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Abstract—The faults that accidently or maliciously occur in the
hardware implementations of the Advanced Encryption Standard
(AES) may cause erroneous encrypted/decrypted output. The
use of appropriate fault detection schemes for the AES makes
it robust to internal defects and fault attacks. In this paper, we
present a lightweight concurrent fault detection scheme for the
AES. In the proposed approach, the composite field S-box and
inverse S-box are divided into blocks and the predicted parities of
these blocks are obtained. Through exhaustive searches among all
available composite fields, we have found the optimum solutions
for the least overhead parity-based fault detection structures.
Moreover, through our error injection simulations for one S-box
(respectively inverse S-box), we show that the total error coverage
of almost 100% for 16 S-boxes (respectively inverse S-boxes) can
be achieved. Finally, it is shown that both the application-specific
integrated circuit and field-programmable gate-array imple-
mentations of the fault detection structures using the obtained
optimum composite fields, have better hardware and time com-
plexities compared to their counterparts.

Index Terms—AES, composite fields, error coverage, fault detec-
tion.

I. INTRODUCTION

T HE Advanced Encryption Standard (AES) has been lately
accepted by NIST [1] as the symmetric key standard for

encryption and decryption of blocks of data. In encryption, the
AES accepts a plaintext input, which is limited to 128 bits, and
a key that can be specified to be 128 (AES-128), 192 or 256
bits to generate the ciphertext. In the AES-128, which is here-
after referred to as the AES, the ciphertext is generated after
10 rounds, where each encryption round (except for the final
round) consists of four transformations. The four transforma-
tions in the AES encryption include SubBytes (implemented by
16 S-boxes), ShiftRows, MixColumns, and AddRoundKey. Fur-
thermore, to obtain the original plaintext from the ciphertext, the
AES decryption algorithm is utilized. The decryption transfor-
mations are the reverse of the encryption ones [1]. Among the
transformations in the AES, only the S-boxes in the encryption
and the inverse S-boxes in the decryption are nonlinear. It is in-
teresting to note that these transformations occupy much of the
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total AES encryption/decryption area [1]. Therefore, the fault
detection schemes for their hardware implementations play an
important role in making the standard robust to the internal and
malicious faults.

There exist many schemes for detecting the faults in the hard-
ware implementation of the AES, see for example [2]–[15].
Among them, the schemes presented in [2]–[7] are independent
of the ways the AES S-box and inverse S-box are implemented
in hardware. Moreover, there exist other fault detection schemes
that are suitable for a specific implementation of the S-box and
the inverse S-box. The approach in [8] and the one in [9] which
is extended in [10] are based on using memories (ROMs) for the
S-box and the inverse S-box. Moreover, a fault tolerant scheme
which is resistant to fault attacks is presented in [11]. To pro-
tect the combinational logic blocks used in the four transforma-
tions of the AES, either the parity-based scheme proposed in
[10] or the duplication approach is implemented. Furthermore,
to protect the memories used for storing the expanded key and
the state matrix, either the Hamming or Reed–Solomon error
correcting code is utilized. It is noted that our proposed fault
detection approach is only applied to the composite field S-box
and inverse S-box. Whereas, the scheme presented in [10] uses
memories. Using ROMs may not be preferable for high per-
formance AES implementations. Therefore, for applications re-
quiring high performance, the S-box and the inverse S-box are
implemented using logic gates in composite fields [16].

The schemes in [12]–[15] are suitable for the composite field
implementation of the S-box and the inverse S-box. The ap-
proach in [12] is based on using the parity-based fault detection
method for a specific S-box using composite field and polyno-
mial basis for covering all the single faults. In the scheme of
[13], the fault detection of the multiplicative inversion of the
S-box is considered for two specific composite fields. The trans-
formation and affine matrices are excluded in this approach.
Moreover, in [14], predicted parities have been used for the mul-
tiplicative inversion of a specific S-box using composite field
and polynomial basis. Furthermore, the transformation matrices
are also considered. Finally, in the parity-based approach in
[15], through exhaustive search among all the fault detection
S-boxes utilizing five predicted parities using normal basis, the
most compact one is obtained.

The contributions of this paper are as follows.
• We have presented a low-cost parity-based fault detection

scheme for the S-box and the inverse S-box using com-
posite fields. In the presented approach, for increasing the
error coverage, the predicted parities of the five blocks of
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Fig. 1. The S-box (the inverse S-box) using composite fields and polynomial basis [17] and their fault detection blocks.

Fig. 2. The S-box (the inverse S-box) using composite fields and normal basis [16] and their fault detection blocks.

the S-box and the inverse S-box are obtained (three pre-
dicted parities for the multiplicative inversion and two for
the transformation and affine matrices). It is interesting
to note that the cost of our multi-bit parity prediction ap-
proach is lower than its counterparts which use single-bit
parity. It also has higher error coverage than the approaches
using single-bit parities. We have implemented both the
proposed fault detection S-box and inverse S-box and other
counterparts. Our both ASIC and FPGA implementation
results show that compared to the approaches presented in
[13] and [14], the complexities of the proposed fault detec-
tion scheme are lower.

• Through exhaustive searches, we obtain the least area and
delay overhead fault detection structures for the optimum
composite fields using both polynomial basis and normal
basis. While in [15], only the S-box using normal basis has
been considered.

• The proposed fault detection scheme is simulated and
we show that the error coverages of close to 100%
for 16 S-boxes (respectively inverse S-boxes) can be
obtained.

• Finally, we have implemented the fault detection hardware
structures of the AES using both 0.18- m CMOS tech-
nology and on Xilinx Virtex-II Pro FPGA. It is shown that
the fault detection scheme using the optimum polynomial
and normal bases have lower complexities than those using
other composite fields for both with and without fault de-
tection capability.

II. PRELIMINARIES

In this section, we describe the S-box and the inverse S-box
operations and their composite-field realizations.

The S-box and the inverse S-box are nonlinear operations
which take 8-bit inputs and generate 8-bit outputs. In the S-box,
the irreducible polynomial of is used
to construct the binary field . Let

and be the input and the
output of the S-box, respectively, where is a root of ,
i.e., . Then, the S-box consists of the multiplicative
inversion, i.e., , followed by an affine trans-
formation [1]. Moreover, let and
be the input and the output of the inverse S-box, respectively.
Then, the inverse S-box consists of an inverse affine transfor-
mation followed by the multiplicative inversion.

The composite fields can be represented using normal basis
[16] or polynomial basis [17]–[20]. The S-box and inverse
S-box for the polynomial and normal bases are shown in
Figs. 1 and 2, respectively. As shown in these figures, for the
S-box using polynomial basis (respectively normal basis), the
transformation matrix (respectively 1) transforms a field
element in the binary field to the corresponding
representation in the composite fields . It is
noted that the result of in Fig. 1 (respectively

in Fig. 2) is obtained using the irreducible
polynomial of (respectively ).

1We use prime notations for the composite fields using normal basis.
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The multiplicative inversion in Fig. 1 consists of composite-
field multiplications, additions and an inversion in the sub-field

over [18]. The decomposition can
be further applied to represent as a linear polynomial
over and then using the irreducible polyno-
mials of and , respectively. As a re-
sult, it is understood that the implementation of the multiplica-
tive inversion can be performed using the field represented by

, see for example [18] and [19], or the field repre-

sented by and has been used in the literature,
see for example [17] and [20]. Finally, as seen in Fig. 2 for
normal basis, the decomposition is performed using the irre-
ducible polynomials of and .

For calculating the multiplicative inversion, the most efficient
choice is to let in the above
irreducible polynomials [16]. Then, we have the following for
the multiplicative inversion of the S-box using polynomial basis
(Fig. 1) and normal basis (Fig. 2), respectively, [16], [17]

(1)

(2)

It is noted that one can replace with to obtain (1)
and (2) for the inverse S-box. In the next section, we propose
the low-cost fault detection scheme for the S-box and the inverse
S-box.

III. FAULT DETECTION SCHEME

To obtain low-overhead parity prediction, we have divided the
S-box and the inverse S-box into five blocks as shown in Figs. 1
and 2. In these figures, the modulo-2 additions, consisting of
4 XOR gates, are shown by two concentric circles with a plus
inside. Furthermore, the multiplications in are shown
by rectangles with crosses inside. Let be the output of the
block denoted by dots in Figs. 1 and 2 for the S-box. As seen
in Fig. 1, , , , , and .
Similarly, from Fig. 2, , , , ,
and . One can replace with and with

for the inverse S-box. In the following, we have exhaustively
searched for the least overhead parity predictions of these blocks
denoted by in Figs. 1 and 2.

A. The S-Box and the Inverse S-Box Using Polynomial Basis

The implementation complexities of different blocks of the
S-box and the inverse S-box and those for their predicted pari-
ties are dependent on the choice of the coefficients
and in the irreducible polynomials
and used for the composite fields. Our goal in
the following is to find and for

the composite fields and for the
composite fields so that the area complexity of the

entire fault detection implementations becomes optimum. Ac-
cording to [21], 16 the possible combinations for
and exist. Moreover, for the composite fields

, we have exhaustively searched and have found the
possible choices for making the polynomial irre-
ducible. These parameters determine the complexities of some
blocks as explained next.

Blocks 1 and 5: Based on the possible values of and in

( in ), the transformation matrices
in Fig. 1 in blocks 1 and 5 of the S-box and the inverse S-box
can be constructed using the algorithm presented in [21]. Using

an exhaustive search, eight base elements in
(or ) to which eight base elements of are
mapped, are found to construct the transformation matrix.

In [22], the Hamming weights, i.e., the number of nonzero el-
ements, of the transformation matrices for the case

and different values of in are obtained. It is
noted that in [21], instead of considering the Hamming weights,
subexpression sharing is suggested for obtaining the low-com-
plexity implementations for the S-box. Here, we have also con-
sidered these transformation matrices for as well as
the transformation matrices for the inverse S-box for different
values of and and have derived their area and delay com-
plexities. Moreover, the gate count and the critical path delay
for blocks 1 and 5 and their predicted parities, i.e., and ,
of the S-box and the inverse S-box in have been ob-
tained.

Blocks 2 and 4: As shown in Fig. 1, block 2 of the S-box
and the inverse S-box consists of a multiplication, an addition, a
squaring and a multiplication by constant in . We
present the following lemma for deriving the predicted parity
of the multiplication in , using which the predicted
parities of blocks 2 and 4 in Fig. 1 are obtained.

Lemma 1: Let and
be the inputs of a multiplier in . The predicted pari-
ties of the result of the multiplication of and in
for and are as follows, respectively

if (3)

if (4)

Proof: One can perform modulo-2 addition of the coordi-
nates of the result of the multiplication over [17].
Then, by reordering and factoring of the result for
and , the predicted parities in (3) and (4) are ob-
tained.

The predicted parity of block 2 of the S-box and the inverse
S-box, i.e., in Fig. 1, depends on the
choice of the coefficients and .
Using Lemma 1, we have derived the complexity of the pre-
dicted parity of block 2 for these coefficients. Furthermore,
for block 4 in Fig. 1, which consists of two multiplications in

, one can also use Lemma 1 to derive the predicted
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parity. For block 2 of the S-box (respectively the inverse S-box)
over in Fig. 1, only the multiplication by constant

is affected for different values of . For this block, we have
exhaustively searched for and obtained the optimum implemen-
tation for different values of . Moreover, block 4 in Fig. 1 is
independent of the value of . Therefore, the complexity of the
predicted parity for this block is the same for all possible .

Block 3: We present the following theorem for block 3 of the
S-box and the inverse S-box over in Fig. 1.

Theorem 1: Let be the input and
be the output of an inverter in . The

predicted parities of the result of the inversion in ,
i.e., , for and are as follows, respec-
tively

(5)

(6)

where, represents an OR operation.
Proof: By Modulo-2 addition of the coordinates of the re-

sult of the inversion in for in [17], one
can obtain the predicted parity of as

. By
noting that and , one can reach
(5). Moreover, by XORing the result for , is
obtained as . Noting that

, one can simplify to reach
(6) and the proof is complete.

It is noted that the inversion in in Fig. 1 is indepen-
dent of the value of . Therefore, the complexity of the predicted
parity for this block is the same for any possible .

Considering the discussions presented in this section for dif-
ferent combinations of and for polynomial basis, we present
the following for the optimum parity predictions.

Proposition 1: The fault detection S-box using composite

fields has the least area complexity for
and . For this optimum S-box , we

have the following predicted parities for the five blocks in Fig. 1:
,

, ,
,

, where, and
. Additionally, among all the possible values

for using composite fields , yields to
the least-complexity architecture for the optimum S-box ,
respectively. Then, for the S-box we have: ,

,
,

, .
Furthermore, we have the following for the inverse S-box.
Proposition 2: For the inverse S-box using composite field

, choosing and and for
the one using composite field having
yields to the lowest area complexity architecture. It is noted that
blocks 3 and 4 have the same predicted parities as the S-box
by swapping and . For other blocks of the optimum inverse
S-box we have: ,

,
. Additionally, for the optimum inverse S-box

we have: ,
, .

B. The S-Box and the Inverse S-Box Using Normal Basis

In [15], the optimum fault detection S-box using normal basis
in Fig. 2 is derived. In this paper, we have also performed an ex-
haustive search for finding the optimum predicted parities based
on the choice of the coefficients and
for the five blocks of the inverse S-box using normal basis. We
have exhaustively searched for the least overhead transforma-
tion matrices and their parity predictions combined for the in-
verse S-box and have derived the total complexity for the pre-
dicted parities of blocks 1 and 5, i.e., and , and the de-
lays associated with them. These are used to obtain the optimum
S-box inverse S-box and its parity predictions in this section. It is
also noted that as shown in Fig. 2, blocks 2, 3, and 4 of the S-box
and the inverse S-box are the same. Therefore, considering [15],
the predicted parities of these blocks can be obtained for the in-
verse S-box. Using the discussions presented in this section, we
present the following for the optimum parity predictions.

Proposition 3: For different combinations of and for
normal basis, for the S-box and the inverse S-box,
and have the least area for the operations and their
fault detection circuits combined. The following is the predicted
parities for the S-box: ,

, ,
,

. Moreover, for the inverse S-box,
are the same as those for the S-box by swapping

and . For the other blocks, we have:
and .

It is noted that the area overhead of the proposed scheme
for the optimum structures consists of those of the optimum
parity predictions. In addition, 23 XORs for the actual parities
(3 XORs for adding the coordinates of each of , , and

and 7 XORs each for those of and ) are utilized. More-
over, the delay overhead of the predicted parities of five blocks
can overlap the delays for the implementations of five blocks in
Figs. 1 and 2. The only delay overhead for this scheme is the
delay of the actual parity of block 5, which is , where,
is the delay of an XOR gate.

IV. ERROR SIMULATIONS

If exactly one biterror appears at the output of the S-box (re-
spectively inverse S-box), the presented fault detection scheme
is able to detect it and the error coverage is about 100%. This
is because in this case, the error indication flag of the corre-
sponding block alarms the error. However, due to the techno-
logical constraints, single stuck-at error may not be applicable
for an attacker to gain more information [23]. Thus, multiple
bits will actually be flipped and hence multiple stuck-at errors
are also considered in this paper covering both natural faults and
fault attacks [23].

For the calculation of the error coverage for the multiple er-
rors, we define as the probability of error detection in block
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TABLE I
ERROR SIMULATION RESULTS OF THE OPTIMUM S-BOX AND INVERSE S-BOX

AFTER INJECTING 500 000 ERRORS

, , in Figs. 1 and 2. Then, the probability of not de-
tecting the errors in block is . For randomly distributed
errors in the S-box (respectively inverse S-box), this probability
for each block is independent of those of other blocks. There-
fore, one can derive the equation for the error coverage of the
randomly distributed errors as

(7)

where is the set of the block numbers where the faults are
injected. For randomly distributed errors, the error coverage for
each block is . Then, the representation of (7) can be
simplified as , where, is the
number of blocks. Therefore, if multiple errors are randomly
distributed in all blocks, the error coverage reaches 97% using

error indication flags.
We have performed error simulations for the S-boxes and the

inverse S-boxes using the optimum composite field obtained in
the previous section to confirm our above theoretical compu-
tation. In our simulations, we use stuck-at error model at the
outputs of the five blocks forcing one or multiple nodes to be
stuck at logic one (for stuck-at one) or zero (for stuck-at zero)
independent of the error-free values. We use Fibonacci imple-
mentation of the LFSRs for injecting random multiple errors,
where, the numbers, the locations and the types of the errors are
randomly chosen. In this regard, the maximum sequence length
polynomial for the feedback is selected. The injected errors are
transient, i.e., they last for one clock cycle. However, the results
would be the same if permanent errors are considered.

The results of the error simulations using Xilinx ISE ver-
sion 9.1i Simulator (ISim)2 are presented in Table I. As seen
in this table, up to 500 000 random errors are injected for both
the S-box and the inverse S-box. It is noted that in these ta-
bles, the optimum polynomial basis denoted by

, denoted by and normal basis (NB) are
presented. As shown in the table, using five parity bits of the
five blocks, the error coverage for random faults reaches 97%
which is the same as our theoretical computation in this section.
This error coverage will be increased if the outputs of more than
one S-box (respectively inverse S-box) of the AES implemen-
tation are erroneous. In this case, the errors detected in any of
16 S-boxes (respectively inverse S-boxes) contribute to the total
error coverage. Thus, error coverage of very close to 100% is
achieved.

2Xilinx [Online]. Available: http://www.xilinx.com/

V. ASIC AND FPGA IMPLEMENTATIONS AND COMPARISONS

In this section, we compare the areas and the delays of the pre-
sented scheme with those of the previously reported ones in both
both application-specific integrated circuit (ASIC) and field-
programmable gate array (FPGA) implementations. We have
implemented the S-boxes using memories and the ones pre-
sented in [20] (the hardware optimization of [17]), [18], and [22]
which use polynomial basis representation in composite fields.
We have also implemented the fault detection schemes proposed
in [2], [8] (both united and parity-based), and [10] which are
based on the ROM-based implementation of the S-box. The re-
sults of the implementations for both original and fault detec-
tion scheme (FDS) in terms of delay and area have been tabu-
lated in Tables II and III. As seen in these tables, the original
structures are not divided into blocks and full optimization of
the original entire architecture as a single block is performed in
both ASIC and FPGA. This allows us to find the actual over-
head of the presented fault detection scheme as compared to the
original structures which are not divided into five blocks. We
have used 0.18- m CMOS technology for the ASIC implemen-
tations. These architectures have been coded in VHDL as the
design entry to the Synopsys Design Analyzer. The results are
tabulated in Table II. Moreover, for the FPGA implementations
in Table III, the Xilinx Virtex-II Pro FPGA (xc2vp2-7) [24] is
utilized in the Xilinx ISE version 9.1i. Furthermore, the syn-
thesis is performed using the XST.

As seen in Tables II and III, we have implemented the fault
detection scheme presented in [2] and [8] based on using re-
dundant units for the S-box (united S-box). Furthermore, the
fault detection scheme proposed in [10] is implemented. This
scheme uses 512 9 memory cells to generate the predicted
parity bit and the 8-bit output of the S-box [10]. One can obtain
from Tables II and III that for both of these schemes, the area
overhead is more than 100%. As mentioned in the introduction,
the approach in [11] utilizes the scheme in [10] for protecting
the combinational logic elements, whose implementation results
are also shown in Tables II and III. Additionally, for certain AES
implementations containing storage elements, one can use the
error correcting code-based approach presented in [11] in addi-
tion to the proposed scheme in this paper to make a more reliable
AES implementation. Moreover, the parity-based scheme in [8]
which only realizes the multiplicative inversion using memories
is implemented. As seen in these tables, we have also imple-
mented the schemes in [13] and [14]. It is noted that the scheme
in [13] is for the multiplicative inversion and does not present the
parity predictions for the transformation matrices. Moreover, we
have applied the presented fault detection scheme to the S-boxes
in [18] and [22]. As seen in bold faces in Tables II and III, with
the error coverage of close to 100%, the presented low-com-
plexity fault detection S-boxes (presented in Section III) are
the most compact ones among the other S-boxes. The optimum
S-box and inverse S-box using normal basis have the least hard-
ware complexity with the fault detection scheme. Moreover, as
seen in the tables, the optimum structures using composite fields
and polynomial basis ( and ) have the least post place
and route timing overhead among other schemes. It is noted that
using sub-pipelining for the presented fault detection scheme in
this paper, one can reach much more faster hardware implemen-
tations of the composite field fault detection structures.
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TABLE II
ASIC IMPLEMENTATIONS OF THE FAULT DETECTION SCHEMES FOR THE S-BOX (SB) AND THE INVERSE S-BOX USING 0.18-�m CMOS TECHNOLOGY

TABLE III
XILINX VIRTEX-II PRO FPGA IMPLEMENTATIONS (xc2vp2-7) OF THE FAULT DETECTION SCHEMES FOR THE S-BOX (SB) AND THE INVERSE S-BOX

TABLE IV
ASIC IMPLEMENTATIONS OF THE FAULT DETECTION SCHEMES OF THE AES ENCRYPTION USING 0.18-�m MOS TECHNOLOGY

We have also implemented the AES encryption using the pre-
sented optimum S-boxes excluding the key expansion. Then, we
have added the proposed scheme for SubBytes and ShiftRows

considering that ShiftRows is the rewiring from the output of
SubBytes. The results are presented in Tables IV and V. As one
can notice, the S-boxes occupy more than three fourths of the
AES encryption. As shown in these tables, the most compact

AES encryption with and without the fault detection scheme
is for normal basis. Furthermore, the frequency degradation is
negligible. Moreover, the original AES encryption for and
the ones with fault detection for and have the highest
working frequencies. In addition, as seen in the tables, we have
applied the presented scheme to SubBytes and ShiftRows and
used the scheme in [10] for the other transformations.
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TABLE V
XILINX VIRTEX-II PRO FPGA IMPLEMENTATIONS OF THE FAULT DETECTION SCHEMES OF THE AES ENCRYPTION

VI. CONCLUSION

In this paper, we have presented a high performance parity-
based concurrent fault detection scheme for the AES using the
S-box and the inverse S-box in composite fields. Using exhaus-
tive searches, we have found the least complexity S-boxes and
inverse S-boxes as well as their fault detection circuits. Our error
simulation results show that very high error coverages for the
presented scheme are obtained. Moreover, a number of fault de-
tection schemes from the literature have been implemented on
ASIC and FPGA and compared with the ones presented here.
Our implementations show that the optimum S-boxes and the
inverse S-boxes using normal basis are more compact than the
ones using polynomial basis. However, the ones using polyno-
mial basis result in the fastest implementations. We have also
implemented the AES encryption using the proposed fault de-
tection scheme. The results of the ASIC and FPGA mapping
show that the costs of the presented scheme are reasonable with
acceptable post place and route delays.
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