
Computer Networks 72 (2014) 74–98
Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier .com/locate /comnet
Survey Paper
Software defined networking: State of the art and research
challenges
http://dx.doi.org/10.1016/j.comnet.2014.07.004
1389-1286/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +1 519 661 2111.
E-mail addresses: mjammal@uwo.ca (M. Jammal), rasool.asal@bt.com

(R. Asal), yili.mba2015@ivey.ca (Y. Li).
Manar Jammal a,⇑, Taranpreet Singh a, Abdallah Shami a, Rasool Asal b, Yiming Li c

a Department of Electrical and Computer Engineering, Western University, Canada
b ETISALAT BT Innovation Center, UK
c StarTech.com, Canada

a r t i c l e i n f o a b s t r a c t
Article history:
Received 4 December 2013
Received in revised form 17 June 2014
Accepted 15 July 2014
Available online 25 July 2014

Keywords:
Software defined networking
OpenFlow
Data centers
Network as a service
Network virtualization
Network function virtualization
Network usage and demands are growing at a rapid pace, while the network administra-
tors are facing difficulties in tracking the frequent users’ access of the network. Conse-
quently, managing the infrastructure supporting these demands has become a
complicated and time-consuming task. Networks are also in a flux state, they are not only
expanding but require reconfigurations to meet the business needs. Software defined net-
working (SDN) and network function virtualization (NFV) technologies have emerged as
promising solutions that change the cost profile and agility of internet protocol (IP) net-
works. Conceptually, SDN separates the network control logic from its underlying hard-
ware, enabling network administrators to exert more control over network functioning
and providing a unified global view of the network. However, SDN and NFV can be merged
and have the potential to mitigate the challenges of legacy networks. In this paper, our aim
is to describe the benefits of using SDN in a multitude of environments such as in data cen-
ters, data center networks, and Network as Service offerings. We also present the various
challenges facing SDN, from scalability to reliability and security concerns, and discuss
existing solutions to these challenges.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Today’s Internet applications require the underlying net-
works to be fast, carry large amounts of traffic, and to deploy
a number of distinct, dynamic applications and services.
Adoption of the concepts of ‘‘inter-connected data centers’’
and ‘‘server virtualization’’ has increased network demand
tremendously. In addition to various proprietary network
hardware, distributed protocols, and software components,
legacy networks are inundated with switching devices that
decide on the route taken by each packet individually;
moreover, the data paths and the decision-making
processes for switching or routing are collocated on the
same device. This situation is elucidated in Fig. 1. The
decision-making capability or network intelligence is
distributed across the various network hardware compo-
nents. This makes the introduction of any new network
device or service a tedious job because it requires
reconfiguration of each of the numerous network nodes.

Legacy networks have become difficult to automate
[1,2]. Networks today depend on IP addresses to identify
and locate servers and applications. This approach works
fine for static networks where each physical device is recog-
nizable by an IP address, but is extremely laborious for large
virtual networks. Managing such complex environments
using traditional networks is time-consuming and expen-
sive, especially in the case of virtual machine (VM) migra-
tion and network configuration. To simplify the task of

http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2014.07.004&domain=pdf
http://dx.doi.org/10.1016/j.comnet.2014.07.004
mailto:mjammal@uwo.ca
mailto:rasool.asal@bt.com
mailto:yili.mba2015@ivey.ca
http://dx.doi.org/10.1016/j.comnet.2014.07.004
http://www.sciencedirect.com/science/journal/13891286
http://www.elsevier.com/locate/comnet


Fig. 1. Inflexible legacy infrastructure.

Fig. 2. SDN architecture.

M. Jammal et al. / Computer Networks 72 (2014) 74–98 75
managing large virtualized networks, administrators must
resolve the physical infrastructure concerns that increase
management complexity. In addition, most modern-day
vendors use control-plane software to optimize data flow
to achieve high performance and competitive advantage
[2]. This switch-based control-plane paradigm gives net-
work administrators very little opportunity to increase
data-flow efficiency across the network as a whole. The
rigid structure of legacy networks prohibits programmabil-
ity to meet the variety of client requirements, sometimes
forcing vendors into deploying complex and fragile pro-
grammable management systems. In addition, vast teams
of network administrators are employed to make thousands
of changes manually to network components [2,3].

The demand for services and network usage is growing
rapidly. Although growth drivers such as video traffic, big
data, and mobile usage augment revenues, they pose sig-
nificant challenges for network operators [4]. Mobile and
Telco operators are encountering spectrum congestion,
the shift to internet protocol (IP), and increased mobile
users. Concurrently, data-center operators are facing tre-
mendous growth in the number of servers and virtual
machines, increasing server-to-server communication traf-
fic. In order to tackle these challenges, operators require a
network that is efficient, flexible, agile, and scalable.

Inspired by the words of Marc Andreesen, ‘‘software is
eating the world’’, software-defined networking (SDN) and
virtualization are poised to be the solutions that overcome
the challenges described above. SDN operates on an
aggregated and centralized control plane that might be a
promising solution for network management and control
problems. The main idea behind SDN is to separate the for-
warding/data plane from the control plane while providing
programmability on the control plane, as illustrated in Fig. 2.



76 M. Jammal et al. / Computer Networks 72 (2014) 74–98
Despite its obvious advantages and its ability to simplify
networks, SDN encounters some technical challenges that
can restrict its functionality and performance in cloud com-
puting, information technology (IT) organizations, and net-
working enterprises. Compared to recent surveys [5,6], this
paper tackles most of the SDN challenges with their causes
and existing solutions in a comprehensive and detailed
manner. It addresses reliability, scalability, latency, control-
ler placement, recent hardware shortages, and security
issues. Overcoming these challenges might assist IT organi-
zations and network enterprises in exploring and improv-
ing the various opportunities and functionalities of SDN.

In this paper, Section 2 defines SDN and discusses its
architecture and its protocol, OpenFlow. The concept of
network virtualization (NV) is elucidated in Section 3, with
a discussion of how NV has emerged as a potential solution
to the current ossified network architecture and offers ben-
efits that can rapidly alter both the networking and cloud-
computing industries. Section 4 discusses various SDN
applications in data-center networks and Network as a Ser-
vice. Section 5 analyzes the various challenges facing SDN,
their causes, and their recent solutions. Finally, the last
section summarizes various research initiatives in the
SDN field, starting from SDN prototypes, development
tools and languages, and virtualization implementations
using SDN and ending with the various SDN vendors.

2. Software-defined networking and openflow
architecture

Most current network devices have control and data-
flow functionalities operating on the same device. The only
control available to a network administrator is from the
network management plane, which is used to configure
each network node separately. The static nature of current
network devices does not permit detailed control-plane
configuration. This is exactly where software-defined net-
working comes into the picture. The ultimate goal of SDN
as defined in [7] is to ‘‘provide open user-controlled man-
agement of the forwarding hardware of a network element.’’
SDN operates on the idea of centralizing control-plane
intelligence, but keeping the data plane separate. Thus,
the network hardware devices keep their switching fabric
(data plane), but hand over their intelligence (switching
and routing functionalities) to the controller. This enables
the administrator to configure the network hardware
directly from the controller. This centralized control of
the entire network makes the network highly flexible [8,9].

2.1. SDN architecture

Compared to legacy networks, there are four additional
components in SDN [8–10] (see Figs. 3 and 4).

2.1.1. Control plane
The control plane/controller presents an abstract view

of the complete network infrastructure, enabling the
administrator to apply custom policies/protocols across
the network hardware. The network operating system
(NOX) controller is the most widely deployed controller.
2.1.2. Northbound application interfaces
The ‘‘northbound’’ application programming interfaces

(APIs) represent the software interfaces between the soft-
ware modules of the controller platform and the SDN
applications running atop the network platform. These
APIs expose universal network abstraction data models
and functionality for use by network applications. The
‘‘northbound APIs’’ are open source-based.

2.1.3. East–West protocols
In the case of a multi-controller-based architecture, the

East–West interface protocol manages interactions
between the various controllers.

2.1.4. Data plane and southbound protocols
The data plane represents the forwarding hardware in

the SDN network architecture. Because the controller
needs to communicate with the network infrastructure, it
requires certain protocols to control and manage the inter-
face between various pieces of network equipment. The
most popular ‘‘southbound protocol’’ is the OpenFlow pro-
tocol. The following section explains OpenFlow and its
architecture.

2.2. SDN benefits

SDN provides several benefits to address the challenges
facing legacy network architectures.

2.2.1. Programmability of the network
By implementing a new orchestration level, SDN can

tackle the inflexibility and complexity of the traditional
network. SDN provides enterprises with the ability to con-
trol their networks programmatically and to scale them
without affecting performance, reliability, or the user
experience [4]. The data- and control-plane abstractions
constitute the immense worth of SDN. By eliminating the
complexity of the infrastructure layer and adding visibility
for applications and services, SDN simplifies network man-
agement and brings virtualization to the network. It
abstracts flow control from individual devices to the net-
work level. Network-wide data-flow control gives adminis-
trators the power to define network flows that meet
connectivity requirements and address the specific needs
of discrete user communities.

With the SDN approach, network administrators no
longer need to implement custom policies and protocols
on each device in the network separately. In the general
SDN architecture, control-plane functions are separated
from physical devices and are performed by an external
controller (e.g., standard server running SDN software).
SDN provides programmability on the control plane itself,
through which changes can be implemented and dissemi-
nated either to a specific device or throughout the network
hardware on a secure channel. This approach promises to
facilitate the integration of new devices into the existing
architecture. The SDN controller improves the traffic engi-
neering capabilities of the network operators using video
traffic. It enables network operators to control their con-
gestion hot spots and reduces the complexity of traffic
engineering [4].



Fig. 3. Basic SDN-based network architecture.

Fig. 4. API directionality in SDN architecture.

M. Jammal et al. / Computer Networks 72 (2014) 74–98 77
2.2.2. The rise of virtualization
SDN is a promising opportunity for managing hyper-

scale data centers (DCs). Data centers raise significant sca-
lability issues, especially with the growth of virtual
machines (VMs) and their migration. Moving a VM and
updating the media access control (MAC) address table
using traditional network architecture may interrupt the
user experience and applications.

Therefore, network virtualization, which can be seen as
an SDN application, offers a prominent opportunity for
hyper-scale data centers. It provides tunnels that can
abstract the MAC address from the infrastructure layer,
enabling Layer 2 traffic to run over Layer 3 overlays and
simplifying VM deployment and migration in the network
[4].

Furthermore, SDN enables multi-tenant hosting provid-
ers to link their physical and virtual servers, local and
remote facilities, and public and private clouds into a sin-
gle logical network. As a result, each customer will have
an isolated view of the network provider. SDN adds a virtu-
alization layer to the fabric architecture of the cloud
providers. This enables their tenants to obtain various
views over the data-center network (DCN) according to
their demands.

SDN is a promising approach for offering Networks as a
Service (NaaS) which will enable flexible service models
and virtual network operators and endow enterprises with
the ability to control DCs and their traffic. This paper intro-
duces the benefits of NaaS and its consolidation with SDN
using different cloud models.

2.2.3. Device configuration and troubleshooting
With SDN, device configuration and troubleshooting

can be done from a single point on the network which
pushes us closer to realizing the ultimate goal of ‘‘a
dynamic network’’ that can be configured and made adapt-
able according to needs. SDN also provides the capability
to encourage innovation in the networking field by offering
a programmable platform for experiments on novel proto-
cols and policies using production traffic. Separating data
flows from test flows facilitates the adoption of newer pro-
tocols and ideas into the networking domain [2,3].



78 M. Jammal et al. / Computer Networks 72 (2014) 74–98
From a broader perspective, SDN offers a form of net-
working in which packet routing control can be separated
from switching hardware [3]. As a result, when the SDN
and Ethernet fabrics are consolidated, real network intelli-
gence is achieved [4].

Since OpenFlow is the industrial standard interface for
SDN between the control and the data layers, the following
subsection defines it and its architecture.

2.3. OpenFlow

OpenFlow is the protocol used for managing the south-
bound interface of the generalized SDN architecture. It is
the first standard interface defined to facilitate interaction
between the control and data planes of the SDN architec-
ture. OpenFlow provides software-based access to the flow
tables that instruct switches and routers how to direct net-
work traffic. Using these flow tables, administrators can
quickly change network layout and traffic flow. In addition,
the OpenFlow protocol provides a basic set of management
tools which can be used to control features such as topol-
ogy changes and packet filtering. The OpenFlow specifica-
tion is controlled and defined by the non-profit open
network foundation (ONF), which is led by a board of
directors from seven companies that own and operate
some of the largest networks in the world (Deutsche Tele-
kom, Facebook, Google, Microsoft, Verizon, Yahoo, and
NTT). Most of the networking hardware vendors such as
HP, IBM, and CISCO offer switches and routers that use
the OpenFlow protocol [10]. OpenFlow shares much
Fig. 5. Basic architectu
common ground with the architectures proposed by
ForCES and SoftRouter; however, the difference lies in
inserting the concept of flows and leveraging the existence
of flow tables in commercial switches [11].

OpenFlow-compliant switches come in two main types:
OpenFlow-only and OpenFlow-hybrid. OpenFlow-only
switches support only OpenFlow operations, i.e., all packets
are processed by the OpenFlow pipeline. OpenFlow-hybrid
switches support both OpenFlow operations and normal
Ethernet switching operations, i.e., traditional L2 and L3
switching and routing. These hybrid switches support a
classification mechanism outside of OpenFlow that routes
traffic to either of the packet-processing pipelines [11].

2.3.1. OpenFlow architecture
Basically, the OpenFlow architecture consists of numer-

ous pieces of OpenFlow-enabled switching equipment
which are managed by one or more OpenFlow controllers,
as shown in Fig. 5.

2.3.1.1. Defining a flow. Network traffic can be partitioned
into flows, where a flow could be a transmission control
protocol (TCP) connection, packets with the same MAC
address or IP address, packets with the same virtual local
area network (VLAN) tag, or packets arriving from the
same switch port [9].

2.3.1.2. OpenFlow switch. An OpenFlow switch consists of
one or more flow tables and a group table. It performs
packet look-ups and forwarding. The controller manages
re of OpenFlow.



M. Jammal et al. / Computer Networks 72 (2014) 74–98 79
the OpenFlow-enabled switch using the OpenFlow proto-
col over a secure channel. Each flow table in the switch is
made up of a set of flow entries in which each flow entry
consists of match header fields, counters, and a set of
instructions to apply to matching packets [11].

2.3.1.3. OpenFlow channel. The OpenFlow channel is the
interface that connects each OpenFlow switch to a control-
ler. Using this interface, the controller configures and man-
ages the switch. The OpenFlow protocol supports three
message types, all of which are sent over a secure channel.
These messages can be categorized as controller-to-switch,
asynchronous, and symmetric, each having multiple sub-
types. Controller-to-switch messages are initiated by the
controller and are used to manage or derive information
directly about the state of the switch. Asynchronous mes-
sages are initiated by the switch and are used to update
the controller with network events and changes to the
switch state. Symmetric messages are initiated by either
the switch or the controller and are sent without solicita-
tion. The OpenFlow channel is usually encrypted using
transport layer security (TLS), but can also operate directly
over TCP [11].

2.3.1.4. OpenFlow controller. The controller is responsible
for maintaining all the network protocols and policies
and distributing appropriate instructions to the network
devices. In other words, the OpenFlow controller is respon-
sible for determining how to handle packets without valid
flow entries. It manages the switch flow table by adding
and removing flow entries over the secure channel using
the OpenFlow protocol. The controller essentially central-
izes network intelligence. The switch must be able to
establish communication with a controller at a user-con-
figurable (but otherwise fixed) IP address using a user-
specified port. The switch initiates a standard TLS or TCP
connection to the controller when it knows its IP address.
Traffic to and from the OpenFlow channel does not travel
through the OpenFlow pipeline. Therefore, the switch must
identify incoming traffic as local before checking it against
the flow tables. The switch may establish communication
with a single controller or with multiple controllers.

Having multiple controllers improves reliability
because the switch can continue to operate in OpenFlow
mode if one controller connection fails. The hand-over
between controllers is entirely managed by the controllers
themselves, which enables load balancing and fast recov-
ery from failure. The controllers coordinate the manage-
ment of the switch among themselves, and the goal of
the multiple controller functionality is only to help syn-
chronize controller hand-offs performed by the controllers.

The multiple controller functionality addresses only
controller fail-over and load balancing. When OpenFlow
operation is initiated, the switch must connect to all con-
trollers with which it is configured and try to maintain
connectivity with all of them concurrently. Many control-
lers may send controller-to-switch commands to the
switch; the reply or error messages related to these com-
mands must be sent only on the controller connection
associated with that command. Typically, the controller
runs on a network-attached server [11].
SDN controllers can be implemented in the following
three structures [12]:

I. Centralized structure.
II. Distributed structure.

III. Multi-layer structure.

2.3.2. Flow & group tables
Each entry in the flow table has three fields [11]:

� A packet header is specific to the flow and defines it.
This header is almost a ten-tuple. Its fields contain
information such as VLAN ID, source and destination
ports, IP address, and Ethernet source and destination.
� The action specifies how the packets in a flow will be

processed. An action can be any one of the following:
(i) Forward the packet to a given port or ports.

(ii) Drop the packet.
(iii) Forward the packet to the controller.
� Statistics include information such as number of pack-

ets, number of bytes, time since the last packet matched
the flow, and so on for each type of flow [11]. Most of
the time, counters are used to keep track of the number
of packets and bytes for each flow and the elapsed time
since flow initiation.

2.3.3. OpenFlow protocol
An OpenFlow switch contains multiple flow and group

tables. Each flow table consists of many flow entries. These
entries are specific to a particular flow and are used to per-
form packet look-up and forwarding. The flow entries can
be manipulated as desired through OpenFlow messages
exchanged between the switch and the controller on a
secure channel. By maintaining a flow table, the switch
can make forwarding decisions for incoming packets by a
simple look-up on its flow-table entries. OpenFlow
switches perform an exact match check on specific fields
of the incoming packets. For every incoming packet, the
switch goes through its flow table to find a matching entry.
The flow tables are sequentially numbered, starting at 0.
The packet-processing pipeline always starts at the first
flow table. The packet is first matched against the entries
of flow table 0. If the packet matches a flow entry in a flow
table, the corresponding instruction set is executed.
Instructions associated with each flow entry describe
packet forwarding, packet modification, group table pro-
cessing, and pipeline processing.

Pipeline-processing instructions enable packets to be
sent to subsequent tables for further processing and enable
aggregated information (metadata) to be communicated
between tables. Flow entries may also forward to a port.
This is usually a physical port, but may also be a virtual port.

Flow entries may also point to a group, which specifies
additional processing. A group table consisting of group
entries offers additional methods of forwarding (multicast,
broadcast, fast reroute, link aggregation, etc.). A group
entry consists of a group identifier, a group type, counters,
and a list of action buckets, where each action bucket
contains a set of actions to be executed and associated
parameters. Groups also enable multiple flows to be for-
warded to a single identifier, e.g., IP forwarding to a



80 M. Jammal et al. / Computer Networks 72 (2014) 74–98
common next hop. Sometimes packet may not match a
flow entry in any of the flow tables; this is called a ‘‘table
miss’’. The action taken in case of a miss depends on the
table configuration. By default, the packet is sent to the
controller over the secure channel. Another option is to
drop the packet [11].

In summary, SDN provides a new concept and architec-
ture for managing and configuring networks using a
dynamic and agile infrastructure. But the networking area
is not only experiencing the emergence of SDN but also
network virtualization and network function virtualiza-
tion. The three solutions build an automated, scalable, vir-
tualized and agile networking and cloud environment.
Therefore, the following section introduces network virtu-
alization, network function virtualization and their rela-
tionship with SDN.
3. Network virtualization

The value of SDN in the enterprise lies specifically in its
ability to provide network virtualization and automated
configuration across the entire network fabric, enabling
rapid deployment of new services and end systems in addi-
tion to minimizing operating cost [13,14].

3.1. Definition

Conceptually, network virtualization decouples and iso-
lates virtual networks from the underlying network hard-
ware [15], as shown in Fig. 6.

The isolated networks share the same physical infra-
structure. Once virtualized, the underlying physical net-
work is used only for packet forwarding. Multiple
independent virtual networks are then overlaid on the
existing network hardware, offering the same features
and guarantees as a physical network, but with the operat-
ing benefits and hardware independence of virtual
machines [13]. To achieve virtualization at the network
level, a network virtualization platform (NVP) is needed
to transform the physical network components into a gen-
eralized pool of network capacity, similar to how a server
hypervisor transforms physical servers into a pool of com-
pute capacity. Decoupling virtual networks from physical
hardware enables network capacity to scale without affect-
ing virtual network operations [13,14].
Physical Layer

VMs

VSWITCH

Tunnels

GATEWAY

VLANs

VMs

Hardware 

Layer

Virtualiza�

Layer 

(Decouplin

Automate

Configura�

Fig. 6. The concept of net
Network virtualization projects the network hardware as
a business platform capable of delivering a wide range of IT
services and corporate value [16]. It delivers increased appli-
cation performance by dynamically maximizing network
asset utilization while reducing operating requirements [7].

With the emergence of SDN, network virtualization
becomes engaged in cloud computing applications. NV
provides network management for the interconnection
between servers in DCs. It allows the cloud services to be
dynamically allocated and extend the limits of DC into
the network infrastructure [17].

Network virtualization has many aspects, including vir-
tualized dual backbones, network service virtualization,
virtual service orchestration, network I/O virtualization,
and network-hosted storage virtualization. Fig. 7 presents
a general network-virtualization architecture consisting
of firewall-defined layers [18,19].

Starting from the bottom:

3.1.1. Infrastructure provider (InP)
The infrastructure provider (InP) is responsible for

maintaining the underlying physical equipment. Each
organization taking on this role must offer its resources
virtually to build a virtual network.

3.1.2. Virtual network provider (VNP)
The virtual network provider (VNP) is responsible for

requesting virtual resources and assembling the virtual
network for a virtual network operator (VNO). The virtual
network provider can use a number of infrastructure pro-
viders to provide virtual network resources.

3.1.3. Virtual network operator (VNO)
VNOs must assess the network requirements for the VNP

to assemble the virtual resources. VNOs are also responsible
for managing and granting access to virtual networks.

3.1.4. Service provider
Service providers use virtual network resources and

services to tailor specialized services for end users.

3.1.5. Virtual network user/end user
End users consume the resources of the virtual network

through services provided by the virtual network directly
or services provided by a service provider.
Virtual Networks

Logical Load 

Balancer

Logical 

Firewall

Logical SwitchLogical 

Router

So�ware 

Layer

on 

g, 

d 

ons

work virtualization.



Fig. 7. General network virtualization architecture.

M. Jammal et al. / Computer Networks 72 (2014) 74–98 81
Three components are essential for a virtual network to
function properly: virtual servers, virtual nodes, and vir-
tual links. Virtual servers provide end users with a means
to access virtual network services by implementing virtual
machines. The virtual servers can also switch transparently
between virtual machines to enable dynamic service
changes. This feature is particularly helpful in the face of
ever-changing client needs. Virtual nodes represent physi-
cal nodes such as routers and switches. A virtual node
operates in both the data and control planes. The node is
configured by VNOs to forward data appropriately. Virtual
links provide a means of dividing and sharing physical
links. The concept of virtual links ensures flexibility in net-
work topology [18,19].

3.2. Benefits of network virtualization

Some of the key benefits offered by network virtualiza-
tion are mentioned below [20,21].

3.2.1. Co-existence of dissimilar networks
Network virtualization makes it possible to create mul-

tiple virtual networks on the same physical hardware.
However, these virtual networks can be isolated from
other existing virtual networks. This isolation can be used
as a tool in the deployment of networks using different or
even incompatible routing protocols.

3.2.2. Encouraging network innovation
Like SDN, network virtualization can be used to encour-

age innovation in the networking domain. The isolation
that can exist between two virtual networks can be used
to create separate domains for production traffic and test
traffic. This isolation guarantees that a malfunction exper-
iment will not affect production traffic.

3.2.3. Provisioning of independent and diverse networks
NV deploys packet handling, quality of service (QoS)

and security policies to configure network operations and
behaviors. This configuration allows the categorization of
different networks based on their services, users and
applications.

3.2.4. Deployment of agile network capabilities
The inclusion of agile facilities into the current network

improves the data transport efficiency and provides robust
network. With the agile manner, NV allows the integration
between legacy and advanced networks. Also, it enables
migration from legacy systems into advanced ones in an
agile manner.



82 M. Jammal et al. / Computer Networks 72 (2014) 74–98
3.2.5. Resource optimization
The dynamic mapping of multiple virtual network

nodes to the physical substrate ensures that the network
hardware is utilized up to capacity. This approach cuts
down on hardware costs and delivers additional profit to
the infrastructure provider.

3.2.6. Deployment of distinct network services
Network services such as wireless local area networks

(WLANs) and Intranet require specific network architec-
tures. In addition, a multi-national corporation might need
to offer distinct services to its employees. This can add
complexity to the existing overlay network. Network virtu-
alization can help alleviate these problems by deploying
such services in separate virtual networks.

3.3. Network function virtualization

As for the ambiguity between the concepts of network
function virtualization (NFV) and SDN, it is necessary to
take advantage of the definitions and benefits of both
technologies.

3.3.1. Definition of NFV
Expansion of the deployment of various applications

and network services induced service providers to come
up with the concept of NFV. Therefore, they established a
European telecommunication standards institute (ETSI)
Industry Specification Group for NFV. The group defined
the real concept of NFV together with its requirements
and architecture.

NFV decouples network functions, e.g., firewalls,
domain name service (DNS), and caching, from dedicated
hardware appliances and entrusts them to a software-
based application running on a standardized IT infrastruc-
ture, high-volume servers, switches, and storage devices.
The interesting feature of NFV is its availability for both
wired and wireless network platforms. NFV reduces capital
expenditures (CAPEX) and operating expenditures (OPEX)
by minimizing the purchase of dedicated hardware appli-
ances, as well as their power and cooling requirements.
Virtualization of network functions enables fast scale-up
or scale-down of various network services and provides
agile delivery of these services using a software application
running on commercial off-the-shelf (COTS) servers.

3.3.2. NFV and NV
NV partitions the network logically and creates logical

segments in it. It uses then the network resources through
these logical segmentations. This is achieved by installing
software and services that manage the sharing of
resources, storage and applications. Using NV, all services
and servers in the network appear as a single resources
pool.

At the flow level, NV creates virtual networks on the
shared physical network to facilitate the movement of
VMs across different logical domains without reconfigur-
ing the network. In this isolation approach, each tenant
has a virtual network supporting virtual subnets and rout-
ing. Since a software is used to define these virtual net-
works, it is not necessary to reconfigure the physical
network to reflect any changes in the network. Therefore,
NV can be viewed as an overlay connecting any two
domains in a network. While NV can be viewed as an over-
lay, NFV deploys services on it.

NFV uses the virtualization technology to manage the
networking functions through software. It builds blocks
of virtualized network functions (VNFs) that handle spe-
cific functions running in VMs on top of the networking
infrastructure such as routers, switches, or servers. NFV
uses these functions to allow the administrators turn up
the firewalls or intrusion prevention systems (IPS) in the
same way they set up VMs. NFV virtualizes the functions
from layer 4 (L4) till layer 7 (L7) such as load balancing
and firewalls. If an administrator can enable modifications
at the top of the infrastructure layer, NFV can provide
changes for L4–L7 functions virtually.

Both NV and NFV may run on high performance x86
platforms. NV tunnel facilitates VM migration indepen-
dently of the underlying network. NFV enables the func-
tions on NV, provides an abstraction and virtual services
on it. As NV eliminates the need for network reconfigura-
tion, NFV saves time on manual training and provisioning.

3.3.3. NFV and SDN
SDN and NFV are complementary technologies; they do

not depend on each other. However, both concepts can be
merged to mitigate potentially the challenges of legacy
networks. The functions of the SDN controller can be
deployed as virtual functions, meaning that the OpenFlow
switches will be controlled using NFV software. SDN tech-
niques can be used to program the networking infrastruc-
ture to connect VNFs when setting up an NFV service. The
SDN controller can program the physical and the virtual
switches associated with hypervisors to create routing
rules in order to add VNFs to the network. Both NFV and
SDN automate the deployment and management of differ-
ent network services, by running their software in a virtu-
alized or cloud environments.

The multi-tenancy requirements of the cloud pushed
the NFV to support use of a software overlay network. This
software network is created by SDN. It consists of a set of
tunnels and virtual switches that prohibits sudden interac-
tions between different virtual network functions. These
functions will be managed using the SDN model.

Merging NFV and SDN enables replacement of expen-
sive and dedicated hardware equipment by software and
generic hardware. The control plane is transferred from
dedicated platforms to optimized locations in DCs.
Abstraction of this plane eliminates the need to upgrade
network appliances simultaneously and thus accelerates
the evolution and deployment of network services and
applications. Table 1 provides a comparison between SDN
and NFV concepts.

In summary, both NFV and SDN aims at transitioning
the network management from hardware to the software
layer. However, NFV concentrates on moving network
functions to virtualized environments and use standard
x86 processors for everything while SDN aims at separat-
ing the network control layer from the forwarding layer.

The alphabet soup might be devastating, but the three
types of technology, NV, NFV and SDN, are trying to solve



Table 1
Comparison between SDN and NFV.

SDN NFV

Motivation � Decoupling of control and data planes Abstraction of network functions from
dedicated hardware appliances to COTS servers� Providing centralized controller and network programmability

Network location Data centers, cloud, campus Service provider networks
Network devices Servers and switches Servers and switches
Protocols OpenFlow N/A
Applications Cloud orchestration and networking Firewalls, gateways, content delivery network,

routers, wide area network accelerators
Standardization committee Open Networking Forum (ONF) ETSI NFV group

M. Jammal et al. / Computer Networks 72 (2014) 74–98 83
different subsets of the network agility, scalability and
mobility. While NV and NFV can reside on the servers of
the existing network, SDN requires the construction of new
network where the control and data layers are decoupled.

4. SDN applications

SDN is a promising approach that can overcome the
challenges facing cloud computing services, specifically
NaaS and DCNs. Therefore, the following section highlights
the importance of SDN in these fields and describes its var-
ious applications in DCNs and NaaS.

4.1. Data-center networks

4.1.1. Motivation
The scale and complexity of data-center networks

(DCNs) are approaching the limit of traditional networking
equipment and IT operations [22]. Currently, the infra-
structure of data-center networks is undergoing tremen-
dous and rapid changes.

The Enterprise Strategy Group (ESG) has defined the
reasons that have provoked these changes and summarizes
them as follows:

� Aggressive alliances in data centers.

ESG’s research statistics show that 63% of the enter-
prises polled are planning the fusion of their data centers
[22]. A large expansion may occur in these data centers
as they harbor extra applications, network traffic, and
devices. Therefore, many associations might consolidate
their data centers into multi-tenant facilities.

� Progressive use of virtualization technology.

Large enterprises such as Citrix, Microsoft, and VMware
are deploying server virtualization technologies. In addi-
tion, other organizations are now willing to introduce
new initiatives to their infrastructure that use virtualiza-
tion technology concepts. Consequently, compact integra-
tion among physical infrastructure, virtual servers, and
networks is required.

� Wide deployment of web applications.

Web-based applications are widely used in many orga-
nizations [22]. Moreover, these applications use server-to-
server communication because they are based on x86
server tiers and horizontal scaling. Therefore, data centers
need to brace themselves for an increase in internal traffic
due to massive deployment of these Web applications.

Because dynamic scaling in data-center networks is
based on static network devices (Ethernet and IP packet
connections), IT teams encounter a discontinuity gap dur-
ing the implementation of scalable data-center networks.
However, it appears that the flood waters are about to
overrun tactical network sandbags [22]. The ESG describes
the main network challenges as follows:

4.1.1.1. Network segmentation and security. Nowadays, DCN
segmentation is based on a mix of VLANs, IP subnets,
device-based access-control lists (ACLs), and firewall rules
that have been maintained for years. However, these hard-
wired segmentation and security controls are not compat-
ible with data centers that are populated by VM workloads
and cloud-computing platforms.

4.1.1.2. Traffic engineering. Any traffic congestion or hard-
ware failure will affect the performance and latency of all
other devices because network traffic follows fixed paths
and multiple hops. In addition, the deployment of VMs
and virtual servers in recent DCNs adds a supplementary
burden to network performance [23].

4.1.1.3. Network provisioning and configuration. Although
virtual servers are provisioned by cloud orchestration
tools, the policies of the data-center equipment and control
paths must be set up on a device-to-device or flow-to-flow
basis, and heterogeneous networks must be managed by
multiple management systems. Even though network
management software can help at this stage, network con-
figuration changes remain ‘‘a tedious link-level slog’’ [22].

Further information concerning DCN challenges can be
found in [22,23]. Ultimately, DCN discontinuity will be a
threat to business operations because it may induce degra-
dations in service level, delays in business initiatives, and
increase in IT operating costs [22]. Although networking
vendors have launched some innovations such as network
fabric and convergence architectures to fix the fractures in
the DCN infrastructure, these solutions do not address the
problems in heterogeneous networks. Nevertheless, the
software-defined network paradigm is a promising solu-
tion to solve these challenges in DCN setups.

4.1.2. SDN deployment in DCNs
In SDN OpenFlow based-networks, the virtual network

segments are centrally configured, and network security



84 M. Jammal et al. / Computer Networks 72 (2014) 74–98
is simplified by directing flows to security policy services.
Moreover, the central controller transforms the core and
aggregation devices into a ‘‘high-speed transport back-
plane’’ [22]. The controller can provision a new device that
is added to the network and allow it to receive the config-
uration policy when it appears online. Finally, SDN
improves DCN infrastructure, its power consumption, and
its various metrics. Due to these improvements and modi-
fications, different SDN applications in DCNs have been
proposed.
4.1.2.1. Changes in DCN Infrastructure. Automation and vir-
tualization of data-center LANs and WANs has resulted in a
flexible and dynamic infrastructure that can accommodate
operating-cost challenges. As a result, Vello systems [24]
has proposed an open and scalable virtualization solution
that connects the storage and computation resources of
the data center to private and public cloud platforms. To
facilitate the migration of VMs from their Layer 2 network,
Layer 2 was extended across multiple DCs using Layer 3
routing. However, Layer 3 routing introduces challenges
in intra-data center connectivity and cannot meet the
requirements for VM migration across DCs. Therefore, the
proposed solution is based on a cloud-switching system
that enables cloud providers and enterprises to overcome
the traditional Layer 2 domains, the direct server-to-server
connection, and virtual server migration.

Because the switching system supports integration of
end-to-end network attributes, its operating system can
provide a framework for SDN. Thus, OpenFlow-based allow
the cloud to migrate performance, QoS, and security poli-
cies concurrently with VM migration. Finally, the SDN-
based Vello systems permit a unified view and control of
the global cloud for WAN resource optimization.

In [25], an OpenFlow-based test-bed implementation,
switching with in-packet Bloom filters (SiBF), has been
proposed as data-center architecture. The suggested archi-
tecture was inspired by the onset of SDN, which transforms
the DCN into a software problem while leaving the hard-
ware vendors responsible for device implementation. SiBF
introduces an army of rack managers that act as distrib-
uted controllers, contain all the flow-setup configurations,
and require only topology information. Intrinsically, SiBF
Table 2
SDN in DCN infrastructure.

Proposed solution Objective

Changes in DCN infrastructure
SDN-based Vello systems [24] � Override the traditional Layer 2 domain

and Layer 3 routing challenges
� Facilitate live VM migration within and

across DCNs

Switching with in-packet
Bloom filters (SiBF) [25]

� Transform the DCN into a software probl
� Leave the responsibility for device

implementation to hardware vendors
uses IP addresses for VM identification and provides
load-balanced services based on encoding strategies. The
architecture is implemented on a multi-rooted tree (CORE,
AGGR, and ToR) because this is a common DCN topology.

However, other topologies can be considered in a SiBF
data-center architecture. The OpenFlow controller, e.g.,
the rack manager, installs the flow mapping into the ToR
switches and consists of directory services, topology ser-
vices, and topology discovery. With its modules, the con-
troller can be implemented as an application in the NOX
controller. Flow requests are handled by neighboring rack
managers in case of any failure in the master controller.
However, when an OpenFlow switch fails, its traffic is
interrupted until the SiBF installs new mappings (new flow
routes) in the ToR switches. The proposed data-center
architecture, based on distributed OpenFlow controllers,
guarantees better scalability and fault-tolerant perfor-
mance in the DCN. Table 2 summarizes various approaches
for implementing SDN in a DCN infrastructure.
4.1.2.2. The green DCN. Implementing an energy-efficient
data-center network is an important step toward a ‘‘green’’
cloud. An energy-aware data-center architecture based on
an OpenFlow platform has been proposed in [26]. Because
designing an energy-efficient data center requires an
experimental environment, the authors in [26] analyzed
the proposed architecture based on the Reducing Energy
Consumption in Data-Center Networks and Traffic Engi-
neering (ECODANE) project. The platform provides guide-
lines for measuring and analyzing energy consumption in
DCN elements (ports, links, and switches) based on realis-
tic measurements from NetFPGA-based OpenFlow
switches. The NetFPGA energy model was extracted from
several energy measurements using the Xilinx power-esti-
mation tool. The Xpower tool uses the Verilog source code
of the OpenFlow switch as its input and estimates the
power measurements.

The power-estimation model was tested using the Min-
inet [27] emulator, a simple testbed for developing Open-
Flow applications. The Elastic Tree topology was used to
test the proposed data-center architecture. The OpenFlow
switches are controlled by the NOX controller, which
consists of an optimizer, a power controller, and routing
Functionality

s � Enable migration of performance and QoS and security
policies with VM migration

� Provide a unified view and control of the global cloud for WAN
resource optimization

� Provide network automation and virtualization of LAN and
WAN connectivity and resource allocation

Override the single point of failure problem by using a distributed
controller system

em � Provide load-balancing services
� Guarantee better scalability and fault tolerance performance

in DCN by using rack managers
� No evaluation of the proposed routing approach
� Lack of traffic engineering studies of different flow sizes



M. Jammal et al. / Computer Networks 72 (2014) 74–98 85
modules. The optimizer finds the minimum power of the
network subset that satisfies the traffic conditions and
QoS requirements. The minimum power estimate is
deduced from the number of links or switches that are
turned off or put in sleep mode. The power-control module
determines the power state of the network elements based
on the OpenFlow messages and Mininet APIs and notifies
switches to enter the appropriate power-saving mode.
The last module is used to find the optimal routing path
in the DCN. This study is a first stage in building a green
data center based on the new SDN paradigm. Table 3 sum-
marizes various SDN approaches in a green DCN.

Based on the results and the proposed data-center
architecture described in [26], an extension to OpenFlow
switches for saving energy consumption in data centers
has been proposed in [28] and can be used later on as a ref-
erence. The authors presented a solution to decrease the
environmental influence of massive carbon emissions in
data centers. This solution consists of controlling power
consumption in data-center switches based on an exten-
sion to OpenFlow switches. This extension adds new mes-
sages to the OpenFlow protocol which enable the
controller to control the switch over different power-sav-
ing modes. More detailed information about the new
power-control messages and the design of the OpenFlow
Switch Controller (OSC) can be found in [28]. OpenFlow
can reduce configuration time and enable flexible pro-
grammable controller-based management operations and
is therefore recommended for use in cloud data centers.

4.1.2.3. Improving DCN metrics. Baker et al. [29] describes
an experimental study for improving the performance, sca-
lability, and agility of a cloud data center using the Open-
Flow protocol. The authors built a prototype cloud data
center in which the route traffic was controlled by an
OpenFlow controller; different metrics were tested on the
prototype. The proposed algorithms and the prototype
design are discussed in detail in [29]. Testing of perfor-
mance, throughput, and bandwidth for various network
sizes and topologies was done using the Mininet emulator
with its numerous tools. The results show that bandwidth
performance and the number of flow modifications per
second were better with the Kernel switches, a test image
of OpenFlow, than with user-space switches. However,
replacement of data-center switches with OpenFlow
switches is not recommended until standardization of the
software platform has been achieved.
Table 3
SDN in a green DCN.

Proposed solution Objective

Green DCN
OpenFlow platform for energy-

aware data center [26]
Provide guidelines for studying energy
consumption in DCN elements

OpenFlow Switch Controller (OSC)
[28]

Decrease the influence of carbon emissi
in the DCs
Furthermore, SDN has often been mentioned as an
approach to implementing and improving the metrics of
data-center networks. In [30], a loss-free multipathing
(MP) control congestion (CC) approach for a DCN was pro-
posed. The authors introduced integration between MP
and CC to provide lossless delivery and better throughput
for the DCN.

The integration mechanism was based on a dynamic
load-balancing multipathing approach [31]. The proposed
mechanism uses OpenFlow switches and a central control-
ler to reduce network overhead (path load updates) and
enable the switches to deal with any network situation
even during traffic bursts [30]. OpenFlow is enabled only
in the access switches. The controller collects information
about the network from their routing tables. The controller
updates the switches with any change in the ‘‘path load’’
on the associated routes with a short delay. Although the
MP-CC integration mechanism shows lossless delivery
due to fast reaction of the switches to network changes,
the proposed algorithm considers path load as the only
parameter to handle DCN traffic.

Recent applications have imposed many requirements
on cloud service providers, and therefore, cloud data-cen-
ter networks have to be multi-tenant, low-cost, flexible,
and reconfigurable on demand. On the other hand, current
DCN strategies cannot meet all these requirements, and
therefore [32] proposed an SDN-based network solution.

The proposed prototype consists of a central controller
that manages multiple OpenFlow switch instances and
packet filtering. The controller stores the database of the
management information of the L2 virtual network, called
the slice. The proposed prototype removes the limitations
on the number of VLANs and responds to on-demand net-
work updates based on APIs that simplify these configura-
tion updates. However, the flow-setup process in the
switch introduces a longer flow-setup time than in legacy
networks [32].

Another study proposed an approach to evaluate DCN
performance by implementing an OpenFlow re-routing
control mechanism to manage DCN flows [33]. Perfor-
mance is represented by load distribution, throughput,
and link utilization metrics. The proposed re-routing
scheme initially uses the least loaded route; in case of con-
gestion, large flows are re-routed onto alternative paths,
while small flows pursue their track. The re-routing frame-
work consists of an NOX controller, a monitor to store
switch statistics, a host tracker that tracks the entire set
Functionality

� Estimate the minimum power for a given network topology
� Satisfy the traffic conditions and QoS requirements
� Provide a power module in the controller that determines

the power state of network elements
� No evaluation of the proposed approach on different

network topologies

ons � Reduce configuration time of network elements
� Enable flexible power management operations based on the

programmable controller



86 M. Jammal et al. / Computer Networks 72 (2014) 74–98
of detected hosts in the network, and finally a routing
engine which is responsible for routing and re-routing
functions.

A comparison between the single-path, equal-cost
multi-path, and OpenFlow re-routing mechanisms showed
that the proposed framework has better load distribution,
throughput, and link utilization. Table 4 summarizes the
improvements in DCN metrics using the SDN approach.

In spite of the benefits provided by introducing SDN
into DCNs, [34] concluded that building an OpenFlow sys-
tem requires observation of the relative load on the Open-
Flow controller. The authors studied the performance of
this controller in educational and private networks and
concluded that a processing time of 240 ls is sufficient
for an educational network, but that private networks
require a more powerful controller with better processing
time or distributed controllers; otherwise, severe packet
loss and high packet sojourn times may occur [34].

The OMNet++ simulation environment was used to
evaluate system performance by measuring relative packet
loss and mean packet sojourn time.

Packet headers are responsible for 30–40% of DC traffic
[35] and network power consumption. Therefore, the
authors of [35] proposed a new framework, the ‘‘Scissor’’,
which replaces redundant header information with a short
identity, the ‘‘Flow ID’’.

The Flow ID identifies all the packets belonging to the
same flow. Trimming of header information is done by
micro-architectural hardware that consists of multiplexers
to select the fields that will be retained by the Scissor, a
buffer to hold the complete header temporarily, ternary
Table 4
Improvements in DCN Metrics with SDN.

Proposed solution Objective

DCN metrics
OpenFlow platform for

scalable and agile data
center [27]

� Improve performance, scalability, and agilit
cloud data center

Loss-free multipathing
congestion control DCN
[30]

� Provide lossless delivery and better through
for DCN using OpenFlow switches and a ce
controller

SDN-based DCN solution
[32]

� Meet the requirements of different applicat
in a cloud DCN

OpenFlow re-routing
control mechanism in
DCN [34]

� Evaluate DCN performance and manage its

Scissor [35] � Modify packet headers to minimize DC traffi
network power consumption
content-addressable memory (TCAM), and a controller that
generates the Flow IDs. Experimental simulations were
carried out to test the performance of the proposed frame-
work. Results showed that Scissor introduced substantial
latency improvements, as high as 30%. The evaluated
power gains were only 20% in the best-case scenario
because no scissor operations were performed within the
rack that is responsible for 75% of the DCN traffic [35].

4.1.2.4. Virtualization in DCNs. The SDN approach mitigates
the interconnection challenges of cloud DCNs [34]. The
characteristics of heterogeneous DCN architectures (VL2,
Portland, and Elastic Tree) are represented by OpenFlow
rules. These rules are passed to all DCN elements to imple-
ment ‘‘inter-DCN connectivity’’ [36]. These rules support
VM migration between different DCN schemes without
connectivity interruption based on re-routing mechanisms.

Live VM migration in DCN is crucial in the case of disas-
ter recovery, providing fault tolerance, high availability,
dynamic workload balance, and server consolidation [37].
This reference proposed a network fabric based on Open-
Flow, ‘‘CrossRoads’’, that enables both live and offline VM
migration across data centers. CrossRoads supports East–
West traffic for VM migration within data centers and
north–south traffic for VM migration to external clients.
The framework consists of a centralized controller in each
data center, thus extending the controller placement prob-
lem. Table 5 presents a couple of implemented SDN
approaches to virtualized DCNs.

Experimental results showed that the proposed net-
work fabric has negligible overhead with respect to the
Functionality

y in a � Improve bandwidth performance and the number of flow
modifications per second in the kernel switches

� Reduce cost of operations and switch configuration time

put
ntral

� Reduce path-load update overhead of the network
� Handle any network status and traffic burst states
� Use the path load as the only parameter to evaluate traffic

in the DCN

ions � Remove the limitation on the number of VLANs
� Respond to on-demand network updates
� Introduce longer flow-setup time compared to legacy

networks

flows � Use the least loaded route and alternative paths for flow
congestion

� Provide storage of switch statistics, tracking all the detected
hosts in the network and various routing and re-routing
functions

� Provide better load distribution, throughput, and link
utilization compared to other routing mechanisms

� Combat severe packet loss and high packet sojourn time in
case of low processing time for private networks

c and � Replace redundant header information with a short
identifier, the Flow ID

� Combine packets of the same flow in the same ID
� Improve latency and introduce slight improvements in

power gains
� Absence of scissor operations within the rack that is

responsible for 75% of DCN traffic



Table 5
Virtualized DCN using SDN.

Proposed solution Objective Functionality

Virtualized DCN
Inter-DCN connectivity

based on OpenFlow [36]
Mitigate the interconnection
challenges in a cloud DCN

� Insert new OpenFlow rules to implement inter-DCN connectivity in the cloud
� Support live VM migration between different DCNs
� Minimize connectivity interruption of VMs during the migration process

CrossRoads [37] Facilitate live and offline VM
migration across data centers

� Support East–West traffic for migration within DCs
� Support North–South traffic for VM migration to external clients
� Provide negligible overhead with respect to that of legacy networks

M. Jammal et al. / Computer Networks 72 (2014) 74–98 87
default network and outperforms the default network by
30% [37].

In summary; SDN is a promising solution that alleviates
most of the challenges faced by cloud DCNs. However,
recent research studies have been based on small topolo-
gies or emulators. Therefore, coupling SDN to a DCN and
a cloud resource environment and testing the performance
of the scheme on a real large network is needed to achieve
better understanding of the performance of SDN-based
DCN setups.

4.2. Network as a service

4.2.1. Service oriented architecture
The service oriented architecture (SOA) is the concept of

building a software system based on multiple integrated
logical units. These units known as services allow better
construction and management to solve large problems in
different domains. The basic components of SOA are eluci-
dated in Fig. 8. The architecture depends on the Services
used by the Service User entity. The Service Provider hands
over these services and the Service Registry coordinates
the services’ information and publishes them for the Ser-
vice User [38].

SOA satisfies the requirements of different applications
by balancing the computational resources. It virtualizes
and integrates these resources in form of services entities.
Therefore, the basic aspect of SOA is the ‘‘coupling’’
between different systems. Every system has information
about the behavior and implementation of its partners.
The information gathering procedure facilitates the cou-
pling feature in SOA.
Service Directory

Service Consumer Service Provider

Client Service

lnvoke

RegisterFind

Fig. 8. Components of SOA.
SOA eliminates the tight coupling and lack of interoper-
ability between diverse middleware in a network. It has
been endorsed by Cloud Computing (CC) services; Infra-
structure as a Service (IaaS), Platform as a Service (PaaS)
and Software as a Service (SaaS). Fig. 9 elucidates SOA in
CC environment. CC implements SOA in its different fields
to exploit the resources’ virtualization feature. This in turn
allows SOA to introduce Network as a Service (NaaS) into
CC [7].
4.2.2. Motivation
Cloud computing offers on-demand provisioning of

computational resources for tenants using a pay-as-you-
go model and outsources hardware maintenance and pur-
chases [39]. However, these tenants have limited visibility
and control over network resources and must resort to
overlay networks to complete their tasks. The separation
of computation from end-to-end routing in traditional net-
works in the cloud-computing environment could affect
data-plane performance and control-plane flexibility.

These drawbacks can be addressed by NaaS. It provides
secure and direct access for tenants to cloud resources and
offerings and enables efficient use of the network
infrastructure in the data center [39]. NaaS is a new Inter-
net-based model that enables a communication service
provider to provide network resources on demand to the
user according to a service-level agreement (SLA). NaaS
can also be seen from the service point of view as an
abstraction between network functions and protocols [40].

The top abstraction layers deal with NaaS as a service
that uses the network and customizes its capacity. Cus-
tomization in the lower layers is replaced by resource
management policies. [13] defines Naas as Telco as a Ser-
vice (TaaS), which offers a ‘‘common network and IT sub-
strate that can be virtualized and combined as a slice’’.

Naas is also defined as a Web 2.0 model that provides
software as a service utility by exposing network capabili-
ties (billing, charging, location, etc.) as APIs to third-party
application service providers [41]. In NaaS, the owners of
the underlying network infrastructure offer virtual net-
work services to a third party. There is a clear demarcation
between the roles of infrastructure providers (InPs) and
virtual network operators (VNOs).

The InP is responsible for the operating processes in the
underlying network infrastructure, and the VNO is respon-
sible for the operating processes in the virtual networks
that run on top of the physical infrastructure.



Mobile Applications Business Applications Subscription Layer

Map services Globe Services Database Services

Server Publishing Layer

Authoring Layer

Fig. 9. SOA in cloud computing environment.

88 M. Jammal et al. / Computer Networks 72 (2014) 74–98
The NaaS scenario offers many business incentives,
such as higher revenues for InPs and lower capital and
operating expenditures for VNOs, because it enables a
number of virtual networks to run on the same underlying
network infrastructure. Detailed information on the inter-
action between InPs and VNOs is available in [13].

In summary, NaaS provides the following benefits to
operators [42]:

� Faster time to transition NaaS to market.
� Self-service provisioning.
� Flexibility in upgrading NaaS resources without long-

term constraints.
� Payment only for resources used.
� Repair and maintenance are part of the service.
� Greater control in adding, changing, and deleting

services.

4.2.3. NaaS and SDN integration
NaaS is one of the promising opportunities for SDN.

NaaS providers can use SDN orchestration systems to
obtain a powerful user interface for controlling and view-
ing network layers. A variety of research studies have pro-
posed NaaS platforms in an SDN environment.

4.2.3.1. Cloud-NaaS model. Feng et al. [40] introduced a
cloud-based network architecture which evaluates the
provision, delivery, and consumption of NaaS. The pro-
posed cloud-based network consists of four layers: the net-
work resource pool (NRP), the network operation interface
(NOI), the network run-time environment (NRE), and the
network protocol service (NPS).

The NRP consists of network resources: the bandwidth,
queues, and addresses for packet forwarding. The NOI is a
standardized API for managing and configuring the NRP.
The NRE is the environment that performs billing, resource
allocation, interconnection, and reliability assurance for
protocol service instances through service migration in
cases of network failures and high load [40]. Finally, the
NPS is responsible for describing, managing, and compos-
ing the new implemented network protocols.

The proposed architecture is implemented using the
OpenFlow protocol. The implementation consists of two
layers: the controller control plane and the network data
plane. The first layer is responsible for NRE and NPS func-
tions. It consists of a master controller that distributes the
data stream to the slave servers and slave controllers that
perform switching, routing, and firewall functions. The
data-plane layer contains the OpenFlow switches that per-
form packet forwarding services based on controller
instructions. The authors in [40] presented NaaS in a
cloud-based network, but performance and evaluation
studies of the suggested implementation were not carried
out.

The limitations on tenants in controlling and configur-
ing networks in current cloud environments provided a
motivation for the authors of [43] to implement a Cloud-
NaaS model. The proposed networking framework enables
the tenant to access functions for virtual network isolation,
addressing, and deployment of middlebox appliances [44]
for caching and application acceleration.

The CloudNaaS consists of the cloud controller and the
network controller. The cloud controller manages virtual
resources and physical hosts and supports the APIs which
set network policies. It also specifies user requirements
and transforms them into a communication matrix that
resides on the OpenNebula framework. These matrices
are compiled into network-level rules by the network con-
troller (NOX controller).

The network controller installs these rules in virtual
switches, monitors and manages the configuration of net-
work devices, and decides on the placement of VMs in



SDN 

Reliability

Low Level 
Interfaces

ASIC and 
CPU Performance

Scalability

M. Jammal et al. / Computer Networks 72 (2014) 74–98 89
the cloud. The authors proposed optimization techniques
to mitigate the hardware limitations mentioned in [43].
These techniques were implemented in the network con-
troller and were designed to optimize traffic during VM
placement and forwarding-entry aggregation using the
same output ports. The implemented CloudNaaS exhibited
good performance with an increasing number of provision-
ing requests and used cloud resources in an effective
manner.
Challenges Limitations

Interoperability

Security

Controller 
Placement

Fig. 10. SDN challenges.
4.2.3.2. Network management in NaaS. Raghavendra et al.
[45] presents a scalable graph-query design, NetGraph,
which supports network-management operations in NaaS
modules. NetGraph is implemented on a software module
on a SDN platform. The network controller consists of mul-
tiple service modules that collect information about the
physical and virtual network infrastructure.

The NetGraph module resides in the centralized con-
troller, collects information about network topology to cal-
culate the graph of the existing topology, and supports the
service modules (NaaS modules) in their query mission.
Details on the implementation design and the algorithms
used (Dijkstra, TEDI, and APSP) for finding the shortest
paths in a weighted graph are addressed in [45]. The
authors showed that the proposed algorithms have practi-
cal compute time and are suitable for centralized
architectures.

NaaS can be seen as the ultimate connection between
SDN and cloud computing. NaaS is a supplementary
scheme for SDN; while SDN is responsible for packet for-
warding and network administration, NaaS provides appli-
cation-specific packet processing for cloud tenants [44].
With NaaS schemes, the operators can control the band-
width, routing, and QoS requirements of their data. Even-
tually, with SDN, operators can leverage current NaaS
initiatives and build their own SDN infrastructure [46].
However, integration with existing hardware and software
systems and providing diverse and efficient APIs are crucial
requirements for adopting the SDN and NaaS concepts
[44].

Although the SDN concept is attracting the attention of
IT organizations and networking enterprises and has vari-
ous applications in DCNs and NaaS, the overall adoption
of SDN has encountered various obstacles, such as reliabil-
ity, scalability, latency, and security challenges. Section 5
describes these challenges and presents some of the recent
solutions proposed in the literature. Overcoming these
challenges might assist IT organizations and network
enterprises to improve the various opportunities and ser-
vices offered by SDN.
5. SDN challenges and existing solutions

Although SDN is a promising solution for IT and cloud
providers and enterprises, it faces certain challenges that
could hinder its performance and implementation in cloud
and wireless networks [47]. Below, a list of SDN challenges
and some of their existing solutions are discussed and
illustrated in Fig. 10.
5.1. Reliability

The SDN controller must intelligently configure and val-
idate network topologies to prevent manual errors and
increase network availability [48]. However, this intelli-
gence can be inhibited because of the brain-split problem
that makes the controller liable to a single point of failure
[49,50].

In legacy networks, when one or more network devices
fail, network traffic is routed through alternative or nearby
nodes or devices to maintain flow continuity. However, in
centralized controller architecture (SDN) and in the
absence of a stand-by controller, only one central control-
ler is in charge of the whole network. If this controller fails,
the whole network may collapse. To address this challenge,
IT organizations should concentrate on exploiting the main
controller functions that can increase network reliability
[48]. In case of path/link failure, the SDN controller should
have the ability to support multiple-path solutions or fast
traffic rerouting into active links.

If the controller supports technologies such as Virtual
Router Redundancy Protocol (VRRP) and Multi-Chassis
Link Aggregation Group (MC-LAG), these might contribute
to increasing network availability. In case of controller fail-
ure, it is important that the controller can enable clustering
of two or more SDN controllers in an active stand-by
mode; however, memory synchronization between active
and stand-by controllers must be maintained [48].

The authors in [25] showed that centralized controller
architecture will interrupt network traffic and flow
requests in case of controller failure. Specifically, they pro-
posed a distributed architecture, SiBF, which consists of an
army of rack managers (RMs), one per rack, acting as con-
trollers. Consequently, when the master controller fails,
flow requests are handled by another stand-by controller
(RM) until the master controller comes back up. In case
of switch failure, SiBF installs new mappings (new back-
up flow entries) in the ToR switches for each active entry.
The packets in the ToR will be routed to their destinations
on the alternative paths indicated by the back-up entries.



90 M. Jammal et al. / Computer Networks 72 (2014) 74–98
Another suggested solution that can counteract reliability
limitations in a centralized architecture is described in
[30]. The integration between free multipathing and con-
trol congestion is based on a dynamic load-balancing mul-
tipathing approach which runs a distributed algorithm in
case of controller failure. The algorithm updates the
switches with any changes in ‘‘path load’’ on the associated
routes in cases of traffic congestion and load imbalance.

5.2. Scalability

Decoupling between the data and control planes distin-
guishes SDN from a traditional network. In SDN, both planes
can ‘‘evolve independently’’ as long as APIs connect them
[51], and this centralized view of the network accelerates
changes in the control plane. However, decoupling has its
own drawbacks. Besides the complexity of defining stan-
dard APIs between both planes, scalability limitations may
arise. Voellmy et al. [52] concluded that ‘‘when the network
scales up in the number of switches and the number of end
hosts, the SDN controller can become a key bottleneck’’.

As the bandwidth and the number of switches and
flows increase, more requests will be queued to the con-
troller, which may not be able to handle them all. Studies
on a SDN controller (NOX) have shown that it can handle
30 K requests/s [53]. This may be sufficient for enterprises
and campus networks, but it is a bottleneck for data-center
networks with high flow rates. In addition, [53] estimates
that a large data center consisting of 2 million virtual
machines may generate 20 million flows per second. How-
ever, current controllers can support approximately 105

flows per second in the optimal case [54,25]. In addition
to controller overload, the flow-setup process may impose
limitations on network scalability.

Flow setup consists of four steps:

1. A packet arrives at a switch and does not match any
flow entry.

2. The switch sends a request to the controller to get
instructions on how to forward the packet.

3. The controller sends a new flow entry with new for-
warding rules back to the switch.

4. The switch updates its entries in the flow table.

The performance of the setup process depends on
switch resources (CPU, memory, etc.) and controller (soft-
ware) performance. The update time of the switch’s for-
warding information base (FIB) introduces delay in
setting up any new flow. Early benchmarks on SDN con-
trollers and switches showed that the controller could
respond to a flow-setup request within one millisecond,
while hardware switches could ‘‘support a few thousand
installations per second with a sub-10 ms latency at best’’
[51].

Flow-setup delays may pose a challenge to network sca-
lability. Furthermore, network broadcast overhead and the
proliferation of flow-table entries limit SDN scalability
[48]. The SDN platform may cause limited visibility of net-
work traffic, making troubleshooting nearly impossible.
Prior to SDN, a network team could quickly spot, for
example, that a backup was slowing the network down.
The solution would then be to reschedule the backup to a
less busy time. Unfortunately, with SDN, only a tunnel
source and a tunnel endpoint with User Datagram Protocol
(UDP) traffic are visible, but crucially, one cannot see who
is using the tunnel. There is no way to determine whether
the problem is the replication process, the email system, or
something else. The true top talker is shielded from view
by the UDP tunnels, which means that when traffic slows
and users complain, pinpointing the problem area in the
network is a challenge. With this loss of visibility, trouble-
shooting is hindered, scalability limitations emerge, and
delays in resolution could become detrimental to the busi-
ness [51,55]. In order to minimize the proliferation of flow
entries, the controller should use header rewrites in the
network core. The flow entries will be at the ingress and
egress switches.

Improved network scalability can also be ensured by
enabling VM and virtual storage migration between sites,
as in IaaS software middleware based on OpenFlow and
‘‘CrossRoads’’, a network fabric based on OpenFlow, which
was discussed in previous sections [36,37]. Another solu-
tion to scalability concerns is proposed in ‘‘DIFANE’’ [56].
This is a distributed flow-management architecture that
can scale up to meet the requirements (large numbers of
hosts, flows, and rules) of large networks.

A viable solution to scalability challenges is proposed in
the ‘‘CORONET’’ fault-tolerant SDN architecture, which is
scalable to large networks because of the VLAN mechanism
installed in local switches [57]. CORONET has fast recovery
from switch or link failures, supports scalable networks,
uses alternative multipath routing techniques, works with
any network topology, and uses a centralized controller to
forward packets. It consists of modules responsible for
topology discovery, route planning, traffic assignment,
and shortest-route path calculation (the Dijkstra algo-
rithm). The main feature of CORONET is the use of VLANs,
which can simplify packet forwarding, minimize the num-
ber of flow rules, and support scalability properties.

In another solution, ‘‘DevoFlow’’ [58,59], micro-flows
are managed in the data plane and more massive flows
in the controller, meaning that controller load will
decrease and network scalability will be maximized. This
approach minimizes the cost of controller visibility associ-
ated with every flow setup and reduces the effect of
flow-scheduling overhead, thus enhancing network perfor-
mance and scalability.

Finally, [52] describes a scalable SDN control frame-
work, McNettle, which is executed on shared-memory
multicore servers and based on Nettle [60]. Experiments
showed that McNettle could serve 5000 switches with a
single controller with 46 cores and could handle 14 million
flows per second with latency below 200 ls for light loads
and 10 ms for loads consisting of up to 5000 switches [52].

5.3. Performance under latency constraints

SDN is a flow-based technique, and therefore its perfor-
mance is measured based on two metrics: flow-setup time,
and the number of flows per second that the controller can
handle [48]. There are two ways to setup a flow: proactive
and reactive. In proactive mode, flow setup takes place



M. Jammal et al. / Computer Networks 72 (2014) 74–98 91
before packet arrival at the switch, and therefore, when a
packet arrives, the switch already knows how to deal with
it. This mode has negligible delay and removes the limits
on the number of flows per second that can be handled
by the controller.

In general, the SDN controller fills the flow table with
the maximum number of possible flows. In reactive mode,
flow setup is performed when a packet arriving at the
switch does not match any of the switch entries. Then
the controller will decide how to process/handle that
packet, and the instructions will be cached onto the switch.
As a result, reactive flow-setup time is the sum of the pro-
cessing time in the controller and the time for updating the
switch as the flow changes. Therefore, flow initiation adds
overhead that limits network scalability and introduces
reactive flow-setup delay [61,62].

In other words, a new flow setup requires a controller to
agree on the flow of traffic, which means that every flow
now needs to go through the controller, which in turn
instantiates the flow on the switch [63–65]. However, a
controller is an application running on a server OS over a
10 GB/s link (with a latency of tens of milliseconds). It is
in charge of controlling a switch which could be switching
1.2 TB/s of traffic at an average latency of 1 ls. Moreover,
the switch may deal with 100 K flows, with an average of
30 K being dropped. Therefore, a controller may take tens
of milliseconds to set up a flow, while the life of a flow
transferring 10 MB of data (a typical Web page) is 10 ms
[66,54].

The authors in [59] carried out various setup experi-
ments to test the throughput and latency of various con-
trollers. They varied the number of switches, number of
threads, and controller workload. Based on these experi-
ments and simulations, they concluded that adding more
threads beyond the number of switches does not improve
latency and that serving a number of switches larger than
the number of available CPUs increases controller response
time [62]. The experiments also showed that controller
response time varies between 4 and 30 ms for different
number of switches with 4 threads and 212 requests on
the fly. However, the experimental setup and assumptions
described in [62] need to be verified in realistic network
environments.

Dealing with 100 K flows requires that the switch ASICs
must have this kind of flow capability. Current ASICs do not
have this capability, and therefore the flow table must be
used as a cache [66]. In conclusion, flow setup rate is ane-
mic at best on existing hardware [66], and therefore only a
limited number of flows per second are possible. The big O
notation O(n) linear lookup for software tables cannot
approach the O(1) lookup of a hardware-accelerated TCAM
in a switch, causing a drop in the packet-forwarding rate
for large wildcard table sizes [64].

To overcome performance limitations, the key factors
that affect flow-setup time should be considered. As men-
tioned in [48], these key factors are the processing and I/O
performance of the controller. Early benchmarks suggested
that controller performance can be increased considerably
by well-known optimization techniques such as I/O
batching [62]. Another viable solution to alleviate the
performance challenge was proposed under the name
Maestro [67,68]. Maestro used two basic parameters; the
‘‘input batching threshold’’ (IBT), a tuneable threshold
value that determines the stage for creating a flow-task
process to handle the flow request, and the ‘‘pending
raw-packet threshold’’ (PRT) that determines the allowable
number of pending packets in the queue to be processed.
Calibration of these parameters will identify suitable val-
ues that will decrease latency and maximize network
throughput according to network state. As the values of
PRT and IBT increase, throughput increases and delays
decrease [67]. Optimization techniques should be used to
find the optimal range for values of PRT and IBT.

Finally, the DevoFlow and McNettle architectures
described previously can be considered as feasible solu-
tions to reduce network latency. McNettle implementa-
tions have shown that its improvements result in a
50-fold reduction in controller latency [52].

5.4. Controlling the data path between the ASIC and the CPU

Although the control data path in a line-card ASIC is
fast, the data path between the ASIC and the CPU is not
used in the frequent operations of the traditional switch,
and therefore it is considered as a slow path. The ProCurve
5406lz Ethernet switch has a bandwidth of 300 GB/s, but
the measured loopback bandwidth between the ASIC and
the CPU is 35 MB/s [59]. Note also that the slow-switch
CPU limits the bandwidth between the switch and the con-
troller. For instance, the bandwidth of the flow-setup pay-
load has been measured between the Procurve 5406lz
Ethernet switch and the OpenFlow controller and seems
to be 10 MB/s [59]. However, the DIFANE [56] architecture
leverages these limitations by distributing the OpenFlow
wildcard rules among various switches to ensure that for-
warding decisions occur in the data plane.

Controlling the data path between the ASIC and the CPU
is not a traditional operation [63]. OpenFlow specifies
three counters for each flow-table entry: the number of
matches, the number of packet bytes in these matches,
and the flow duration. Each counter is specified as 64 bits,
and therefore this adds 192 bits (24 bytes) of extra storage
per table entry [69]. OpenFlow counters and the logic to
support them add significant ASIC complexity and area
and place more burdens on the CPU [65,69,70]. If counters
are implemented in the ASIC hardware, it may be very dif-
ficult to change their function as the SDN protocol evolves
because this would require re-designing the ASIC or
deploying new switch hardware [69]. Moreover, transfer-
ring the local counter from the ASIC to the controller can
dramatically limit SDN performance.

In addition, adding SDN support to create ASICs means
finding space for structures not typically found on an ASIC;
the per-flow byte counters used by OpenFlow could be the
largest such structures. In other words, the counters take
space from the ASIC area, in full knowledge that this area
in considered precious because designing an ASIC costs a
lot of money and time. However, because the cost of switch
ASICs depends on their area, there is an upper limit on the
area of a cost-effective ASIC [69]. Because ASIC area is valu-
able, this places limits on the sizes of on-chip memory
structures such as TCAMs to support flow-table entries



92 M. Jammal et al. / Computer Networks 72 (2014) 74–98
and per-entry counters. However, any silicon area allo-
cated to counters will not be available for look-up tables
[69].

As is well known, switches have a CPU to manage the
ASICs, but the bandwidth between the two is limited [69].
Therefore, storing the counters in the CPU and DRAM instead
of in the ASIC would simplify the path from the counters to
the controller and minimize the overhead on the controller
to access these counters. Another feasible solution that
could address the limitations discussed above was sug-
gested in [69]. The authors proposed software-defined
counters (SDCs) because implementing counters in software
does not require re-designing the ASIC and can support more
innovations. In the proposed SDC, the ASIC does not contain
any counters, but it does generate event records that will be
added to the buffer. Whenever a buffer block is full, the ASIC
moves it to the CPU. The CPU extracts the records and
updates its counters, which are stored on the attached
DRAM. SDC proposes two system designs:

(i) A SDC switch in which the counter is moved out of
the ASIC and replaced by buffer blocks.

(ii) A SDC switch in which the CPU is installed on the
ASIC. Although the second design requires additional
ASIC space, it minimizes the bandwidth between the
data plane and the CPU.

5.5. Use of low-level interfaces between the controller and the
network device

Although SDN simplifies network management by
developing control applications with simple interfaces to
determine high-level network policies, the underlying
SDN framework needs to translate these policies into
low-level switch configurations [71]. The controllers avail-
able today provide a programming interface that supports
a low-level, imperative, and event-driven model. The inter-
face reacts to network events such as packet arrivals and
link status updates by installing and uninstalling individ-
ual low-level packet-processing rules, rule-by-rule and
switch-by-switch [72]. In such a situation, programmers
must constantly consider whether un-installing switch
policies will affect other future events monitored by the
controller. Also, they must coordinate multiple asynchro-
nous events at the switches to perform even simple tasks.

In addition, this interface generates a time-absorption
problem and requires detailed knowledge of the software
module or hardware device that is performing the required
services. Many researchers are developing various pro-
gramming languages that enable the programmer to
describe network behavior using high-level abstractions,
leaving the run-time system and compiler to take care of
implementation details. Hinrichs et al. [73] proposes FML,
a high-level programming language consisting of operators
that allow or deny flows while coordinating the flows
through firewalls and maintaining QoS. However, it is an
inflexible language because it cannot redirect or move
flows as they are processed [74].

Finally, Flog, an event-driven logic programming
language, was proposed in [72]. Introducing logic
programming to SDN is useful for processing network sta-
tistics and incremental controller-state updates. The main
feature that differentiates Flog from other languages is its
Ethernet learning switch. The learning process consists of
monitoring, grouping, and storing the packets that arrive
at a switch and then transferring this information to a
learning database. Afterward, the policy generator creates
low-level rules that flood all arriving packets, and then,
based on the information learned, the policy creates a pre-
cise high-level forwarding rule.

5.6. Controller placement problem

The controller placement problem influences every
aspect of a decoupled control plane, from flow-setup laten-
cies to network reliability, to fault tolerance, and finally to
performance metrics. For example, long-propagation-delay
wide-area networks (WANs) limit availability and conver-
gence time. This has practical implications for software
design, affecting whether controllers can respond to events
in real-time or whether they must push forwarding actions
to forwarding elements in advance [75]. This problem
includes controller placement with respect to the available
network topology and the number of controllers needed.
The user defines various metrics (latency, increase in the
number of nodes, etc.) that control the placement of the
controller in a network.

Random placement for a small k-value in the k-median
problem, a clustering analysis algorithm, will result in an
average latency between 1.4� and 1.7� larger than that of
the optimal placement [75]. Finding the optimal controller
placement is a hot SDN research topic, especially for wide-
area SDN deployments because they require multiple
controllers and their placement affects every metric in the
network. Improving reliability is important because network
failures cause disconnections between the control and
forwarding planes and could disable some of the switches.

A reliability-aware controller placement problem has
been proposed in [76]. The main objective of the problem
can be understood using the following question: how to
place a given number of controllers in a certain physical
network such that the predefined objective function is opti-
mized. The authors in [76] considered the reliability issue
as a placement metric which is reflected by the percentage
of valid control paths. They developed an optimization
model that maximized the expected percentage of valid
control paths. This percentage is affected by the location
of the controller on one of the candidate nodes, the number
of controller-to-controller adjacencies, the available num-
ber of controllers, and the reservation of the switches on
the controller. Finally, a random placement algorithm and
greedy algorithms have been suggested as heuristics to
solve the reliable controller placement problem.

Beheshti and Zhang [77] states that any failure that dis-
connects the forwarding plane from the controller may lead
to serious performance degradation. Based on this observa-
tion, the authors in [77] described a (path) resiliency (path
protection)-aware controller placement problem. They con-
sidered connection resiliency between the controller and
the switch as a placement metric which was reflected by
the ability of the switches to protect their paths to the
controller. The proposed heuristics aimed to maximize the



M. Jammal et al. / Computer Networks 72 (2014) 74–98 93
possibility of fast failover based on resilience-aware con-
troller placement and control-traffic routing in the network.
These heuristics consisted of two algorithms for choosing
the best controller location and maximizing the connection
resiliency metric: the optimized placement algorithm and
the approximation (greedy) placement algorithm.

Finally, the authors of [75] developed a latency-aware
controller placement problem. Their objective was not to
find the optimal solution for the latency-aware controller
placement problem, but to provide an initial analysis for
further study of the formulation of fundamental design
problems. Therefore, the problem aimed to minimize the
average propagation latency based on suitable controller
placement. The minimization was based on an optimiza-
tion model generated on the basis of the minimum k-med-
ian problem [75].

5.7. Security

Based on statistical studies carried out by IT organiza-
tions [78], 12% of respondents in IT business technologies
stated that SDN has security challenges, and 31% of respon-
dents in IT business technologies were undecided whether
SDN is a less secure or a more secure network paradigm
than others. Clearly, IT organizations believe that SDN
may pose certain security challenges. According to the
above studies, SDN security risks emerge from the absence
of integration with existing security technologies and the
inability to poke around every packet. Furthermore,
improving the intelligence of the controller software may
increase controller vulnerability to hackers and attack sur-
faces. If hackers access the controller, they will damage
every aspect of the network, and it will be ‘‘game over’’ [78].

Increasing SDN security requires from the controller the
ability to support the authentication and authorization clas-
ses of the network’s administrators. In addition, leveraging
the impact of security requires from the administrators the
ability to use the same policies for traffic management to
prevent access to SDN control traffic. Additional security-
aware solutions are the implementation of an intelligent
access control list (ACL) in the controller to filter packets
and complete isolation between the tenants sharing the
infrastructure. Finally, the controller should be able to alert
the administrators in case of any sudden attack and to limit
control communication during an attack [48].

SDN is a promising technology for computer networks
and data-center networks, but it still lacks standardization
policies. The current SDN architecture does not include
standards for understanding topology, delay, or loss. Other
features that are not available include loop detection and
the ability to fix errors in a state. SDN does not support
horizontal communications between network nodes to
enable collaboration between devices [79].

5.8. Interoperability

In addition to the southbound interface between the
control and data layers, SDN has two other interfaces;
the northbound and the east/westbound interfaces. The
SDN controller exchanges information with applications
running on top of the network through the northbound
interface. The application controller adjusts the application
behavior using the network. For the east/westbound inter-
face, it is a tunnel of information between the SDN control-
lers of different network domains, and between SDN
controller and non-SDN control plane, such as Multi-Proto-
col Label Switching (MPLS) control plane. It exchanges
information of the network state that affect the routing
decisions of the existing controllers and enables the seam-
less flow setup across multiple controllers. Regarding the
interface with non-SDN domains, a translation component
between the SDN controller and the legacy control plane is
required. Although these three interfaces make SDN a
powerful and flexible approach for network operations,
but the absence of a standardization of the northbound
and east/westbound interfaces will inhibit the adoption
of SDN and its accompanied technologies.

In order to achieve the flexibility and adaptability
objectives, the interfaces of SDN should be open and stan-
dardized. A closed interface confines the component inno-
vation and exchangeability. In the absence of a standard
open interface, the interchangeability of network devices,
application programming interfaces (APIs) and control
planes will disappear.

For the east/westbound interface standards, the Inter-
net Engineering Task Force (IETF) is working on developing
SDNi, a protocol that provides interface between SDN
domain controllers [80]. SDNi defines some requirements
for the flow setup. The requirements originate from by
exchanged information such as QoS, path requirement,
QoS, and SLA across multiple domains. Also, SDNi
exchanges information to enable the ‘‘inter-SDN’’ routing.
This reachability information allows a flow to navigate
across multiple SDN domains and enables each controller
to select the appropriate path. The proposed protocol can
be orchestrated to increase the scalability of the distrib-
uted control plane.

For the northbound interface, NOSIX [81] is one of the via-
ble solutionin thispath. Itpresentsa ‘‘lightweightportability
layer’’ deployed in the SDN controller. This layer can be seen
as a rendezvous point between the application and vendor
knowledge because it separates the application’s require-
ments from the switch specifications and implementation.

OpenDaylight provides a controller platform that
exposes open northbound interface used by different
applications [82]. The platform is based on the Open Ser-
vice Gateway Initiative (OSGi) framework and bidirectional
representational state transfer (REST) for the northbound
API. The OSGi is used for applications running in the same
address space of the controller while the REST is used for
applications running in different address space of the con-
troller. These applications use the controller to collect net-
work information, perform analytics, and to coordinate the
new deployed rules over the network.

Also, Open Networking Foundation (ONF) is working
toward the standardization of the northbound interface.
It provides a regulation on the nature of the APIs and on
their applicable instances. Finally, initiatives in [83,84]
present software frameworks based on NaaS and SDN par-
adigms. They focus on providing ‘‘on-demand end-to-end
network QoS provisioning’’ based on the requirements of
the running applications.



94 M. Jammal et al. / Computer Networks 72 (2014) 74–98
As SDN gains in popularity, several researchers and
enterprises have developed various SDN initiatives. They
have proposed SDN prototypes, development tools, and
languages for OpenFlow and SDN controllers and SDN
cloud-computing networks [85]. Section 6 covers some
recent SDN implementations and tools.

6. Research initiatives for SDN

SDN enables network owners and operators to build a
simpler, customizable, programmable, and manageable
network. According to the network research community,
SDN will alter the future of networking and will import
new innovations to the market [86]. With this in mind, a
number of research initiatives have proposed SDN proto-
types and applied them to DCN, wireless networking, soft-
ware-defined radio, enterprises, and campus networks.

6.1. SDN prototypes

The concept of SDN emerged in 2005, when the authors
of [87] proposed a 4D approach to network control and
management. Afterward, a new network architecture, Eth-
ane, which provides network control using centralized pol-
icies, was described in [88].

Ethane uses a centralized controller that holds network
policies to control flow routing. It also uses Ethane switches
which receive instructions from the controller to forward
packets to their destinations. Policies are programmed
using a flow-based security language based on DATALOG.
Ethane was deployed in the Stanford computer science
department to serve 300 hosts and in a small business to
serve 30 hosts. Its deployment was an experiment to eval-
uate central network management, and it showed that a
single controller could support 10,000 new flow requests
per second for small network designs and that a distributed
set of controllers could be deployed for large network
topologies. Ethane has two limitations that prevent it from
being implemented using current traditional network tech-
niques. Initially, it requires knowledge about network users
and nodes, and it demands control over routing at the flow
level [89]. These limitations were addressed by NOX, a net-
work operating-system framework.

Under NOX, applications can access the source and des-
tination of each event, and routing modules can perform
constrained routing computations. NOX makes it possible
to build a scalable network with flexible control because
it uses flows as its intermediate granularity [89].

6.2. Cloud computing and virtualization in SDN

Other recent studies [90] have developed an SDN-based
controller framework, Meridian, for cloud-computing net-
works. Meridian provides a network services model that
enables users to construct and manage a suitable logical
topology for their cloud workloads. In addition, it allows vir-
tual implementations on the underlying physical networks.
Inspired by SDN, Meridian is composed of three logical lay-
ers: the network model and API layer, network orchestra-
tion, and interfaces to network devices. The first layer
provides interaction with the network through declarative
and query APIs; the declarative API creates the shape of
the multi-virtual machine application, while the query API
supports requests for topology views and network statistics.
The orchestration layer provides services such as a global
view of the data-center topology, routing algorithms, and
scheduling network configuration and control functions.
The lowest layer is responsible for creating virtual networks.
In addition to the importance of Meridian in supporting a
service-level model, it is considered as an initial prototype
of SDN in the cloud. Researchers would like to explore the
performance of Meridian in cases of sensitive workloads,
the scalability of this framework to support large networks,
and its ability to recover failed plans [90].

6.3. SDN tools and languages

Various tools and languages are used to monitor and
implement SDN. Certain SDN initiatives have focussed on
a forming platform, Onix, to implement SDN controllers
as a distributed system for flexible network management
[91]. Other studies have presented a network debugging
tool, Veriflow [92], which is capable of discovering the
faults in SDN application rules and hence preventing them
from disrupting network performance. Additional initia-
tives [93] have developed a routing architecture, Route-
flow, which is inspired by SDN concepts and provides
interaction between commercial hardware performance
and flexible open-source routing stacks. Hence, it opens
the door to migration from traditional IP deployments to
SDN.

In addition to recent studies that developed physical
SDN prototypes, other researchers [64] have provided an
efficient SDN innovation, Mininet. Mininet is a virtual
emulator which provides an environment for prototyping
any SDN idea. Whenever the prototype evaluation is
acceptable, then it can be deployed in research networks
and for general use [64]. However, Mininet’s services are
hindered by certain limitations: poor performance at high
loads and its lightweight virtualization approach.

Research has also been directed toward developing con-
trol support for SDN and describing new language
approaches to program OpenFlow networks.

Foster et al. [74] proposes a design for Frenetic, a high-
level language for programming OpenFlow architectures.
Frenetic consists of a query language based on SQL syntax,
a stream-processing language, and a specification language
for packet forwarding. With the combination of these three
languages, Frenetic simplifies the programmer’s task by
enabling him/her to produce forwarding policies as high-
level abstractions.

It addresses some of OpenFlow’s shortcomings which
are due to the lack of consistency between installing a rule
in the switches and allowing other packets to be processed,
in addition to the lack of synchronization between the
packet arrival time and the rule installation time. It con-
sists of two abstraction levels, the source-level operators
that deal with network traffic, and the run-time system
responsible for installing rules into switches.

In addition to the Frenetic language that can program
OpenFlow networks, a number of other OpenFlow pro-
gramming languages have been proposed, such as Procera



M. Jammal et al. / Computer Networks 72 (2014) 74–98 95
[94,95] and Nettle [60]. These languages are based on func-
tional reactive programming, facilitate network manage-
ment, and support event-driven networks.
6.4. SDN vendors

Ref. [96] describes the Floodlight controller platform. It
is an enterprise-class, Apache-licensed, Java-based Open-
Flow controller that supports OpenStack orchestration
and virtual and physical switches and manages OpenFlow
and non-OpenFlow networks. In addition, NEC has
designed a network virtualization architecture encapsu-
lated as NEC ProgrammableFlow. The ProgrammableFlow
technology provides management of their networking fab-
ric. NEC has created custom physical switches, PF5240 and
PF5820, to facilitate the ProgrammableFlow network archi-
tecture. The ProgrammableFlow controller can control any
ProgrammableFlow or OpenFlow switch in a virtual net-
work [97]. Ref. [98] provides an option list of existing
OpenFlow controllers (NOX, Beacon [99], Helios, etc.) and
switches (software and hardware options such as Open
vSwitch and Pronto) to design SDN prototypes.

Besides these initiatives, researchers and enterprises
have designed virtualization platforms for SDN [100]. NIC-
IRA has created a complete SDN solution: the network vir-
tualization platform (NVP). It can be injected over existing
network infrastructure or designed into emerging network
fabrics. The NVP system works in collaboration with Open
vSwitches that are configured in the hypervisor or used as
gateways to legacy VLANs. Network virtualization is tasked
to the Controller Cluster. The cluster is an array of control
structures running on servers separate from the network
infrastructure. Control is separated not only from network
devices, but also from the network itself. Each cluster is
capable of controlling thousands of Open vSwitch devices.
The NVP architecture combines control and switching
abstractions to provide a versatile network solution [101].

Finally, IT organizations and enterprises are focusing on
applying SDN not only to data-center networks (LANs), but
also to wireless local-area networks (WLANs) and wide-
area networks (WANs), where OpenFlow will function as
an overlay over L2 and L3 virtual private networks (VPN)
[102]. HP has announced that an SDN-centralized control-
ler can minimize the cost and complexity of implementing
WAN optimization schemes. A prototype of SDN, Odin, was
described in [103] and was intended to enable network
operators to deploy WLAN services as network applica-
tions. Odin consists of a master, agents, and applications.
The master runs as an application on the OpenFlow con-
troller, controls the agents, and updates the forwarding
table of access points (APs) and switches, and the agents
run on the APs and collect information about the clients.
7. Conclusions

SDN aims to simplify network architecture by centraliz-
ing the control-plane intelligence of L2 switching and L3
routing equipment. It also markets network hardware as
a product service and forms the basis of network virtual-
ization. The generalized SDN architecture consists of the
SDN controller and SDN-compatible switches. Because
SDN makes it possible to build programmable and agile
networks, academic researchers and network engineers
are exploiting its flexibility and programmability to gener-
ate strategies that simplify the management of data-center
LANs and WANs and make them more secure. Besides, SDN
supports NaaS, the new Internet-based model that acts as a
link between cloud computing and SDN. While SDN man-
ages forwarding decisions and network administration,
NaaS will provide packet-processing applications for cloud
tenants. In addition, researchers are proposing various SDN
prototypes that will serve DCNs, wireless networks, enter-
prises, and campus networks. Despite all the promising
opportunities that accompany SDN, it encounters certain
technical challenges that might hinder its functionality in
cloud computing and enterprises. Therefore, IT organiza-
tions and network enterprises should be aware of these
challenges and explore the functionality of the SDN archi-
tecture to counter these criticisms.
References

[1] T. Anderson, L. Peterson, S. Shenker, J. Turner, Overcoming the
internet impasse through virtualization, Computer 38 (4) (2005)
34–41.

[2] HP, Deliver HP Virtual Application Networks, 2012. <http://
h17007.www1.hp.com/docs/interopny/4AA4-3872ENW.pdf>.

[3] HP, Realizing the Power of SDN with HP Virtual Application
Networks, 2012. <http://h17007.www1.hp.com/docs/interopny/
4AA4-3871ENW.pdf>.

[4] Brocade Communications Systems, Network Transformation with
Software-Defined Networking and Ethernet Fabrics, California,
USA, 2012. <http://www.brocade.com/downloads/documents/
positioning-papers/network-transformation-sdn-wp.pdf>.

[5] W. Xia, Y. Wen, C.H. Foh, D. Niyato, H. Xie, A survey on software-
defined networking, Commun. Surv. Tutorials, IEEE PP (99) (2014).
1, 1.

[6] B. Nunes, M. Mendonca, X. Nguyen, K. Obraczka, T. Turletti, A
survey of software-defined networking: past, present, and future of
programmable networks, Commun. Surv. Tutorials, IEEE PP (99)
(2014). 1, 18.

[7] Q. Duan, Y.H. Yan, A.V. Vasilakos, A survey on service-oriented
network virtualization toward convergence of networking and
cloud computing, IEEE Trans. Netw. Serv. Manage. 9 (4) (2012) 373–
392.

[8] Big Switch Networks, The Open SDN Architecture, 2012. <http://
www.bigswitch.com/sites/default/files/sdn_overview.pdf>.

[9] M.K. Shin, Ki-Hyuk Nam, H.J. Kim, Software-defined networking
(SDN): a reference architecture and open APIs, in: Proceedings,
2012 International Conference on ICT Convergence (ICTC), 15–17
October, 2012, pp. 360–361.

[10] IBM, Software-Defined Networking: A New Paradigm for Virtual,
Dynamic, Flexible Networking, IBM Systems and Technology
Thought Leadership White Paper, October 2012. <http://
www.comcity.com.au/media/software_defined_networking.pdf>.

[11] Open Network Foundation, OpenFlow Switch Specification v1.3.0,
June 2012. <https://www.opennetworking.org/images/stories/
downloads/sdn-resources/onf-specifications/openflow/openflow-
spec-v1.3.0.pdf>.

[12] G. Ferro, OpenFlow and Software-Defined Networking, November
2012. <http://etherealmind.com/software-defined-networking-
openflow-so-far-and-so-future/>.

[13] NICIRA, It’s Time to Virtualize the Network, 2012. <http://www.
netfos.com.tw/PDF/Nicira/It%20is%20Time%20To%20Virtualize%20
the%20Network%20White%20Paper.pdf>.

[14] N.J. Lippis, Network Virtualization: The New Building Blocks of
Network Design, 2007. <https://www.cisco.com/en/US/solutions/
collateral/ns340/ns517/ns431/ns725/net_implementation_white_
paper0900aecd80707cb6.pdf>.

[15] N. Feamster, L. Gao, J. Rexford, How to lease the internet in your
spare time, ACM SIGCOMM Comput. Commun. Rev. 37 (1) (2007)
61–64.

http://refhub.elsevier.com/S1389-1286(14)00258-8/h0005
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0005
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0005
http://h17007.www1.hp.com/docs/interopny/4AA4-3872ENW.pdf
http://h17007.www1.hp.com/docs/interopny/4AA4-3872ENW.pdf
http://h17007.www1.hp.com/docs/interopny/4AA4-3871ENW.pdf
http://h17007.www1.hp.com/docs/interopny/4AA4-3871ENW.pdf
http://www.brocade.com/downloads/documents/positioning-papers/network-transformation-sdn-wp.pdf
http://www.brocade.com/downloads/documents/positioning-papers/network-transformation-sdn-wp.pdf
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0025
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0025
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0025
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0030
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0030
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0030
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0030
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0035
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0035
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0035
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0035
http://www.bigswitch.com/sites/default/files/sdn_overview.pdf
http://www.bigswitch.com/sites/default/files/sdn_overview.pdf
http://www.comcity.com.au/media/software_defined_networking.pdf
http://www.comcity.com.au/media/software_defined_networking.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.3.0.pdf
http://etherealmind.com/software-defined-networking-openflow-so-far-and-so-future/
http://etherealmind.com/software-defined-networking-openflow-so-far-and-so-future/
http://www.netfos.com.tw/PDF/Nicira/It%20is%20Time%20To%20Virtualize%20the%20Network%20White%20Paper.pdf
http://www.netfos.com.tw/PDF/Nicira/It%20is%20Time%20To%20Virtualize%20the%20Network%20White%20Paper.pdf
http://www.netfos.com.tw/PDF/Nicira/It%20is%20Time%20To%20Virtualize%20the%20Network%20White%20Paper.pdf
https://www.cisco.com/en/US/solutions/collateral/ns340/ns517/ns431/ns725/net_implementation_white_paper0900aecd80707cb6.pdf
https://www.cisco.com/en/US/solutions/collateral/ns340/ns517/ns431/ns725/net_implementation_white_paper0900aecd80707cb6.pdf
https://www.cisco.com/en/US/solutions/collateral/ns340/ns517/ns431/ns725/net_implementation_white_paper0900aecd80707cb6.pdf
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0075
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0075
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0075


96 M. Jammal et al. / Computer Networks 72 (2014) 74–98
[16] J.S. Turner, D.E. Taylor, Diversifying the internet, in: Global
Telecommunications Conference, 2005. GLOBECOM ‘05. IEEE, vol.
2, 2–2 December, 2005, pp. 6, 760.

[17] Heming Wen, Prabhat Kumar Tiwary, Tho. Le-Ngoc, Network
Virtualization: Overview, Wireless Virtualization, Springer Briefs,
2013. pp. 5–10, Google Books Web.

[18] J. Carapinha, P. Feil, P. Weissmann, S. Thorsteinsson, Ç. Etemoglu, Ó.
Ingþórsson, S. Çiftçi, M. Melo, Network virtualization: opportunities
and challenges for operators, Future Internet-FIS 138–147 (2010)
2012.

[19] A. Khan, A. Zugenmaier, D. Jurca, W. Kellerer, Network
virtualization: a hypervisor for the internet?, IEEE Commun Mag.
50 (1) (2012) 136–143.

[20] A. Leon-Garcia, L.G. Mason, Virtual network resource management
for next-generation networks, IEEE Commun. Mag. 41 (7) (2003)
102–109.

[21] Network Virtualization Study Group, Advanced Network
Virtualization: Definition, Benefits, Applications, and Technical
Challenges, 2012. <https://nvlab.nakao-lab.org/nv-study-group-
white-paper.v1.0.pdf>.

[22] J. Oltsik, B. Laliberte, IBM and NEC Bring SDN/OpenFlow to
Enterprise Data Center Networks, Enterprise Strategy Group Tech
Brief, January 2012. <http://public.dhe.ibm.com/common/ssi/ecm/
en/qcl12364usen/QCL12364USEN.PDF>.

[23] A. Murphy, Keeping Your Head Above the Cloud: Seven Data Center
Challenges to Consider Before Going Virtual, F5 Networks, U.S.A.,
October 2008. <http://www.f5.com/pdf/white-papers/challenges-
to-virtualization-wp.pdf>.

[24] Vello Systems, Optimizing Cloud Infrastructure with Software-
Defined Networking, 2012. <http://www.margallacomm.com/
downloads/VSI_11Q4_OPN_GA_WP_01_1012_Booklet.pdf>.

[25] C.A.B. Macapuna, C.E. Rothenberg, M.F. Magalhaes, In-packet bloom
filter-based data-center networking with distributed OpenFlow
controllers, in: IEEE 2010GLOBECOM Workshops, 6–10 December,
2010, pp. 584–588.

[26] N.H. Thanh, P.N. Nam, T.-H. Truong, N.T. Hung, L.K. Doanh, R. Pries,
Enabling experiments for energy-efficient data-center networks on
an OpenFlow-based platform, in: Proceedings 2012 Fourth
International Conference on Communications and Electronics
(ICCE), 1–3 August, 2012, pp. 239–244.

[27] Stanford University, Mininet: Rapid Prototyping for Software-
Defined Networks, 2012. <http://yuba.stanford.edu/foswiki/bin/
view/OpenFlow/Mininet>.

[28] T.H. Vu, P.N. Nam, T. Thanh, L.T. Hung, L.A. Van, N.D. Linh, T.D.
Thien, N.H. Thanh, Power-aware OpenFlow switch extension for
energy saving in data centers, in: Proceedings, 2012 International
Conference on Advanced Technologies for Communications (ATC),
10–12 October, 2012, pp. 309–313.

[29] C. Baker, A. Anjum, R. Hill, N. Bessis, S.L. Kiani, Improving cloud
datacenter scalability, agility and performance using OpenFlow, in:
Proceedings 2012 Fourth International Conference on Intelligent
Networking and Collaborative Systems (INCoS), 19–21 September,
2012, pp. 20–27.

[30] S. Fang, Y. Yu, C.H. Foh, K.M.M. Aung, A loss-free multipathing
solution for data center network using software-defined
networking approach, IEEE Trans. Magn. 49 (6) (2013)
2723–2730.

[31] Y. Yu, K.M.M. Aung, E.K.K. Tong, C.H. Foh, Dynamic load balancing
multipathing for converged enhanced ethernet, in: 2010 IEEE
International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS), 17–19
August, 2010, pp. 403–406.

[32] L. Sun, K. Suzuki, C. Yasunobu, Y. Hatano, H. Shimonishi, A network
management solution based on OpenFlow towards new challenges
of multitenant data centers, in: Proceedings 2012 Ninth Asia-Pacific
Symposium on Information and Telecommunication Technologies
(APSITT), 5–9 November, 2012, pp. 1–6.

[33] R. Kanagavelu, L.N. Mingjie, M.M. Khin, F.B.-S. Lee, H. Heryandi,
OpenFlow-based control for re-routing with differentiated flows in
data center networks, in: Proceedings 2012 18th IEEE International
Conference on Networks (ICON), 12–14 December, 2012, pp. 228–
233.

[34] R. Pries, M. Jarschel, S. Goll, On the usability of OpenFlow in data
center environments, in: Proceedings, 2012 IEEE International
Conference on Communications (ICC), 10–15 June, 2012, pp.
5533–5537.

[35] K. Kannan, S. Banerjee, Scissors: dealing with header redundancies
in data centers through SDN, in: Proceedings, 2012 Eighth
International Conference and 2012 Workshop on Systems
Virtualization Management (SVM), Network and Service
Management (CNSM), 22–26 October, 2012, pp. 295–301.

[36] B. Boughzala, R. Ben Ali, M. Lemay, Y. Lemieux, O. Cherkaoui,
OpenFlow supporting inter-domain virtual machine migration, in:
Proceedings, 2011 Eighth International Conference on Wireless and
Optical Communications Networks (WOCN), 24–26 May, 2011, pp.
1–7.

[37] V. Mann, A. Vishnoi, K. Kannan, S. Kalyanaraman, CrossRoads:
seamless VM mobility across data centers through software-
defined networking, in: 2012 IEEE Network Operations and
Management Symposium (NOMS), 16–20 April, 2012, pp. 88–96.

[38] Santhi; Ram Kumar, A Service Based Approach for Future Internet
Architectures, Ph.D. Thesis, University of Agder, 2010. <http://
brage.bibsys.no/xmlui/bitstream/handle/11250/139686/Diss_Kumar.
pdf?sequence=1>.

[39] P. Costa, M. Migliavacca, P. Pietzuch, A. Wolf, NaaS: network-as-a-
service in the cloud, in: 2012 USENIX: Management of Internet,
Cloud, and Enterprise Networks and Services (Hot-ICE’12), San Jose
CA, April 2012.

[40] T. Feng, J. Bi, H.Y. Hu, H. Cao, Networking as a service. A cloud-based
network architecture, J. Networks 6 (7) (2011) 1084–1090.

[41] M.A.F. Gutierrez, N. Ventura, Mobile cloud computing based on
service-oriented architecture: embracing network as a service for
third-party application service providers, in: Proceedings, ITU
Kaleidoscope 2011: The Fully Networked Human—Innovations for
Future Networks and Services (K-2011), 12–14 December, 2011, pp.
1–7.

[42] TERENA Network Architects Workshop, Network as a Service
Principle Virtual CPE as a Service, November 2012. <http://
www.terena.org/activities/netarch/ws1/slides/reijs-NaaS-221112-
NAW.pdf>.

[43] T. Benson, A.A.A. Shaikh, S. Sahu, CloudNaaS: a cloud networking
platform for enterprise applications, in: Proceedings, Second ACM
Symposium on Cloud Computing (SOCC ‘11), New York, NY, 2011.

[44] P. Costa, Bridging the gap between applications and networks in
data centers, ACM SIGOPS Oper. Syst. Rev. 47 (1) (2013) 3–8.

[45] R. Raghavendra, J. Lobo, K.-W. Lee, Dynamic graph query primitives
for SDN-based cloud network management, in: Proceedings, First
Workshop on Hot Topics in Software-Defined Networks (HotSDN
‘12), New York, NY, 2012, pp. 97–102.

[46] F. Khan, Naas as Step towards SDN, March 2013. <http://
www.telecomlighthouse.com/naas-as-step-towards-sdn/>.

[47] M.A. Sharkh, M. Jammal, A. Shami, A. Ouda, Resource allocation in a
network-based cloud computing environment: design challenges,
Commun. Mag., IEEE 51 (11) (2013) 46, 52.

[48] Ashton, Metzler, and Associates, Ten Things to Look for in an SDN
Controller, Technical Report, 2013. <https://www.necam.com/docs/
?id=23865bd4-f10a-49f7-b6be-a17c61ad6fff>.

[49] G. Ferro, OpenFlow and Software-Defined Networking, November
2012. <http://etherealmind.com/software-defined-networking-
openflow-so-far-and-so-future/>.

[50] V. Yazıcı, O. Sunay, A.O. Ercan, Controlling a Software-Defined
Network via Distributed Controllers, NEM Summit, Istanbul,
Turkey, October 2012. <http://faculty.ozyegin.edu.tr/aliercan/files/
2012/10/YaziciNEM12.pdf>.

[51] S.H. Yeganeh, A. Tootoonchian, Y. Ganjali, On scalability of
software-defined networking, IEEE Commun. Mag. 51 (2) (2013)
136–141.

[52] A. Voellmy, J.C. Wang, Scalable software-defined network
controllers, in: Proceedings, ACM SIGCOMM 2012 Conference on
Applications, Technologies, Architectures, and Protocols for
Computer Communication, 2012, pp. 289–290.

[53] A. Tavakoli, M. Casado, T. Koponen, S. Shenker, Applying NOX to the
data center, in: Proceedings, Ninth ACM SIGCOMM Workshop on
Topics in Networks (Hotnets-IX), October 2009.

[54] Enterasys Networks, Software-Defined Networking (SDNs) in the
Enterprise, October 2012. <http://www.enterasys.com/company/
literature/SDN_tsbrief.pdf>.

[55] H. Bae, SDN Promises Revolutionary Benefits, but Watch Out for
the Traffic Visibility Challenge, January 2013. <http://www.
networkworld.com/news/tech/2013/010413-sdn-traffic-visibility-
265515.html>.

[56] M.L. Yu, J. Rexford, M.J. Freedman, J. Wang, Scalable flow-based
networking with DIFANE, in: Proceedings, ACM SIGCOMM 2010
Conference (SIGCOMM ‘10), New York NY, 2010, pp. 351–362.

[57] H.J. Kim, J.R. Santos, Y. Turner, M. Schlansker, J. Tourrilhes, N.
Feamster, CORONET: fault tolerance for software-defined networks,
in: Proceedings 2012 20th IEEE International Conference on
Network Protocols (ICNP), October 30–November 2, 2012, pp. 1–2.

http://refhub.elsevier.com/S1389-1286(14)00258-8/h0085
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0085
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0085
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0085
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0090
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0090
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0090
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0090
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0095
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0095
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0095
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0100
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0100
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0100
https://nvlab.nakao-lab.org/nv-study-group-white-paper.v1.0.pdf
https://nvlab.nakao-lab.org/nv-study-group-white-paper.v1.0.pdf
http://public.dhe.ibm.com/common/ssi/ecm/en/qcl12364usen/QCL12364USEN.PDF
http://public.dhe.ibm.com/common/ssi/ecm/en/qcl12364usen/QCL12364USEN.PDF
http://www.f5.com/pdf/white-papers/challenges-to-virtualization-wp.pdf
http://www.f5.com/pdf/white-papers/challenges-to-virtualization-wp.pdf
http://www.margallacomm.com/downloads/VSI_11Q4_OPN_GA_WP_01_1012_Booklet.pdf
http://www.margallacomm.com/downloads/VSI_11Q4_OPN_GA_WP_01_1012_Booklet.pdf
http://yuba.stanford.edu/foswiki/bin/view/OpenFlow/Mininet
http://yuba.stanford.edu/foswiki/bin/view/OpenFlow/Mininet
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0150
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0150
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0150
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0150
http://brage.bibsys.no/xmlui/bitstream/handle/11250/139686/Diss_Kumar.pdf?sequence=1
http://brage.bibsys.no/xmlui/bitstream/handle/11250/139686/Diss_Kumar.pdf?sequence=1
http://brage.bibsys.no/xmlui/bitstream/handle/11250/139686/Diss_Kumar.pdf?sequence=1
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0200
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0200
http://www.terena.org/activities/netarch/ws1/slides/reijs-NaaS-221112-NAW.pdf
http://www.terena.org/activities/netarch/ws1/slides/reijs-NaaS-221112-NAW.pdf
http://www.terena.org/activities/netarch/ws1/slides/reijs-NaaS-221112-NAW.pdf
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0220
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0220
http://www.telecomlighthouse.com/naas-as-step-towards-sdn/
http://www.telecomlighthouse.com/naas-as-step-towards-sdn/
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0235
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0235
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0235
https://www.necam.com/docs/?id=23865bd4-f10a-49f7-b6be-a17c61ad6fff
https://www.necam.com/docs/?id=23865bd4-f10a-49f7-b6be-a17c61ad6fff
http://etherealmind.com/software-defined-networking-openflow-so-far-and-so-future/
http://etherealmind.com/software-defined-networking-openflow-so-far-and-so-future/
http://faculty.ozyegin.edu.tr/aliercan/files/2012/10/YaziciNEM12.pdf
http://faculty.ozyegin.edu.tr/aliercan/files/2012/10/YaziciNEM12.pdf
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0255
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0255
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0255
http://www.enterasys.com/company/literature/SDN_tsbrief.pdf
http://www.enterasys.com/company/literature/SDN_tsbrief.pdf
http://www.networkworld.com/news/tech/2013/010413-sdn-traffic-visibility-265515.html
http://www.networkworld.com/news/tech/2013/010413-sdn-traffic-visibility-265515.html
http://www.networkworld.com/news/tech/2013/010413-sdn-traffic-visibility-265515.html


M. Jammal et al. / Computer Networks 72 (2014) 74–98 97
[58] A. Curtis, J. Mogul, et al., DevoFlow: scaling flow management for
high-performance networks, in: Proceedings, ACM SIGCOMM 2011
Conference (SIGCOMM ‘11), New York NY, 2011, pp. 254–265.

[59] J.C. Mogul, J. Tourrilhes, et al., DevoFlow: cost-effective flow
management for high-performance enterprise networks, in:
Proceedings, Ninth ACM SIGCOMM Workshop on Hot Topics in
Networks (Hotnets-IX), New York, NY, 2010.

[60] A. Voellmy, P. Hudak, Nettle: functional reactive programming of
OpenFlow networks, in: Practical Aspects of Declarative Languages
(PADL) Symposium, Januaryss 2011.

[61] J. Rexford, Software-Defined Networking, COS 461: Computer
Networks Lecture, 2012. <http://www.cs.princeton.edu/courses/
archive/spring12/cos461/docs/lec24-sdn.pdf>.

[62] A. Tootoonchian, S. Gorbunov, et al., On controller performance in
software-defined networks, in: Proceedings, 2nd USENIX
Conference on Hot Topics in Management of Internet, Cloud, and
Enterprise Networks and Services, 2012, p. 10.

[63] J. Chu, M.S. Malik, Software-Defined Networks, September 2012.
<http://www.cs.illinois.edu/~pbg/courses/cs538fa11/lectures/25-
Jonathan-Salman.pdf>.

[64] B. Lantz, B. Heller, N. McKeown, A network in a laptop: rapid
prototyping for software-defined networks, in: Proceedings, Ninth
ACM SIGCOMM Workshop on Hot Topics in Networks, New York,
NY, 2010.

[65] N. Foster, A. Guha, et al., Languages for software-defined networks,
Commun. Mag., IEEE 51 (2) (2013) 128–134.

[66] Pluribus Networks, Of Controllers and Why NICIRAHad to Do a Deal
(Part III: SDN and OpenFlow Enabling Network Virtualization in the
Cloud), August 2012. <https://www.pluribusnetworks.com/blog/
item/5-of-controllers-and-why-nicira-had-to-do-a-deal-part-iii-
sdn-and-openflow-enabling-network-virtualization-in-the-cloudhttp:
//pluribusnetworks.com/blog/>.

[67] Z. Cai, A.L. Cox, T.S.E. Ng, Maestro: A System for Scalable OpenFlow
Control, Rice University Technical Report TR10-08, December 2010.
<http://www.cs.rice.edu/~eugeneng/papers/TR10-11.pdf>.

[68] Z. Cai, A.L. Cox, T.S.E. Ng, Maestro: Balancing Fairness, Latency, and
Throughput in the OpenFlow Control Plane, Rice University
Technical Report TR11-07, December 2011. <http://www.cs.rice.
edu/~eugeneng/papers/Maestro-TR11.pdf>.

[69] J.C. Mogul, P. Congdon, Hey, You Darned Counters! Get Off my
ASIC!, in: First Workshop on Hot Topics in Software-Defined
Networks, 2012, pp. 25–30.

[70] W. Wolf, A decade of hardware/software codesign, Computer 36 (4)
(April 2003) 38–43.

[71] R.C. Scott, A. Wundsam, et al., What, Where, and When: Software
Fault Localization for SDN, Technical Report No. UCB/EECS-2012-
178, July 2012. <http://www.eecs.berkeley.edu/Pubs/TechRpts/
2012/EECS-2012-178.pdf>.

[72] N.P. Katta, J. Rexford, D. Walker, Logic Programming for Software-
Defined Networks, ACM SIGPLAN Workshop on Cross-model
Language Design and Implementation, July 2012. <http://
www.cs.princeton.edu/~dpw/papers/xldi-2012.pdf>.

[73] T.L. Hinrichs, N.S. Gude, M. Casado, J.C. Mitchell, S. Shenker,
Practical declarative network management, in: First ACM
Workshop on Research in Enterprise Networking (WREN ‘09),
2009, pp. 1–10.

[74] N. Foster, R. Harrison, et al., Frenetic: a network programming
language, in: Proceedings, 16th ACM SIGPLAN International
Conference on Functional Programming (ICFP ‘11), New York, NY,
2011, pp. 279–291.

[75] B. Heller, R. Sherwood, N. McKeown, The controller placement
problem, in: First Workshop on Hot Topics in Software-Defined
Networks, 2012, pp. 7–12.

[76] Y.-N. Hu, W.-D. Wang, et al., On the placement of controllers in
software-defined networks, J. China Univ. Post Telecommun. 19 (2)
(2012) 92–97. <http://www.sciencedirect.com/science/article/pii/
S100588851160438X>.

[77] N. Beheshti, Ying Zhang, Fast failover for control traffic in software-
defined networks, in: Global Communications Conference
(GLOBECOM), 2012 IEEE, 3–7 December 2012, pp. 2665, 2670.

[78] J. Metzler, Understanding Software-Defined Networks,
InformationWeek Reports, October 2012, pp. 1–25. <http://reports.
informationweek.com/abstract/6/9044/Data-Center/research-
understanding-software-defined-networks.html>.

[79] C.D. Marsan, IAB Panel Debates Management Benefits, Security
Challenges of Software-Defined Networking, IETF J. (October)
(2012). <http://www.internetsociety.org/articles/iab-panel-debates-
management-benefits-security-challenges-software-defined-
networking>.
[80] H. Yin, H. Xie, et al., SDNi: A Message Exchange Protocol for
Software Defined Networks across Multiple Domains, Internet
Draft, Internet Engineering Task Force, June 2012. <http://
tools.ietf.org/id/draft-yin-sdn-sdni-00.txt>.

[81] M. Raju, A. Wundsam, M. Yu, NOSIX: a lightweight portability layer
for the SDN OS, ACM SIGCOMM Comput. Commun. Rev. 44 (April)
(2014) 28–35. <http://www1.icsi.berkeley.edu/~andi/nosix_ons13-
extabstract.pdf>.

[82] OpenDaylight, The Project, Technical Overview, 2014. <http://
www.opendaylight.org/project/technical-overview>.

[83] Q. Duan, Network-as-a-service in software defined networks for
end-to-end QoS provisioning, in: Proceedings, Wireless and Optical
Communication Conference, IEEE WOCC 2014, May 2014.

[84] I. Bueno, J.I. Aznar, E. Escalona, J. Ferrer, J. Antoni Garcia-Espin, An
OpenNaaS based SDN framework for dynamic QoS control, Future
Networks Serv. (SDN4FNS), 2013 IEEE SDN for 11–13 (November)
(2013) 1–7.

[85] M. Abu Sharkh, A. Ouda, A. Shami, A resource scheduling model for
cloud computing data centers, in: Wireless Communications and
Mobile Computing Conference (IWCMC), 2013 9th International, 1–
5 July, 2013, pp. 213, 218.

[86] M. Kobayashi, S. Seetharaman, et al., Maturing of OpenFlow and
software-defined networking through deployments, Comput.
Networks J. 6 (March) (2014) 151–175.

[87] A. Greenberg, G. Hjalmtysson, et al., A clean-slate 4D approach to
network control and management, ACM SIGCOMM Comput.
Commun. Rev. 35 (5) (2005) 41–54.

[88] M. Casado, M.J. Freedman, J. Pettit, J.Y. Luo, N. Gude, N. McKeown, S.
Shenker, Rethinking enterprise network control, IEEE/ACM Trans.
Network. 17 (4) (2009) 1270–1283.

[89] N. Gude, T. Koponen, et al., NOX: towards an operating system for
networks, ACM SIGCOMM Comput. Commun. Rev. 38 (3) (2008)
105–110.

[90] M. Banikazemi, D. Olshefski, A. Shaikh, J. Tracey, G.H. Wang,
Meridian: an SDN platform for cloud network services, IEEE
Commun. Mag. 51 (2) (2013) 120–127.

[91] T. Koponen, M. Casado, et al., Onix: a distributed control platform
for large-scale production networks, in: Proceedings, Ninth USENIX
Conference on Operating Systems Design and Implementation
(OSDI’10), Berkeley, CA, 2010.

[92] A. Khurshid, W.X. Zhou, M. Caesar, P.B. Godfrey, VeriFlow: verifying
network-wide invariants in real time, in: First Workshop on Hot
Topics in Software-Defined Networks (HotSDN ‘12), New York, NY,
2012, pp. 49–54.

[93] M.R. Nascimento, C.E. Rothenberg, et al., Virtual routers as a service.
the RouteFlow approach leveraging software-defined networks, in:
Proceedings, Sixth International Conference on Future Internet
Technologies (CFI ‘11), New York, NY, 2011, pp. 34–37.

[94] H.J. Kim, N. Feamster, Improving network management with
software-defined networking, IEEE Commun. Mag. 51 (2) (2013)
114–119.

[95] A. Voellmy, H.J. Kim, N. Feamster, Procera: a language for high-level
reactive network control, in: First Workshop on Hot Topics in Software-
Defined Networks (HotSDN ‘12), New York, NY, 2012, pp. 43–48.

[96] Big Switch Networks, FloodLight OpenFlow Controller, 2013.
<http://www.projectfloodlight.org/floodlight/>.

[97] R. Mehra, Designing and Building a DataCenter Network: An
Alternative Approach with OpenFlow, January 2012. <http://
www.nec.com/en/global/prod/pflow/images_documents/Designing_
and_Building_a_Datacenter_Network.pdf>.

[98] OpenFlow, Components, 2011. <http://archive.openflow.org/wp/
openflow-components/>.

[99] D. Erickson, Beacon, February 2013. <https://openflow.stanford.
edu/display/Beacon/Home>.

[100] K. Zarifis, G. Kontesidu, OpenFlow Virtual Networking: A Flow-
Based Network Virtualization Architecture, Telecommunication
Systems Laboratory and School of Information and
Communication Technology, Master of Science Thesis, Stockholm,
Sweden, 2009. <http://www.diva-portal.org/smash/get/diva2%3
A302700/FULLTEXT01.pdf>.

[101] NICIRA, Network Virtualization Platform, February 2013. <https://
www.vmware.com/products/nsx/>.

[102] K. Alhazmi, M. Abusharkh, D. Ban A. Shami, A map of the clouds:
virtual network mapping in cloud computing data centers, in:
Canadian Conference on Electrical and Computer Engineering,
Toronto, May 2014.

[103] L. Suresh, J. Schulz-Zander, et al., Towards programmable enterprise
WLANs with odin, in: First Workshop on Hot Topics in Software-
Defined Networks (HotSDN ‘12), New York, NY, 2012, pp. 115–120.

http://www.cs.princeton.edu/courses/archive/spring12/cos461/docs/lec24-sdn.pdf
http://www.cs.princeton.edu/courses/archive/spring12/cos461/docs/lec24-sdn.pdf
http://www.cs.illinois.edu/~pbg/courses/cs538fa11/lectures/25-Jonathan-Salman.pdf
http://www.cs.illinois.edu/~pbg/courses/cs538fa11/lectures/25-Jonathan-Salman.pdf
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0325
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0325
https://www.pluribusnetworks.com/blog/item/5-of-controllers-and-why-nicira-had-to-do-a-deal-part-iii-sdn-and-openflow-enabling-network-virtualization-in-the-cloudhttp://pluribusnetworks.com/blog/
https://www.pluribusnetworks.com/blog/item/5-of-controllers-and-why-nicira-had-to-do-a-deal-part-iii-sdn-and-openflow-enabling-network-virtualization-in-the-cloudhttp://pluribusnetworks.com/blog/
https://www.pluribusnetworks.com/blog/item/5-of-controllers-and-why-nicira-had-to-do-a-deal-part-iii-sdn-and-openflow-enabling-network-virtualization-in-the-cloudhttp://pluribusnetworks.com/blog/
https://www.pluribusnetworks.com/blog/item/5-of-controllers-and-why-nicira-had-to-do-a-deal-part-iii-sdn-and-openflow-enabling-network-virtualization-in-the-cloudhttp://pluribusnetworks.com/blog/
http://www.cs.rice.edu/~eugeneng/papers/TR10-11.pdf
http://www.cs.rice.edu/~eugeneng/papers/Maestro-TR11.pdf
http://www.cs.rice.edu/~eugeneng/papers/Maestro-TR11.pdf
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0350
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0350
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-178.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-178.pdf
http://www.cs.princeton.edu/~dpw/papers/xldi-2012.pdf
http://www.cs.princeton.edu/~dpw/papers/xldi-2012.pdf
http://www.sciencedirect.com/science/article/pii/S100588851160438X
http://www.sciencedirect.com/science/article/pii/S100588851160438X
http://reports.informationweek.com/abstract/6/9044/Data-Center/research-understanding-software-defined-networks.html
http://reports.informationweek.com/abstract/6/9044/Data-Center/research-understanding-software-defined-networks.html
http://reports.informationweek.com/abstract/6/9044/Data-Center/research-understanding-software-defined-networks.html
http://www.internetsociety.org/articles/iab-panel-debates-management-benefits-security-challenges-software-defined-networking
http://www.internetsociety.org/articles/iab-panel-debates-management-benefits-security-challenges-software-defined-networking
http://www.internetsociety.org/articles/iab-panel-debates-management-benefits-security-challenges-software-defined-networking
http://tools.ietf.org/id/draft-yin-sdn-sdni-00.txt
http://tools.ietf.org/id/draft-yin-sdn-sdni-00.txt
http://www1.icsi.berkeley.edu/~andi/nosix_ons13-extabstract.pdf
http://www1.icsi.berkeley.edu/~andi/nosix_ons13-extabstract.pdf
http://www.opendaylight.org/project/technical-overview
http://www.opendaylight.org/project/technical-overview
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0420
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0420
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0420
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0420
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0430
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0430
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0430
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0435
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0435
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0435
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0440
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0440
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0440
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0445
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0445
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0445
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0450
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0450
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0450
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0470
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0470
http://refhub.elsevier.com/S1389-1286(14)00258-8/h0470
http://www.projectfloodlight.org/floodlight/
http://www.nec.com/en/global/prod/pflow/images_documents/Designing_and_Building_a_Datacenter_Network.pdf
http://www.nec.com/en/global/prod/pflow/images_documents/Designing_and_Building_a_Datacenter_Network.pdf
http://www.nec.com/en/global/prod/pflow/images_documents/Designing_and_Building_a_Datacenter_Network.pdf
http://archive.openflow.org/wp/openflow-components/
http://archive.openflow.org/wp/openflow-components/
https://openflow.stanford.edu/display/Beacon/Home
https://openflow.stanford.edu/display/Beacon/Home
http://www.diva-portal.org/smash/get/diva2%3A302700/FULLTEXT01.pdf
http://www.diva-portal.org/smash/get/diva2%3A302700/FULLTEXT01.pdf
https://www.vmware.com/products/nsx/
https://www.vmware.com/products/nsx/


ter Networks 72 (2014) 74–98
Manar Jammal received her M.S. degree in
electrical and electronics engineering in 2012
98 M. Jammal et al. / Compu
from Lebanese Unive rsity, Beirut, Lebanon in
cooperation with University of Technology of
Compiègne. She is currently working towards
the Ph.D. degree in cloud computing and vir-
tualization technology at Western Ontario
University. Her research interests include
cloud computing, virtualization, software
defined network and virtual machine migra-
tions.
Taranpreet Singh received his Masters in
engineering (M.Eng.) degree in Communica-
tions and Data Networking from the Univer-
sity of Western Ontario, London, Canada in
September 2013. He has worked as a Consul-
tant with Accenture Technology Services and
holds special interest in the Cisco Networking
domain. His research interests include Soft-
ware Defined Networking, Network Function
Virtualization and Network Security.
Abdallah Shami received the B.E. degree in
Electrical and Computer Engineering from the
Lebanese University, Beirut, Lebanon in 1997,
and the Ph.D. Degree in Electrical Engineering
from the Graduate School and University
Center, City University of New York, New
York, NY in September 2002. In September
2002, he joined the Department of Electrical
Engineering at Lakehead University, Thunder
Bay, ON, Canada as an Assistant Professor.
Since July 2004, he has been with Western
University, Canada where he is currently an

Associate Professor in the Department of Electrical and Computer
Engineering. His current research interests are in the area of network
optimization, cloud computing, and wireless networks. He is an Editor for
IEEE Communications Tutorials and Survey and has served on the edito-
rial board of IEEE Communications Letters (2008–2013). He has chaired
key symposia for IEEE GLOBECOM, IEEE ICC, IEEE ICNC, and ICCIT. He is a
Senior Member of IEEE.

Rasool Asal received his Ph.D. degree in
physics from the University of Leicester
(Leicester, UK). He then moved to the Uni-
versity of Southampton to take up a post-
doctoral position within the Electronic and
Computer Science Department. He is a Chief
Researcher at Etisalat BT Innovation Center
(EBTIC) leading EBTIC research and innovation
activities in the area of Cloud Computing. For
the past fifteen years, he has been working
with British Telecommunications Group at
Adastral Park (Ipswich, U.K), designing and

developing a considerable volume of high-performance enterprise
applications, mostly in the area of telecommunications. He is a speaker at
many international conferences and events, most recently at the IEEE 8th

International World Congress on Services (Cloud & Services 2012),
Hawaii, USA. He has edited two books and published research papers in
leading international conferences and journals. He is currently acting as
Senior Guest Editor for Journal of Mobile Multimedia Special Issue on
Cloud Computing Operation. His current interest focuses primarily on the
Cloud Technologies, Cloud Security Architectures and the design of wide-
area distributed cloud compliance enterprise systems that scale to mil-
lions of users.

Yiming Li received a B.Eng. in Electrical
Engineering from Western University, Lon-
don, Ontario, Canada. Yiming is an Assistant
Product Manager at StarTech.com. He is
Responsible for product planning and product
development. His research interests are in the
areas of cloud computing, software defined
networking and network virtualization.


	Software defined networking: State of the art and research challenges
	1 Introduction
	2 Software-defined networking and openflow architecture
	2.1 SDN architecture
	2.1.1 Control plane
	2.1.2 Northbound application interfaces
	2.1.3 East–West protocols
	2.1.4 Data plane and southbound protocols

	2.2 SDN benefits
	2.2.1 Programmability of the network
	2.2.2 The rise of virtualization
	2.2.3 Device configuration and troubleshooting

	2.3 OpenFlow
	2.3.1 OpenFlow architecture
	2.3.1.1 Defining a flow
	2.3.1.2 OpenFlow switch
	2.3.1.3 OpenFlow channel
	2.3.1.4 OpenFlow controller

	2.3.2 Flow & group tables
	2.3.3 OpenFlow protocol


	3 Network virtualization
	3.1 Definition
	3.1.1 Infrastructure provider (InP)
	3.1.2 Virtual network provider (VNP)
	3.1.3 Virtual network operator (VNO)
	3.1.4 Service provider
	3.1.5 Virtual network user/end user

	3.2 Benefits of network virtualization
	3.2.1 Co-existence of dissimilar networks
	3.2.2 Encouraging network innovation
	3.2.3 Provisioning of independent and diverse networks
	3.2.4 Deployment of agile network capabilities
	3.2.5 Resource optimization
	3.2.6 Deployment of distinct network services

	3.3 Network function virtualization
	3.3.1 Definition of NFV
	3.3.2 NFV and NV
	3.3.3 NFV and SDN


	4 SDN applications
	4.1 Data-center networks
	4.1.1 Motivation
	4.1.1.1 Network segmentation and security
	4.1.1.2 Traffic engineering
	4.1.1.3 Network provisioning and configuration

	4.1.2 SDN deployment in DCNs
	4.1.2.1 Changes in DCN Infrastructure
	4.1.2.2 The green DCN
	4.1.2.3 Improving DCN metrics
	4.1.2.4 Virtualization in DCNs


	4.2 Network as a service
	4.2.1 Service oriented architecture
	4.2.2 Motivation
	4.2.3 NaaS and SDN integration
	4.2.3.1 Cloud-NaaS model
	4.2.3.2 Network management in NaaS



	5 SDN challenges and existing solutions
	5.1 Reliability
	5.2 Scalability
	5.3 Performance under latency constraints
	5.4 Controlling the data path between the ASIC and the CPU
	5.5 Use of low-level interfaces between the controller and the network device
	5.6 Controller placement problem
	5.7 Security
	5.8 Interoperability

	6 Research initiatives for SDN
	6.1 SDN prototypes
	6.2 Cloud computing and virtualization in SDN
	6.3 SDN tools and languages
	6.4 SDN vendors

	7 Conclusions
	References


