
Fault Detection Architectures for Field Multiplication

Using Polynomial Bases

Arash Reyhani-Masoleh1 and M. Anwar Hasan2

1 Department of Electrical and Computer Engineering

University of Western Ontario, London, Ontario, Canada N6A 5B9

2 Department of Electrical and Computer Engineering

University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.

E-mails: areyhani@eng.uwo.ca and ahasan@ece.uwaterloo.ca

Corresponding author: A. Reyhani-Masoleh

Abstract

In many cryptographic schemes, the most time consuming basic arithmetic operation is

the finite field multiplication and its hardware implementation for bit parallel operation may

require millions of logic gates. Some of these gates may become faulty in the field due to

natural causes or malicious attacks, which may lead to the generation of erroneous outputs by

the multiplier. In this paper, we propose new architectures to detect erroneous outputs caused

by certain types of faults in bit-parallel and bit-serial polynomial basis multipliers over finite

fields of characteristic two. In particular, parity prediction schemes are developed for detecting

errors due to single and certain multiple stuck-at faults. Although the issue of detecting soft

errors in registers is not considered, the proposed schemes have the advantage that they can be

used with any irreducible binary polynomial chosen to define the finite field.
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1 Introduction

Among the basic arithmetic operations over finite fields GF (2m), multiplication is the one which

has received most attention in the literature [10, 6, 20, 14]. This is mainly because the implementa-

tion of a multiplier is much more complex compared to a finite field adder and using multiplication

operation repeatedly one can perform other difficult field operations, such as inversion and expo-

nentiation, which are extensively used in cryptographic systems [1, 18].

Finite field multiplication is quite different from its counterparts in integer and floating point

number systems. For todays cryptographic applications, the field size can be very large and each

input of the multiplier can be 160 to 2048 bits long. Such a multiplier may require millions of logic

gates and it is possible that errors will occur in the computation due to faults in the field. If one

can have a multiplier which is capable of detecting error on-line at the presence of certain faults,

cryptographic schemes can be operated more reliably.

In an attempt to detect errors in finite field multipliers, the authors of [5] have considered

bit-serial multipliers in GF (2m) and have presented error detection schemes for four types of mul-

tipliers using a parity prediction technique. Their polynomial basis scheme for error detection is

applicable to a special class of fields. These fields are defined using irreducible all-one polyno-

mials that are available for certain values of m only. Additionally, when an all-one polynomial is

irreducible, the corresponding m is not prime. This makes many designers to avoid such a value

of m and the corresponding irreducible all-one polynomial that defines the underlying field for

certain cryptosystems, such as those based on elliptic curves.

The parity prediction technique has been used for detecting faults in cryptographic architecture

of the Advanced Encryption Standard (AES), see for example [2, 19]. The AES encrypts (and

decrypts) a data block using a block key and consists of eleven rounds and each round has four

operations. The data block is divided into a number of bytes, e.g., 16 bytes in the 128-bit data block,

and each byte is an element in the finite field GF (28) generated by z8+z4+z3+z+1: Then, each

round of the AES algorithm uses arithmetic operations over GF (28): In [2], the predicted parity of

each byte is determined and then compared with the actual parity. In their scheme, 16 parity bits
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are predicted and checked in the three possible choices: (i) once at the end of each round, (ii) four

times at the end of each operations in every round, (iii) once at the end of the final round [2]. The

authors of [19] have proposed a low cost error detection scheme for the hardware architecture of

the AES. Their scheme requires one parity bit for one 128-bit data block and the predicted parity

is compared with the actual parity once in each round.

The importance of eliminating errors in cryptographic computations has been pointed out in

some recent articles, for examples [3, 8, 4]. The presence of faults in cryptosystems can lead to an

active attack which results in leakage of secrete information from the cryptosystem. The simplest

way to prevent such an attack is to ensure that the computational device verifies the values it

computes before sending them out [4].

In this paper, we consider fault detection architectures for GF (2m) multipliers of both bit-

parallel and bit-serial types. The well-known polynomial basis is used for representing the field

elements. We develop parity prediction schemes for detecting errors due to single and certain

multiple faults during the multiplication operation in the field. These new schemes can be used for

any field defining irreducible binary polynomial. It is worth mentioning that in the case of multiple

faults due to malicious attacks or natural causes that result in even number of errors at the output,

the proposed structures are unable to detect these faults. These structures are also not suitable for

detecting soft errors.

The organization of this papers is as follows. In Section 2, some preliminaries regarding mul-

tiplication using polynomial basis and our fault detection strategy are given. Then, in Sections 3

and 4 fault detection architectures for traditional and recently proposed bit-parallel multipliers are

presented. Explicit formulations for parity predictions of three irreducible polynomials, namely

equally-spaced polynomials, trinomials and pentanomials, are also given in Section 4. In Sec-

tion 5, similar techniques are used to develop fault detection architectures for both MSB-first and

LSB-first bit-serial multipliers. Finally conclusions are made in Section 6.
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2 Preliminaries

2.1 Bit-Parallel Polynomial Basis Multipliers

Let the monic irreducible binary polynomial that defines the field GF (2m) be

F (z) = zm +

m�1X
i=0

fiz
i (1)

of degree m, where fi2GF (2) for i = 0; 1; � � � ; m � 1. Let � 2 GF (2m) be a root of F (z), i.e.,

F (�) = 0. Then the set f1; �; �2; � � � ; �m�1g is known as the polynomial (or standard) basis and

each element of GF (2m) can be written with respect to (w.r.t.) this basis, i.e., if A is an element of

GF (2m), then

A =
m�1X
i=0

ai�
i; ai 2 f0; 1g; (2)

where ais are the coordinates of Aw.r.t. polynomial basis (PB). For convenience, these coordinates

will be denoted in vector notation as

a = [a0; a1; a2; � � � am�1]
T ; (3)

where T denotes the transposition of a vector.

Traditional Multiplier

Let C be the product of any two elements A and B of GF (2m). Then, C can be obtained w.r.t. the

PB using two steps of polynomial multiplication and modular reduction as follows:

S = A �B = A �
m�1X
i=0

bi�
i =

m�1X
i=0

bi � (A�
i); (4)
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Figure 1: Multiplication of two elements in GF (2m):

C = S mod F (�) =
m�1X
i=0

bi � ((A�
i) mod F (�)) (5)

=
m�1X
i=0

bi �X
(i); (6)

where

X(i) = � �X(i�1) mod F (�); 1 � i � m� 1 (7)

and X(0) = A:

A traditional bit-parallel architecture for GF (2m) multiplication using (6) is shown in Figure

1. It mainly consists of three types of modules, namely, sum, pass-thru and � modules. The sum

module (denoted as a double circle with a plus inside) is to simply add two GF (2m) elements and

it can be realized in hardware using m two-input XOR gates. The pass-thru module (denoted as

a double circle with a dot inside) is to multiply a GF (2m) element by a GF (2) element, i.e., if

X(i) 2 GF (2m) and bi 2 GF (2) are two inputs to a pass-thru module, then its output is biX(i) =8><
>:

X(i) if bi = 1;

0 if bi = 0:
In hardware, each pass-thru module consists of m two-input AND gates.

In Figure 1, the third module (i.e., the rectangular shape � module) multiplies its input, which
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is an element of GF (2m), by � and reduces the result modulo F (�). Thus, this module is to

essentially realize equation (7) in hardware. Since � is a root of F (z),

F (�) = �m +

m�1X
i=0

fi�
i = 0: (8)

Then multiplication of an arbitrary element A 2 GF (2m) by � gives

A � � = (

m�1X
i=0

ai�
i) � � =

m�1X
i=0

ai�
i+1 =

m�1X
i=1

ai�1�
i + am�1�

m: (9)

Using (8) and (9), one can write

X , A � � mod F (�)

= am�1 � f0 +
Pm�1

i=1 (ai�1 + am�1 � fi)�i;
(10)

where xis are in GF (2) and are the coordinates of X w.r.t. the PB. For any irreducible polynomial

over GF (2), f0 = 1. Thus from (10), we write the coordinates of X as

xi =

8><
>:

ai�1 + am�1 � fi 1 � i � m� 1;

am�1 i = 0:
(11)

If ! is the Hamming weight of the irreducible polynomial F (z), then the realization of (11) requires

! � 2 XOR gates, and so does an � module. Thus, unlike the sum and pass-thru modules, the �

module has a space (or circuit) complexity which depends on F (z). The space complexity is

minimum when F (z) is a trinomial and maximum when F (z) is an all-one-polynomial (AOP).

2.2 Fault Detection Strategy

In the following sections, we investigate fault detection schemes for GF (2m) multiplication oper-

ation. Towards this effort, the parity prediction method is used. This method is shown in Figure

2 where the CUT (circuit under test) block can be either a complete finite field multiplier or a

part of it with A and B as inputs and Y as output, where A;B 2 GF (2m). In this figure, the
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Figure 2: Error indication of the circuit under test (CUT) using parity prediction method.

parity generation (PG) block produces the actual parity of Y; i.e., pY =
Pk�1

i=0 yi; where yis are

the coordinates of Y . The actual parity pY is then compared with the predicted parity p̂Y using a

single XOR gate as shown in the figure. This comparison is monitored by an error indicator flag

ê
CUT

; where ê
CUT

= 0 indicates that no error has been detected and ê
CUT

= 1 flags the detection of

errors. The parity prediction (PP) block predicts the parity of the output Y using a function which

depends only on the inputs of the CUT as p̂Y = �CUT(A;B): This function is hereafter referred to

as parity prediction function. We assume that the parity of A and B (i.e., pA and pB , respectively)

are available or they can be reliably pre-computed while loading the coordinates of A and B into

the multiplier. We also assume that the PP and PG blocks can be made fault free or any fault in

them can be detected using a suitable mechanism since these blocks are simple and/or regular. It

is noted that the PG block and the last XOR gate in Figure 2 are implemented by a binary tree of

XOR (BTX) gates. In the following sections, we derive the function �CUT for each of the modules

of the PB multipliers.

For the purpose of this investigation, we first consider GF (2m) multiplier circuit with a single

fault. The single fault case provides simplicity in our analysis [7]. In the later part of the paper,

we show that various types of multiple faults in the multiplier can also be detected. The following

are basic assumptions for the fault model that we use in the entire paper: (i) a fault in a logical

gate (i.e., XOR, AND, etc.) results in one of its inputs or the output being fixed to either a logic

0 (stuck-at-0, or s-a-0 in short) or a logic 1 (stuck-at-1, or s-a-1), respectively, and (ii) a fault can

be either permanent or transient. In the following sections, we propose structures which detect the

above mentioned faults during the operation in the field.
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3 Fault Detections in Traditional Bit-Parallel Multiplier

3.1 Parity Predictions of Individual Modules

In the following, we obtain the parity prediction functions of the modules of the bit-parallel mul-

tiplier of Figure 1. PB multipliers that are capable of detecting faults are considered in the next

sections.

3.1.1 Parity Prediction in � Module

Let ! be the Hamming weight of the irreducible polynomial F (z). Then, (1) can be written as

F (z) = 1 +
!�2X
j=1

z�j + zm; (12)

where �j’s are powers of z in (1) with f�j = 1; 1 � j � ! � 2. Then we have 1 � �1 < �2 <

�3 � � � < �!�2 � m� 1 and (11) can be written as

xi =

8><
>:

a�j�1 + am�1 i = �j ; 1 � j � ! � 2;

ai�1 modm otherwise:
(13)

Using (13), a circuit diagram for the � module is shown in Figure 3(a). Note that a stuck-at

fault in one of the (! � 2) XOR gates of this module causes at most one error at the output.

For j 2 f�1; �2; � � � ; �!�2g, assume that the j-th gate in Figure 3(a) is faulty. Then all the

output coordinates, except xj , are error free. If the upper input of the j-th gate is stuck, then the

erroneous j-th coordinate is

_xj =

8><
>:

am�1 for s-a-0;

am�1 for s-a-1;
(14)

where x indicates complement of x. On the other hand, if the lower input is stuck, then
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ê�
m

am�1

�0

X

�

p̂X

pX

(a) (b)

Figure 3: (a)The original circuit of � module. (b) The circuit for detecting a single fault (�0

module).

_xj =

8><
>:

aj�1 for s-a-0;

aj�1 for s-a-1:
(15)

Detection of such faults are discussed below.

Assume that A and X are the input and output of the � module, respectively. Then we have the

following lemma.

Lemma 1. Let X = A � � mod F (�): Also, assume that pA =
Pm�1

i=0 ai is the parity bit of A:

Then, the predicted parity bit of X is

p̂X = �� = pA + am�1 2 GF (2); (16)

where am�1 is the (m� 1)-th coordinate of input A.

Proof. Using (11), p̂X can be written as p̂X = am�1 +
Pm�1

i=1 (ai�1 + am�1fi) = am�1
Pm�1

i=1 fi +Pm�1
i=0 ai:

Since F (z) is irreducible over GF (2), F (z) is not divisible by z+1; and F (1) = 1. Then from

(1), one obtains
Pm�1

i=1 fi = f0 = 1 and the proof is complete.

It is noted that the authors of [2] have independently proved Lemma 1 and used it to develop a

fault detection structure of AES.

Similar to (16), we can obtain the relation between parity bits of X and A in the fault free �
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module as

pX + pA = am�1: (17)

In the � module, a stuck-at fault in one of its gates will result in an output which is different

from X and (16) will not hold. Thus, equation (16) can be used for detecting an error in the output

of the � module. Circuit for detecting such errors is shown in Figure 3(b), where ê� = 0 indicates

that no error has been detected and ê� = 1 flags the detection of an error. Since (16) is over GF (2),

the values of ê� would detect not only a single error, but also any odd number of errors. With a

similar argument, it is clear that an even number of errors are not detected by ê�.

3.1.2 Parity Predictions of Sum and Pass-thru Modules

The sum module of Figure 1 is a finite field adder which produces sum of the two elements of

GF (2m) at its output. Let A = (am�1; � � � ; a1; a0) and B = (bm�1; � � � ; b1; b0) be two inputs

to this module. Then the output is D = A + B = (dm�1; � � � ; d1; d0) where di = ai + bi for

0 � i � m� 1. The architecture of this module uses m two-input XOR gates. Let pA =
Pm�1

i=0 ai

and pB =
Pm�1

i=0 bi be the parity bits of A and B, respectively. Then the parity bit of the output,

pD =
Pm�1

i=0 di , is predicted by

p̂D = �sum = pA + pB (18)

using one extra XOR gate. Let us denote these m+ 1 XOR gates as the new sum module.

The pass-thru module of Figure 1 multiplies an elementA 2 GF (2m) by a single bit b 2 GF (2)

which can be implemented using m two-input AND gates. Let G 2 GF (2m) be the output of such

a module with inputs of A and b. Thus, the output of this module G is zero when b = 0 and A

when b = 1.

Detection of an odd number of errors is accomplished by using a single parity bit similar to

the � and sum modules. Let A and pA =
Pm�1

i=0 ai be the input of the pass-thru module and

its parity bit respectively. Then, the parity bit of the output G = bA is pG =
Pm�1

i=0 gi, where

gi = b � ai ; 0 � i � m� 1; are the coordinates of G. Thus, the predicted parity bit of the output
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can be expressed as

p̂G = �pass = b � pA (19)

which requires only one AND gate for its implementation. Let us denote the original pass-thru

module together with this AND gate as the new pass-thru module similar to the new sum module.

These new modules are used in the next section.

The discussions in this section have so far dealt with the parity prediction functions of in-

dividual modules. Using these parity functions, below we attempt to detect faults in the entire

multiplier.

3.2 Fault Detection Architectures

When � modules are cascaded as shown in the array of � modules in Figure 1, we can re-state

Lemma 1 as follows:

Lemma 1a. Using the symbols defined earlier, we have

p̂X(j) = pA +

j�1X
k=0

x
(k)
m�1; j = 1; 2; � � � ;m� 1; (20)

where x(k)m�1 is the (m � 1)-th coordinate of X(j) = A�j mod F (�) w.r.t. the polynomial basis,

respectively.

Proof. The proof can be done by induction as follows. Equation (20) is the same as (16) when

j = 1: Let us assume equation (20) holds for j = l; 1 < l < m� 1; i.e., p̂X(l) = pA +
Pl�1

k=0 x
(k)
m�1;

then we will prove that (20) holds for j = l + 1: This can be done by using (16) for the l�th �

module as

p̂X(l+1) = pX(l) + x
(l)
m�1: (21)

Now, if we assume that no fault occurs in the � modules, then p̂X(l) = pX(l) = pA +
Pl�1

k=0 x
(k)
m�1;

and by substituting in (21), the proof is complete.
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Then, the parity bit of the output of the polynomial basis multiplier can be predicted using the

following theorem.

Theorem 1. Let C be the product of two arbitrary elements A and B of GF (2m). Then,

p̂C =
m�1X
j=0

bj p̂X(j): (22)

Proof. Using (6) and generalizing (18) from two inputs tom inputs, one can obtain p̂C =
Pm�1

j=0 p̂bjX(j).

Now, using (19), one can see that p̂bjX(j) = bj p̂X(j) ; and the proof is complete.

In order to detect a single fault in a finite field multiplier, equation (22) can be realized easily

by replacing all the �, pass-thru and sum modules in Figure 1 with the �0 module and the new

pass-thru and sum modules as shown in Figure 4(a) (these three new modules are shaded in this

figure to distinguish them from the old ones). The bus width of this multiplier is m + 1. For

the purpose of illustration, the fault detection architecture for GF (23) multiplier generated by

irreducible polynomial F (z) = z3 + z + 1 is shown in Figure 4(b). Since the output of any gate

of the shaded pass-thru and sum modules in Figure 4(a) is connected to only one gate, the single

stuck fault at any gate of these modules changes only one coordinate of the output of this multiplier.

Therefore, a circuit that compares the actual parity pC with the predicted p̂C to generate ê, which

is shown at the bottom end of the figure, is capable of detecting any single fault in the shaded sum

and pass-thru modules of Figure 4(a). Also, it is clear that any single fault in any XOR gate in the

parity generation circuit pC and the very last XOR gate can be detected by ê. It is noted that such

a comparison circuit is implemented using a binary tree of XOR gates which is done by three last

XOR gates at the bottom end of Figure 4(b).

It is worth mentioning that this circuit can also detect certain multiple faults that result in an

odd number of errors at the output. To give an example of such multiple faults, let us re-arrange all

shaded sum and pass-thru modules of Figure 4(a) into m+1 blocks of inner product cells, each of

which contains m AND gates and m� 1 XOR gates and generates one output of the multiplier ci;

0 � i � m� 1; as well as the parity prediction. Then, any multiple faults in an inner product cell
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Figure 4: (a) Multiplication of two elements in GF (2m) with fault detection capability. (b) An
example for GF (23) generated by z3 + z + 1:

may change the corresponding bit and it will be detected by ê. It is noted that Figure 4 can detect

transient faults including single and the above mentioned multiple stuck-at faults.

One important drawback of the multiplier shown in Figure 4(a) is that it can detect a single

stuck-at-fault in the right-most �0 module, but may not in other �0 modules of Figure 4(a). This is

because a stuck-at fault in any �0 modules other the right-most one is most likely to change more

than one bit of the multiplier output. Then, these errors cannot be detected if an even number of

output bits are changed due to a single fault in the �0 array.

In this connection, note that the �0 modules require (! � 1)(m � 1) XOR gates. For the

cryptographic applications, the most commonly used irreducible polynomials are trinomial (! =

3) and pentanomial (! = 5). Also, one can easily determine that the shaded pass-thru and sum
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modules consist of m(m+1) AND gates and (m� 1)(m+1) = m2� 1 XOR gates, respectively.

Therefore, for such applications where the value of m is large, the space complexity of the �0

modules is negligible compared with space complexity of the whole multiplier and then it is more

likely that a single fault is not located in a �0 module, but in a pass-thru or sum module. In such a

case, the error due to the fault can be detected as explained earlier.

Nevertheless, in order to detect a single fault in the �0 modules, one can use another flag, i.e.,

ê0 = p̂X(m�1) + pX(m�1) ; (23)

where p̂X(m�1) is obtained by using (20) for j = m� 1 as

p̂X(m�1) = �� array = pA +
m�2X
k=0

x
(k)
m�1: (24)

Equation (23) is realized at the top right end of Figure 4(a) and then ê0 can be implemented by a

binary tree of XOR gates as shown in Figure 4(b). Below, we explain how it flags a single fault in

an �0 module.

As shown in Figure 3(b), each �0 module consists of the original � module and an XOR gate.

We assume that a single fault changes only one bit of the output of the �0 module. Then, this fault

will be detected by ê0 in Figure 4, because either a predicted parity or the output of an � module

will be changed as a result of such a single fault. If a predicted parity is changed, then p̂X(m�1)

will be changed and it will be indicated by ê0 = 1: Otherwise, pX(m�1) is changed which results in

ê0 = 1: This is because of the following.

Equation (17) can be generalized for detecting an error in each of the � modules as

pX(j+1) + pX(j) = x
(j)
m�1; j = 0; 1; � � � ;m� 2 ; (25)

where X(0) = A. For 1 � i � m� 1; suppose the fault is in the � module located in the i-th �0

module of Figure 4. Then the outputs of the � modules are correct for 1 � k � i� 1 and may be

14



in error for i � k � m� 1. Thus, we can divide (25) into the following three parts.

pX(k) + pX(k�1) = x
(k)
m�1; 0 � k � i� 1; (26)

pX(i) + pX(i�1) = x
(i�1)
m�1 + ê0; (27)

pX(k) + pX(k�1) = x
(k)
m�1; i+ 1 � k � m� 1: (28)

Equation (26) is similar to (25), because there is no fault up to the (i� 1)-th � module. Since

the fault is in the i-th module, (25) is not valid and this is shown by adding a single bit, ê0, to the

right hand side of (27). This flag is 1 when this fault produces an error at the output of this module.

After the i-th � module, although not all inputs and outputs are correct but (28) is still valid, since

according to our assumption these modules are fault free. By adding these three equations for

0 � k � m � 1 and using X(0) = A, the relation of (23) is obtained. Note that ê0 in (23) is

independent of the position of the faulty module.

3.2.1 Fault Detection Using Double Parity Bits

The structure shown in Figure 4(a) does not make use of the parity bit of B, i.e., pB is not used as

an input of the multiplier. Thus, this structure can be used even when the parity of only one of the

two inputs is available. If the parity bits of both inputs are available, then the parity bit p̂C of the

product can be obtained in an alternate way as presented below.

Corollary 1. Let pA and pB be the parity bits of A and B, respectively. Then predicted parity bit

of C = AB is

p̂C = pApB +
m�1X
j=1

bj

j�1X
k=0

x
(k)
m�1: (29)

Proof. Substituting (20) into (22), we have

p̂C = b0pA +
m�1X
j=1

bj(pA +

j�1X
k=0

x
(k)
m�1) (30)

= pA

m�1X
j=0

bj +
m�1X
j=1

bj

j�1X
k=0

x
(k)
m�1
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= pApB +
m�1X
j=1

bj

j�1X
k=0

x
(k)
m�1:

As seen in (29), the only dependency of p̂C on b0 is through pB: Also, note that (29) is similar

to (30) and then by modifying Figure 4(a) (and Figure 4(b) for GF (23)), one can obtain another

structure. This structure, which is denoted as double parity fault detection structure, is shown in

Figure 5(a). This new structure is obtained by replacing two shaded modules, i.e., the first pass-

thru and �0 modules, of Figure 4(a) with their corresponding non-shaded modules. Also, the output

of the AND gate which generates pApB is connected to the input of next shaded sum module. This

bit is located at the last position and predicts the output parity. Since pA is removed from the

input of the � module, it should be XORed at the output to obtain p̂X(m�1) as shown in Figure

5(a). The corresponding architecture for GF (23), which can also be obtained from Figure 4(b), is

shown in Figure 5(b). It is noted that Theorem 1 and Corollary 1 are not restricted to any particular

irreducible polynomials.

It is interesting to compare Corollary 1 with the parity prediction of a conventional integer

multiplier that multiplies two m-bit integers, say A and B, to generate a 2m-bit output, say S:

Then, the predicted parity can be obtained as p̂S = pApB + pC ; where pC is the carry parity and

can be obtained by adding all the carry bits [11].

4 Fault Detection in Low Complexity Bit-Parallel Multiplier

Recently, a new class of low complexity multiplier has been proposed in [17] (for trinomials), [15]

(for special pentanomials) and [14] (for general irreducible polynomials). The multiplier structure

proposed in [14] is shown in Figure 6(a). As seen in the figure, it consists of two blocks, namely I

and Q. After substituting (2) into (4), one can see that S is a binary polynomial of degree 2m � 2
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Figure 5: (a) Fault detection structure using double parity bits. (b) An example for GF (23):
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as

S =
m�1X
i=0

di�
i +

m�2X
j=0

ej�
m+j (31)

and the first block I of Figure 6(a) generates all coefficients of S using

di = [ai; ai�1; � � � ; a0; 0; � � � ; 0][b0; b1; � � � ; bm�1]
T ; 0 � i � m� 1; (32)

and

ej = [0; � � � ; 0; am�1; am�2; � � � ; aj+1; ][b0; b1; � � � ; bm�1]
T ; 0 � j � m� 2; (33)

which requires m2 AND gates and (m� 1)2 XOR gates. Then, the second block Q in Figure 6(a)

reduces these 2m � 1 coordinates to the m coordinates of C using the following matrix equation

[14]

c = [c0; c1; � � � ; cm�1]
T = d+QTe; (34)

where d = [d0; d1; � � � ; dm�1 ]T and e = [e0; e1; � � � ; em�2]T : In (34), Q is an m� 1 by m binary

matrix, known as the reduction matrix, which is obtained from [9].

[�m; �m+1; � � � ; �2m�2]T � Q[1; �; � � � ; �m�1]T (mod F (�)): (35)

As seen in (35), the reduction matrix is fixed for a given irreducible polynomial F (�): For

the example of F (z) = z3 + z + 1; one can obtain Q =

2
64 1 1 0

0 1 1

3
75 : Thus, the corresponding

multiplier over GF (23) is shown in Figure 6(b).

In this section, we want to detect a fault in the low complexity multiplier architecture of Figure

6. One way to achieve this is to add circuits at the output of the multiplier so that parity bit p̂C is

generated based on equation (22) or (29). The following will help us to implement either (22) or

(29).
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Figure 6: Low complexity bit-parallel multiplier: (a) general structure over GF (2m), (b) an exam-
ple over GF (23):

Lemma 2. Let qm�1 be the right-most column of the reduction matrix Q: Then,

x
(k)
m�1 = am�k�1 + [am�k; am�k+1; � � � ; am�1; 0; 0; � � � ; 0| {z }

m� 1 � k

]qm�1: (36)

Proof. Using the multiplication formulation of (34), one can obtain the coordinates of X(k) = A�k

as

[x(k)0 ; x
(k)
1 ; � � � ; x(k)m�1] = dT + eTQ

= [ 0; 0; � � � ; 0| {z };
k

a0; a1; � � � ; am�k�1] + [am�k; am�k+1; � � � ; am�1; 0; 0; � � � ; 0| {z }
m� 1� k

]Q

and its last coordinate is x(k)m�1 as given in (36).

By implementing either (22) or (29) and using (36), any single stuck faults in the path to

generate d will change at most one bit in the output of C and will be detected (see Figure 6(b)).

However, it cannot detect single faults in the I block that generates one of the entries of e: This

is because such a fault may cause even number of errors at the output. For example, as seen in

Figure 6(b), an error in e0 (or e1) causes two errors in c0 and c1 (or c1 and c2). Moreover, this fault
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detection structure is not area efficient because all x(k)m�1s should be implemented. In the following,

we will present an efficient fault detection structure for Figure 6(a).

4.1 Formulation

In order to obtain a fault detection structure for the multiplier of Figure 6(a), we use two parity

prediction functions, namely �I and �Q; to detect single faults in the I and Q blocks, respectively.

These functions can be obtained from the following lemmas.

Lemma 3. Let A and B be two field elements and S be their multiplication (without modular

reduction). Then,

p̂S = �I (A;B) = pApB; (37)

where pA and pB are the parity bits of A and B; respectively.

Proof. As seen in (31), S is a binary polynomial of degree 2m � 2: Then, one can see that p̂S =

pd + pe; where

pd =
m�1X
i=0

di; pe =
m�2X
i=0

ei: (38)

Using (32) and (33) (assume em�1 = 0), one can complete the proof as

p̂S =
m�1X
i=0

(di+ei) =
m�1X
i=0

[ai; � � � ; a0; ; am�1 � � � ; ai+1]b = [pA; pA; � � � ; pA]b = pA

m�1X
i=0

bi = pApB:

Lemma 4. Let qi; 0 � i � m�1; be the column i of the reduction matrix Q = [q0;q1; � � � ;qm�1]:

Then,

p̂C = �Q(d; e) = pd + eTq; (39)

where pd is given in (38) and q =
Pm�1

i=0 qi:

Proof. Using (34) and the linear property of the parity function, we have p̂C = pd + pQT e and the

proof is complete since pQT e = peTQ =
Pm�1

i=0 eTqi = eT
Pm�1

i=0 qi = eTq:
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Corollary 2. Let q0 = q+ 1m�1�1; where 1m�1�1 is a column vector whose m� 1 entries are all

one. Then,

p̂C = �Q(d; e) = pApB ++eTq0: (40)

Proof. Using (39) and pe =
Pm�2

i=0 ei = eT1m�1�1; we can write p̂C = pd+pe+eT1m�1�1+eTq

and this completes the proof since pd + pe = pApB:

4.2 Fault Detection Architecture

Using Lemmas 3 and 4 and comparing the predicted parity bits of p̂S and p̂C with the actual parity

bits pS and pC ; respectively, we will be able to detect any single faults (permanent or transient)

occurred in the I and Q blocks of Figure 6(a). The corresponding fault detection structure is

shown in Figure 7(a). In this figure two flags êI = pS + p̂S and êQ = pC + p̂C indicate the presence

of a single fault in the I and Q blocks of Figure 6(a), respectively. In the fault free situation both

flags are zero. Also, the overhead needed for GF (23) multiplier of Figure 6(b) to make it fault

detectable is shown in Figure 7(b).

Assume that there is a single stuck-at-fault in the I block of Figure 6(a), then at most one error

will be in S (either ei; 0 � i � m � 2; or dj ; 0 � j � m � 1 will be changed). This is because

the output of any gate (either an AND gate or an XOR gate) in the I block is connected only to an

input of the next gate (which is an XOR gate). Thus, if this fault changes the input bit of the next

gate, then only one of the bits of S (see Figure 7(b)) will be changed. As a result, the actual parity

of S; i.e.,

pS =
m�1X
j=0

dj +
m�2X
i=0

ei = pd + pe = pd + eT1m�1�1 = pd + eTq+ eTq0; (41)

will be changed. In Figure 7(a), equation (41) is realized and is compared with the predicted

parity of (37), i.e., p̂S = pApB; to indicate at most one error due to a fault in the I block as

êI = pS + p̂S = 1:

Now, we assume that a single stuck-at-fault (either permanent or transient) occurs in the Q
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êI

C

Q

c1
c2

c0

e0
e1

d1
d2

d0 êI
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Figure 7: Fault detection of the low complexity multiplier in Figure 6, (a) over GF (2m); (b) over
GF (23) generated by z3 + z + 1:

block of Figure 6(a), then all eis and djs are error free. This implies that in Figure 7(a), êI = 0

and p̂C = pd + eTq (see (39)) is error free. It is noted that although some lines on the e-bus are

reused (both e0 and e1 in Figure 7(b) are re-used), no signals inside the Q block of the multiplier

are re-used. Thus, the output of each XOR gate of the Q block is connected to a single XOR gate.

As a result, if a fault (either permanent or transient) occurs in this block, it will cause at most one

bit error in C . This will change pC in Figure 7(a) and it will be flagged by êQ; because p̂C is error

free.

It is worth mentioning that the above fault detection structure can also detect multiple faults in

any number of gates that generate di (or ei). This is because they may change at most one bit of di

(or ei) and it will be detected by êI :

4.3 Special Irreducible Polynomials

In (39) and (40) the entries of q and q0 belong to GF(2) and are determined based on the underlying

irreducible polynomials. Below, we want to obtain q and hence p̂C = �Q(d; e) for three classes of

irreducible polynomials.
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Equally-Spaced Polynomials

For an s equally-spaced polynomial of degree m, i.e., F (z) = zns+z(n�1)s+ � � �+zs+1; ns = m,

the reduction matrix Q is [14]

Q =

2
64 Is�s; Is�s; � � � ; Is�s

Im�s�1�m�s�1; 0m�s�1�s+1

3
75 ; (42)

where Ij�j is the j � j unity matrix and 0m�s�1�s+1 is a zero matrix which has m � s � 1 rows

and s+ 1 columns. Then, by adding columns of (42), one can obtain

q =

8>>>><
>>>>:

1m�1�1 if n odd2
64 0s�1

1m�s�1�1

3
75 otherwise,

; q0 =

8>>>><
>>>>:

0m�1�1 if n odd2
64 1s�1

0m�s�1�1

3
75 otherwise.

(43)

Therefore, using q in (43) and (39), we can state the following.

Lemma 5. For an s equally-spaced polynomial of degree m, i.e., F (z) = zns + z(n�1)s + � � � +

zs + 1; ns = m, the parity prediction function is p̂C = �Q(d; e) = pd +
Pm�2

i=t ei; where t =8><
>:

0; if n odd

s; otherwise.

Remark 1. If n is odd, one can see t = 0 and p̂C = pd +
Pm�2

i=0 ei = pd + pe = pApB:

Remark 2. For all-one polynomials, where s = 1 and n = m is even, one can see t = 1 and

p̂C = pApB + e0 (using (40) and q0 in (43)). Since e0 =
Pm�1

j=1 bjam�j (see (33)), one can

simplify the parity prediction of the multiplication to p̂C = pApB +
Pm�1

j=1 bjam�j: This matches

the corresponding result reported in [5].

Trinomials

Let F (z) = zm + zk + 1 be an irreducible trinomial generating GF (2m). Irreducible trinomials

have drawn significant attention in the past and reference [16] lists an irreducible trinomial for
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every degree m (� 10; 000) for which such a polynomial exists. To obtain the predicted parity

function of the multiplication, we now derive Q for the trinomial F (z) = zm+zk+1, 1 � k < m

2
:

This class of trinomials is important because two trinomials recommended by NIST for ECDSA,

namely z233 + z74 + 1 and z409 + z87 + 1; belong to this class.

Lemma 6. For the trinomial F (z) = zm + zk + 1, 1 � k < m

2
; the parity prediction function is

p̂C = �Q(d; e) =

8><
>:

pd +
Pm�2

i=m�k ei if k > 1

pd if k = 1:

Proof. Since �m+j =

8><
>:

�j + �j+k if 0 � j < m� k

�j + �j�m+k + �j�m+2k if m� k � j < m� 1;
one can see that

Q =

�
Im�1�m�1; 0m�1�1

�
+

2
64 0m�k�k ; Im�k�m�k

Ik�1�k�1; 0k�1�1; Ik�1�k�1; 0k�1�m�2k�1

3
75

Now, using the representation of Q, we can obtain q = 1m�1�1+

2
64 1m�k�1

0k�1�1

3
75 =

2
64 0m�k�1

1k�1�1

3
75

which completes the proof if (39) is used.

Pentanomials

After trinomials, pentanomials are the most suitable class of polynomials for defining the finite

field GF (2m): A polynomial with five non-zero coefficients, i.e., F (z) = zm+ zk3 + zk2 + zk1 +1,

where 1 � k1 < k2 < k3 � m� 1; is called a pentanomial of degree m: In terms of the values of

k1; k2; and k3; it can be divided to different classes of pentanomials. Here, we consider a popular

class of pentanomial where k3 < m

2 : For example, among the five binary fields recommended by

NIST for ECDSA, three are pentanomials that belong to this class, i.e., z163 + z7 + z6 + z3 + 1;

z283 + z12 + z7 + z5 + 1; and z571 + z10 + z5 + z2 + 1:

Lemma 7. For the pentanomialF (z) = zm+zk3+zk2+zk1+1, where 1 � k1 < k2 < k3 <
m

2 ; the
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parity prediction function is p̂C = �Q(d; e) =

8><
>:

pd +
Pm�2

i=m�k1
ei +

Pm�k2�1
i=m�k3

ei if k1 > 1

pd +
Pm�k2�1

i=m�k3
ei if k1 = 1:

Proof. In [14], the reduction matrix Q is obtained as Q = Q0 +Q1 +Q2 +Q3 for pentanomials

P (x) = xm + xk3 + xk2 + xk1 + 1, where 1 < k1 < k2 < k3 �
m
2
: The graphical representations

of these sub-matrices are shown in Figures 6(a)-(d) of [14]. Let q(01) and q(23) be two column

vectors that can be obtained by adding the columns of Q0 +Q1 and Q2 +Q3; respectively. Then,

using Figures 6(a) and 6(b) of [14], we can obtain q(01) =

2
64 0m�k1�1

1k1�1�1

3
75 : Similarly, using Fig-

ures 6(c) and 6(d) of [14], one can obtain q(23) =

2
66664
0m�k3�1

1k3�k2�1

0k2�1�1

3
77775 : Since q = q(01) + q(23); then

eTq = eTq(01) + eTq(23) =
Pm�2

i=m�k1
ei +

Pm�k2�1
i=m�k3

ei and the proof is complete for k1 > 1.

Similar proof can be done for k1 = 1:

5 Fault Detection in Bit-Serial Multipliers

There are two types of bit-serial, namely LSB-first and MSB-first, multipliers. Below, we consider

these multipliers and present their fault detection architectures.

5.1 LSB First Multiplier

The PB multiplier of Figure 1 can be realized in a bit-serial fashion as shown in Figure 8(a). In

this multiplier structure, both X = (xm�1; � � � ; x1; x0) and Y = (ym�1; � � � ; y1; y0) are m bit

registers. Let X(n) and Y (n) denote the contents of X and Y at the n-th, 0 � n � m; clock

cycle, respectively. Suppose the X register is initialized with A; i.e., X(0) = A; then the content

of this register at the n-th clock cycle is X(n) = X(n); where X(n) 2 GF (2m) is defined in

(7). Also, suppose that the register Y is initially cleared, i.e., Y (0) = 0: Then, one can obtain

the content of Y at the first clock cycle as Y (1) = b0A and in general at the n-th clock cycle as
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Figure 8: (a) LSB first bit-serial multiplier. (b) MSB first bit-serial multiplier.

Y (n) = b0A +
Pn�1

i=1 biX(i); 1 < n � m: Using (6) and noting the fact that X(n) = X(n); one

can determine that after m clock cycles Y contains C = AB 2 GF (2m), i.e., Y (m) = C: Since

the coordinates of B enter the multiplier from the least significant bit (LSB), i.e., b0, this multiplier

is referred to as the LSB first bit-serial multiplier.

5.1.1 Fault Detection Structures

One can also realize Figure 4(a) (and Figure 4(b)) in a bit serial fashion as shown in Figure 9(a) (and

Figure 9(b)). Compared to Figure 8(a), one bit is added to the bus of the multiplier and all modules

are replaced with the corresponding modules that can detect errors (shown as shaded modules in

Figure 9(a)). Also, two m-bit registers X = (xm�1; � � � ; x1; x0) and Y = (ym�1; � � � ; y1; y0) are

replaced with m+1-bit registers X 0 = (xm; xm�1; � � � ; x1; x0) and Y 0 = (ym; ym�1; � � � ; y1; y0):

In Figure 9(a), we assume that X 0 and Y 0 are initialized with X 0(0) = (pA; am�1; � � � ; a1; a0) and

Y 0(0) = (0; 0; � � � ; 0; 0); respectively. Then, after m clock cycles and in a fault free situation, the

output of Y 0 will be Y 0(m) = (p̂C ; cm�1; � � � ; c1; c0) and ê =
Pm�1

i=0 ci + p̂C = 0:

If a single fault (permanent or transient) occurs in the �0 module and the register X 0 (except

the xm bit and the XOR gate connected to it) in Figure 9(a), then in each clock cycle the number

of erroneous bits of Y 0 may increase. This is because in the �0 module of Figure 9(a), there is a

cyclic shift with addition operation (see Figure 9(b) for details) and it may increase the number of

errors. Thus, at the end of the m-th clock cycle, there is 50% chance that this fault is detected. If
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Figure 9: Fault detection of the LSB first bit-serial multiplier (comparison is made after the last
clock cycle): (a) the architecture over GF (2m); (b) an example over GF (23):

the single fault occurs in other parts of Figure 9(a) (including input and output of xm; the output

of shaded pass-thru and sum modules as well as Y 0 and the PG circuit), then at the end of the m-th

clock cycle at most one bit of the register Y 0 will be in error and thus it will be detected by ê: As a

result, the total fault coverage of Figure 9 is greater than 50%.

It is noted that we can use (29) to initializeX 0 and Y 0 registers withX 0(0) = (0; am�1; � � � ; a1; a0)

and Y 0(0) = (pApB; 0; � � � ; 0; 0); respectively and then obtain Y 0(m) = (p̂C ; cm�1; � � � ; c1; c0)

after m clock cycles. This helps us to increase the probability of fault detection of the multiplier by

duplicating the circuits related to xm and ym. Thus, by adding one extra gate to shaded modules of

Figure 9(a) and replacingX 0 and Y 0 with twom+2-bit registersX 00 = (xm+1; xm; xm�1; � � � ; x1; x0)

and Y 00 = (ym+1; ym; ym�1; � � � ; y1; y0); the new multiplier is obtained. In fault free sit-

uation, if X 00(0) = (0; pA; am�1; � � � ; a1; a0) and Y 00(0) = (pApB; 0; 0; � � � ; 0; 0); then

Y 00(m) = (p̂C ; p̂C ; cm�1; � � � ; c1; c0) after m clock cycles. Then, in the final clock cycles,

last two bits of Y 00 (ym+1 and ym) and
Pm�1

i=0 yi should be the same as pC :
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Fault Detection in Every Clock Cycle

We can also increase the probability of fault detection in the bit-serial multiplier of Figure 8(a),

by checking the contents of two registers in every clock cycle. Consider Figure 8(a) before the

triggering of the n + 1-th clock cycle. At this time, the input and output of the X register are

X(n + 1) and X(n); respectively and using Lemma 1 for the � module of Figure 8(a), we have

p̂X(n+1) = pX(n) + xm�1(n) =
Pm�2

i=0 xi(n); where xi(n) 2 GF (2) is the i-th coordinate of X(n):

In order to compare p̂X(n) with the actual value of pX(n); we need to store p̂X(n+1) into a 1-bit

register DX as shown in Figure 10. Then, after the n-th clock cycle, X(n) appears at the output of

register X and the actual value of pX(n) is evaluated and compared with the value of DX ; i.e., p̂X(n);

using the last XOR gate of Figure 10 that generates êX(n): Similar expression can be obtained for

the Y register. Since Y (n+ 1) = Y (n) + bnX(n); then

p̂Y (n+1) = pY (n) + bnpX(n): (44)

In Figure 10, p̂Y (n+1) is implemented using (44) and it is delayed by a 1-bit register DY to obtain

p̂Y (n): Then, it is compared with the actual value of pY (n) as shown in Figure 10. Therefore, if no

faults occur, after the first clock cycle, both êX(n) = p̂X(n) + pX(n) and êY (n) = p̂Y (n) + pY (n)

should be 0 and remain 0 until the last clock cycle, i.e., êX(n) = 0 and êY (n) = 0 for 1 � n � m:

If either êX(n) or êY (n) is not 0 during at least one clock cycle, i.e., one value of n for 1 � n � m,

the existence of a fault is detected. For the cryptographic applications where m is a large number,

it is most likely that either êX(n) or êY (n) is 1 in at least one clock cycle if a single permanent

fault occurs. It is noted that the probability of fault detection and hence the fault coverage may be

decreased if a single transient fault occurs.
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Figure 10: Fault detection in the bit-serial multiplier of Figure 8(a) (comparisons are made in every
clock cycle after the first clock cycle).

5.2 MSB First Multiplier

The PB multiplication of A and B in (5) can also be written as

C = (((bm�1A�+ bm�2A)�+ bm�3A) + � � � + b1A)�+ b0A: (45)

Equation (45) can be realized by an architecture as shown in Figure 8(b). In this architecture,

which is known as the most significant bit (MSB) first bit-serial multiplier, the registers U and V

are initialized with A = (am�1; � � � ; a1; a0) and 0 = (0; � � � ; 0; 0); respectively. Let V (n) denote

the content of V = (vm�1; � � � ; v1; v0) at the n-th, 0 � n � m clock cycle. Then, one can verify

that V (0) = 0; V (1) = bm�1A; V (2) = bm�1A�+ bm�2A; � � � ;

V (n+ 1) = V (n)�+ bm�n�1A; 0 � n � m� 1: (46)

Thus, after the m-th clock cycle V (m) = C (refer to (45)), i.e., the register V contains the coordi-

nates of C:
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5.2.1 Fault Detection Structures

In order to detect a single fault in the architecture of Figure 8(b), we can use the linear property of

parity prediction for equation (46) to obtain

p̂V (n+1) = p̂V (n)� + bm�n�1pA: (47)

Using (16), we can obtain p̂V (n)� = pV (n) + vm�1(n) and substituting into (47) results in

p̂V (n+1) = pV (n) + vm�1(n) + bm�n�1pA; (48)

where vm�1(n) 2 GF (2) denote bit m� 1 of V; i.e., vm�1; at the n-th clock cycle. Equation (47)

is used to obtain p̂C by replacing the m-bit register V = (vm�1; � � � ; v1; v0) in Figure 8(b) by the

m + 1-bit register V 0 = (vm; vm�1; � � � ; v1; v0); where vm(n) is used to store pV (n): Since the

initial value of V is 0; i.e., V (0) = (0; � � � ; 0; 0) 2 GF (2m); then vm(0) = pV (0) = 0 2 GF (2):

Thus, the circuit of Figure 11(a) implements (47), where U 0 and V 0 are two m + 1-bit registers

and should be initialized with U 0(0) = (pA; am�1; � � � ; a1; a0) and V 0(0) = (0; 0; � � � ; 0; 0);

respectively. After the m-th clock cycle, V 0 will have V 0(m) = (p̂C ; cm�1; � � � ; c1; c0) and its

m-th bit, i.e., vm(m) = p̂C is compared with
Pm�1

i=0 vi(m) = pC as shown in Figure 11(a). The

corresponding fault detection multiplier over GF (23) generated by z3 + z + 1 is shown in Figure

11(b).

In Figure 11, since a cyclic shift in the �0 module is in the main loop of the multiplier, any

single fault (permanent or transient) will result in more than one error in V 0 at the final clock cycle.

Thus, unlike the structure of Figure 9 which has the fault coverage greater than 50%, the fault

coverage of Figure 11 is 50%.

Fault Detection in Every Clock Cycle

A single fault (permanent or transient) may generate an even number of errors that cannot be

detected by the MSB-first multiplier of Figure 11. To overcome this problem, similar to the LSB-
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Figure 11: Fault detection of the MSB first bit-serial multiplier: (a) the architecture over GF (2m);
(b) an example over GF (23):
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ê(n)p̂V (n+1)
DV

V
pV (n)m� 1

0
1

bm�1; :::; b1; b0

Figure 12: Fault detection in the bit-serial multiplier of Figure 8(b) (comparison is made in every
clock cycle after the first clock cycle).

first multiplier, the content of V is checked in each clock cycle as shown in Figure 12. In this

figure, pV (n) =
Pm�1

i=0 vi(n) is compared with p̂V (n) by using an XOR gate that generates ê(n).

As seen in the figure, p̂V (n) is obtained from p̂V (n+1) using the 1-bit register DV and p̂V (n+1) is

implemented as
Pm�2

i=0 vi(n) + bm�n�1pA (see (47)). Thus, if no faults occur, ê(n) should be 0

after the first clock cycle until the m-th clock cycle, i.e., ê(n) = 0 for any 1 � n � m: If it flags

ê(n) = 1 during at least one clock cycle, say at the n0-th clock cycle, it implies that equation (48)

does not hold for n = n0 and a fault is detected by ê(n0) = 1: It is noted that the fault coverage

may be reduced if a transient fault is applied.
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6 Discussion and Conclusions

In this article, we have considered detection of single stuck-at faults in polynomial basis multipli-

ers. Compared to previously published results [5], the work presented here is quite generic in the

sense that it can be applied to any irreducible polynomial defining the field. The area overhead

cost of the fault detection structures is much lower than having an extra multiplier as needed in the

dual modular redundant system.

Table 1 shows the complexities and overheads of the fault detection structures in terms of

area and time. The complexities shown in the table consist of the complexities of the original

multipliers and their corresponding overheads, which are given in the square brackets. In this

table, TA and TX are delays of an AND gate and an XOR gate, respectively. Also, TLCBP =

TA + (2(! � 2) + dlog2(m� 1)e)TX; is the time delay of Figure 6(a), where ! is the number of

non-zero terms of the irreducible polynomial. Let TLSB � TA + TX and TMSB � TA + TX be

the clock periods of the original multipliers of Figure 8(a) and Figure 8(b), respectively. Then,

TLSB and TMSB will be the clock periods of Figure 9(a) and 11(a), respectively, since the overhead

will not affect on the clock periods. However, this is not the case in Figures 10 and 12. Let us

denote the clock periods of the corresponding multipliers of Figure 10 and Figure 12 by T 0

LSB and

T 0

MSB, respectively. From these figures, one can see that T 0

LSB � TA+(2+dlog2(m� 1)e)TX and

T 0

MSB � (1 + dlog2(m� 1)e)TX: In the last two columns of the table, the overhead percentages

and fault coverages are given. The overhead values are obtained for one finite field recommended

by NIST for ECDSA. It is interesting to note that while the proposed fault detecting bit-parallel

multipliers have a space complexity of O(m2); their overhead cost is O(m):

Although our discussions have centered around bit-parallel and bit-serial multipliers over GF (2m);

by combining the error-control schemes for serial and parallel multipliers, one can develop fault

detecting hybrid multipliers over composite fields [12].
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Fault detection muliplier Complexities=original+[overhead] Overhead%a Coverage
Traditional Bit-Parallel #AND m2 + [m] 0.6%

(Fig. 4a or #XOR (m+ ! � 2)(m� 1) + [4m� 2] 2.4% 100%
Fig. 5a) Delay TA +mTX + [dlog2(m+ 1)eTX ] 4.9%b

Low Complexity #AND m2 + [1] 0.004%
Bit-Parallel #XOR (m+ ! � 2)(m� 1) + [3m] 1.8% 100%

(Fig. 7a) Delay TLCBP + [(1 + dlog2me)TX ] 69.2%

LSB-First #AND m+ [1] 0.6%
(Fig. 9a, #XOR m+ ! � 2 + [m+ 2] 99%

comparison is made #1-bit reg. 2m+ [2] 0.6% >50%g

in the last clock) Delay mTLSB + [dlog2(m+ 1)eTX ] � 2:4%

LSB-First #AND m+ [1] 0.6%
(Fig. 10, #XOR m+ ! � 2 + [2m+ 1] 197%

comparison is made #1-bit reg. 2m+ [2] 0.6% 100%h

in every clock) Delay (m+ 1)T 0LSB
c 0.6%-450%d

MSB-First #AND m+ [1] 0.6%
(Fig. 11a, #XOR m+ ! � 2 + [m+ 2] 99%

comparison is made #1-bit reg. 2m+ [2] 0.6% 50%
in the last clock) Delay mTMSB + [dlog2(m+ 1)eTX ] � 2:4%

MSB-First #AND m+ 1 0.6%
(Fig. 12, #XOR m+ ! � 2 + [m+ 1] 99%

comparison is made #1-bit reg. 2m+ [1] 0.3% 100%h

in every clock) Delay (m+ 1)T 0MSB
e 0.6%-350%f

Table 1: Complexities and overhead cost of fault detection structures for multiplication using
polynomial bases. Note that the fault coverage is for both permanent and transient faults unless
stated.
________________________
aOverhead%=100�overhead/original, where m = 163; ! = 5 and we assume that TA = TX:
bIf the array of sum modules in the traditional multiplier is implemented using binary trees of XOR
gates, then this value will be much higher.
c(m+ 1)T 0

LSB = mTLSB + [(m+ 1)T 0

LSB �mTLSB]:
d0.6% is obtained if TLSB = T 0

LSB and 450% is obtained if TLSB = TA + TX and T 0

LSB =
TA + (2 + dlog2(m� 1)e)TX :
e(m+ 1)T 0

MSB = mTMSB + [(m+ 1)T 0

MSB �mTMSB]:
f0.6% is obtained if TMSB = T 0

MSB and 350% is obtained if TMSB = TA + TX and T 0

MSB =
(1 + dlog2(m� 1)e)TX :
gThe fault coverage will be increased if two parity checks, as mentioned earlier, are used.
hThe fault coverage may be reduced if a transient fault is applied.
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