7606 0.5584 0.9628 0.5703 

SVMAB 

7 0.7645 0.5647 0.9643 0.5775 
8 0.7647 0.5644 0.9650 0.5781 
9 0.7653 0.5656 0.9650 0.5796 

10 0.7564 0.5483 0.9645 0.5639 

Method I 

7 0.8032 0.6510 0.9554 0.6379 
8 0.8080 0.6644 0.9514 0.6440 
9 0.8077 0.6611 0.9544 0.6461 

10 0.8150 0.6698 0.9599 0.6592 
11 0.8107 0.6680 0.9533 0.6504 

 7 0.8452 0.7399 0.9504 0.7076 
 8 0.8575 0.7643 0.9506 0.7289 

Method II 9 0.8658 0.7816 0.9500 0.7443 
 10 0.8589 0.7688 0.9489 0.7311 

The parameters of each model were given the following values: Method I (de-
bug: false, maxDepth: 0, numExecutionSlots: 1, numFeatures: 0, numTrees: 13, 
printTrees: false, seed: 1), Method II (the same setting for Method I, and for 
Method II, seed: 3 and iteration: 10), SVMLIB (SVMType: C-SVM, cacheSize: 
40.0, coef0: 0.0, cost: 13, debug: false, degree: 3, eps: 0.0010, gamma: 0.0, 
kernelType: rbf, loss: 0.1, normalize: false, nu: 0.5, seed: 1, shrinking: true), and 
SVMAB (the same as SVMLIB’s, and for Adaboost, numIterations: 14, seed: 1, 
weightThreshold: 100) 

SVM models and Method II perform better on 9-fold while 
Method I performs better on 10-fold. The proposed methods 
(Methods I and II) performed a far better then SVM models. 
Method I and II achieved 81.5%, and 86.58% Q2 accuracies 
respectively, while SVM models achieved about 76% Q2 
accuracy only. 

Table 1 also shows that our proposed methods are supe-
rior to SVM models in terms of Sp and Mcc, which indicate 
the model robustness and stableness. The Q2 accuracy of 
86.58% that we achieved on proline CTI prediction is a far 
better than those of any existing computational proline CTI 
predictors reported in the literature. The best Q2 accuracy 
that we have found in the literature was about 73% on the 
same dataset as used in this research. 

The performance of each model is measured by Types I 
and II Error rates as well, since incorrectly predicted resi-
dues can be as valuable, as are the correctly predicted resi-
dues for further modification of the model. Type I Errors 
mean experimentally verified trans residues that are predict-
ed (incorrectly) to be cis residues; type II errors indicate 
experimentally verified cis residues that are predicted (incor-
rectly) to be trans residues. Method II shows the lowest 
Type I Error Rate (0.21833) while SVMAB reaches the low-
est Type II Error Rate (0.035). Although our proposed 
methods seem to be not very useful in improving Type II 
Error Rate, it reduces Type I Error Rate effectively. Interest-
ingly, Type I Error Rates are worse with SVMs while Type 
II Error Rates are worse with our proposed methods. 
 
 

Table 2. Type I and II Errors in Different Fold 
Models Fold Type I Type II StDev 

SVMLIB 

7 0.4396 0.0379 0.0268 
8 0.4378 0.0355 0.0229 
9 0.4278 0.0378 0.0253 

10 0.4416 0.0372 0.0318 

SVMAB 

7 0.4353 0.0357 0.0219 
8 0.4356 0.035 0.0233 
9 0.4344 0.035 0.0226 

10 0.4517 0.0355 0.0352 

Method I 

7 0.349 0.0446 0.0105 
8 0.3356 0.0486 0.014 
9 0.3389 0.0456 0.012 

10 0.3302 0.0401 0.0182 
11 0.332 0.0467 0.0306 

 7 0.2601 0.0496 0.0114 
 8 0.23575 0.049375 0.01523 

Method II 9 0.21833 0.05 0.022672 
 10 0.2312 0.0511 0.026547 

Type I Errors mean experimentally verified trans residues that are predicted 
(incorrectly) to be cis residues; type II errors indicate experimentally verified cis 
residues that are predicted (incorrectly) to be trans residues. 

StDev provides a good idea on model generalization abil-
ity. Although nonparametric machine-learning models have 
been proved to be useful in many different applications, 
their generalization capacity has often been shown to be 
unreliable because of the potential for overfitting. The symp-
tom of overfitting is that the model fits the training sample 
too well, and thus the model output becomes unstable for 
prediction. On the other hand, a more stable model, such as 
a linear model, may not learn enough about the underlying 
relationship, resulting in underfitting the data. It is clear that 
both underfitting and overfitting will affect the generaliza-
tion capacity of a model. The underfitting and overfitting 
problems in many data-modeling procedures can be ana-
lysed through the well-known bias-plus-variance decompo-
sition of the prediction error. The best generalization ability 
came from Method I, where a multiple DTs have been built.  

The idea used in Method II using a different ramdom-
number seed seems to be useful in better learning; however, 
not enough to improve its generalization ability. Method I 
shows the best StDev value of 0.0182, while other models 
reach about 0.022–0.025. (a) of Figure 3 depicts the perfor-
mance comparisons of four different models in Q2, Sp, Sn, 
and Mcc. As you can see, Method II outperforms other 
models in Q2, Sp, and Mcc, and no significant differences 
observed in Sn, while Method I and II improve Sp and Mcc 
significantly. As in (b) of Figure 3, Type II Error Rates are 
much lower than Type I Error Rates in general, and Method 
I and II effectively reduce Type I Error Rate. (c) of Figure 1, 
shows that Method II improves in Q2, Sp, and Mcc and 
Type I Error Rate. However, no significant improvement 
observed in Sn and Type II Error Rate and StDev. This re-
sult indicates that our proposed methods could be improved 
by reducing the errors of experimentally verified cis residues 
that are predicted (incorrectly) to be trans residues. 
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Figure 3. Model Performance Comparisons 

(a) Comparisons in Ac, Sp, Sn, and Mcc (b) Comparisons between Type I and II Errors 

(c) Comparisons between Method I and II (d) Comparisons in StDev 

 
 (d) of Figure 3 compares the model generalization ability 
and stability. Method I clearly outperforms other models. 
Again, using a different random-number seed does not really 
make the outcome of classification more stable, which con-
tradicts to the findings in [31]. 

Although our proposed methods have shown to be useful 
for proline CTI prediction tasks, we suggest the following to 
be taken into account for the sake of improvement. First, 
since our methods use PSSMs only as input, homology in-
formation presented in PSSMs may not have enough infor-
mation to reach the upper-boundary accuracy. Recent studies 
suggest that global sequence homology is seen as a strong 
indicator for the occurrence of prolyl cis residues [32], 
meaning that accurate descriptors of CTI residues and their 
corresponding encoding schemes must be identified. Se-
cond, solvent accessibility as a new possible input feature of 
proline CTI must be well examines as proline cis residues 
are more frequently found in surface accessible areas com-
pared to trans residues [32]. Computational machine-
learning approaches build their models based on input data 
only. Clearly, missing useful information in input dataset 
leads to misclassification.  

4 CONCLUSION 
In this paper, we have presented a novel ensemble method 
to predict proline CTI residues in proteins. The proposed 
models are trained using a RF-like ensemble method, 
which grows a multiple trees, and chooses the classifica-
tion having the most votes over all the trees in the forest, 
and build an ensemble of randomized base classifiers us-
ing using a different ramdom-number seed, and averages 
their classification. On average, our methods are able to 
predict proline CTI with the Q2 accuracy of 86.58%, a far 
better than any existing proline CTI predictors reported in 
the literature. Experimental results on proline CTI predic-
tion could be subjective as other existing prediction meth-
ods usually do predictions on their own dataset. However, 
our experiments were able to demonstrate that the pro-
posed methods can achieve a test error better than the 
most widely used computational models, SVM and its 
variants, in the literature on the same dataset used in [12]. 

It has also demonstrated that pure evolutionary infor-
mation in the format of PSSM scores as input works 
greatly in reducing error rate during the model learning 
process, meaning that noise presented (i.e., predicted sec-
ondary information) in input dataset may lead to significant 
degrading in the performance of the models.   
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