
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 19, NO. 11, NOVEMBER 2011 2125

[10] B. Calhoun and A. Chandrakasan, “Static noise margin variation for
sub-threshold SRAM in 65-nm CMOS,” IEEE J. Solid-State Circuits,
vol. 41, no. 7, pp. 1673–1679, Jul. 2006.

[11] T. C. Hesterberg, “Advances in importance sampling,” Ph.D. disserta-
tion, Dept. Statistics, Stanford Univ., Stanford, CA, 1988.

[12] P. Smith, M. Shafi, and H. Gao, “Quick simulation: A review of impor-
tance sampling techniques in communications systems,” IEEE J. Sel.
Areas Commun., vol. 15, no. 4, pp. 597–613, May 1997.

[13] J. Wang, S. Yaldiz, X. Li, and L. Pileggi, “SRAM parametric failure
analysis,” in Proc. DAC, 2009, pp. 496–501.

Digit-Level Semi-Systolic and Systolic Structures for
the Shifted Polynomial Basis Multiplication Over

Binary Extension Fields

Arash Hariri and Arash Reyhani-Masoleh

Abstract—Finite field multiplication is one of the most important oper-
ations in the finite field arithmetic. In this paper, we study semi-systolic
and systolic implementations of the shifted polynomial basis multiplication
and propose low time complexity semi-systolic and systolic array struc-
tures. We show that our proposed semi-systolic multiplier is faster than
its existing counterparts available in the literature. Our application-spec-
ified integrated circuit (ASIC) implementation of the proposed semi-sys-
tolic multiplier demonstrates that reduction in time complexity is achieved
without imposing hardware overhead. Furthermore, our proposed systolic
array shifted polynomial basis (SPB) multiplier has a low time complexity
for general irreducible polynomials.

Index Terms—Binary extension fields, digit-level, multiplication, semi-
systolic, shifted polynomial basis, systolic.

I. INTRODUCTION

Cryptographic algorithms such as elliptic curve cryptography (ECC)
require different finite field arithmetic operations. Efficient design and
implementation of these operations affects the performance of cryp-
tosystems and consequently, has gained lots of interest in the literature,
e.g., [1]–[3], and [4]. One of the main finite field arithmetic operations
is the multiplication. The shifted polynomial basis (SPB), proposed in
[5], is a variation of the polynomial basis (PB). The available works
in the literature show that using the SPB results in efficient arithmetic
units, e.g., [1], [6]–[9], and [10]. In [1], bit-parallel multipliers are de-
signed for irreducible trinomials and type-II pentanomials, which are
faster than the best known polynomial basis and dual basis multipliers.
Similarly, it is shown in [6] that the SPB squarers are faster than their
PB counterparts. Using the SPB, a new approach for designing sub-
quadratic area complexity parallel multipliers is outlined in [7], where
the reported multipliers are better than the other similar ones in terms
of area and time complexities. Also using the SPB, different bit-parallel
multipliers are designed for irreducible pentanomials and trinomials in
[8] and [9], respectively. A parallel digit-serial SPB multiplication al-
gorithm is proposed in [10] which has lower time complexity than the
PB and Montgomery multiplication (MM) algorithms.

Manuscript received September 24, 2009; revised February 17, 2010 and July
01, 2010; accepted July 21, 2010. Date of publication September 13, 2010; date
of current version September 14, 2011.The work of Arash Reyhani-Masoleh
was supported in part by an NSERC Discovery grant.

The authors are with the Department of Electrical and Computer Engineering,
The University of Western Ontario, London, ON N6A 5B9, Canada (e-mail:
hariri@ieee.org, areyhani@uwo.ca).

Digital Object Identifier 10.1109/TVLSI.2010.2066994

A straightforward implementation of the projective Montgomery
scalar multiplication requires up to �� � ����� � �� � ��� �
���� � 	��
� � �� clock cycles, where ���� �, and � represent
the number of clock cycles for multiplication, addition, squaring, and
inversion, respectively [11]. The inversion using Itoh-Tsujii algorithm
requires ���

�
��� ��� ����� ��� � multiplications and �� �

squarings, where ���� �� denotes the Hamming weight of ��� ��
[11]. As a result, accelerating multiplication significantly affects the
performance of an elliptic-curve based crypto-system.

Semi-systolic array structures provide low latency in comparison to
systolic array implementations and require fewer latches. Also, they
can be pipelined to increase the throughput of the system. In the litera-
ture, semi-systolic array implementations have been presented for the
finite field multiplication, see for example [12]–[15], and [16]. In the
case of the PB, a classic multiplication structure is proposed in [12]
which is studied in [13] comprehensively. For the Montgomery multi-
plication, [14] introduces a semi-systolic structure. Also, [15] and [16]
introduce low-latency semi-systolic Montgomery multipliers.

In systolic array structures, the global lines are avoided and the con-
nections are limited to local ones. This results in more efficient VLSI
implementations. In case of the PB multiplication, [3] and [17] outline
two structures for general irreducible polynomials, respectively. In [18]
and [19], optimized structures are proposed for the PB multiplication
using general irreducible polynomials and irreducible trinomials. A low
latency systolic structure is proposed in [20] for all-one and equally
spaced polynomials. Moreover, digit-serial systolic PB multipliers are
proposed in [21], [22], and [23] for general irreducible polynomials. A
systolic implementation of the PB multiplication is proposed in [24] for
irreducible trinomials with a low latency. In case of the Montgomery
multiplication, [25] proposes very low latency systolic multipliers for
special irreducible polynomials. Also, two scalable structures are pro-
posed in [26] and [27].

The two contributions of this paper are stated as follows. The first
contribution of this paper is introducing a new low time-complexity
digit-level semi-systolic array structure for the SPB multiplication. The
proposed structure is based on a similar technique used in [15], [16],
[28], and [10]. In our proposed structure, the parallel operations are
balanced and have the same critical path delay. The Montgomery mul-
tipliers presented in [29] include non-pipelined structures for special
cases of irreducible polynomials. The semi-systolic structure presented
in this paper is a low-latency pipelined multiplier with low critical path
delay. We show that our proposed semi-systolic multiplier has the least
time complexity among the existing ones available in the literature
including [12]–[16], and [30]. The second contribution is to propose
a digit-level systolic array SPB multiplier which offers a better time
complexity, in terms of the combination of the critical path delay and
latency, than the existing counterparts for general irreducible polyno-
mials, such as [3], [17], [19], [23], [26], and [27].

The rest of this paper is organized as follows. In Section II, we
present our semi-systolic array implementation of the SPB multiplica-
tion. In Section III, we propose a digit-level systolic array structure for
the SPB multiplication. In Section IV, we provide our implementation
results and comparisons. Finally, we conclude this paper in Section V.

II. SEMI-SYSTOLIC SPB MULTIPLICATION

The binary extension field �	 ���� includes �� elements and is
associated with an irreducible polynomial defined as

	 �
� �

� � ����

��� � � � �� ��
 � �� �� � ��� �� (1)

for � � � to � � �. If is a root of 	 �
�, i.e., 	 �� � �, the
set ��� � �� � � � � ���� is known as the polynomial basis (PB). As-
suming � � � � � is an integer, the Shifted Polynomial Basis (SPB)

1063-8210/$26.00 © 2010 IEEE

2126 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 19, NO. 11, NOVEMBER 2011

for�� ���� is defined as the set ���� � ������ � � � � ������� [5]. As-
suming ��� � �� ����, one can write � � ���

��� ���
��� and

� � ���
��� ���

��� , where ��� �� � ��� ��. The multiplication in the
SPB is defined as

	 �

���

���

��
��� � � ���	
� ���� (2)

Note that 	 is also a field element of degree �� �� .
By expanding�, the SPB multiplication shown in (2) can be written

as

	 � ����
�� � ����

���� � � � �� ������
��

����� � � �� ������
������	
� ���� (3)

Now, we split 	 in (3) into two polynomials as follows:

	� � ����
�� � ����

���� � � � �� ������
���	
� ��� (4)

	 �� � ���� ������ � � � �� ������
������	
� ���� (5)

Our objective is to implement (4) and (5) independently and in par-
allel. In this regard, for (4) we define a recursive equation as

������� � ����� � ����	
� ��� (6)

where ����� � �, and � � �� � � � � � � and we write (4) as 	 � �
���

�������
������ � � �������

���. Now, another recursive equation
is defined as

	 ������ � �����
���� � 	 ����� � � �� � � � � (7)

where 	 ���� � 	 ���� � � and 	 � � 	 ������. As a result, 	 � is
obtained after � � iterations (i.e., clock cycles). This is because one
extra iteration is required to compute �����. Let ����� be represented as
�
����
����

��� � � � � � �
����
� � � �

����
� . Now, (6) is written as

������� � �
����
����

��� � � � �� �
����
� � �

����
� ��� � ��� �	
 � ����

(8)

Using the fact that � ��� � �, it follows ��� � ���� �
�����

��� � � � � � �� [29]. Thus, (8) is rewritten as

������� � �
����
� ������ � ��

����
� ���� � �

����
��� ������

� � � �� �
����
� �� � �

����
� ���� (9)

It can be concluded from (9) that for general irreducible polyno-
mials, this operation has the critical path delay of �� � �� , where
�� and �� represent the delay of a two-input AND gate and a two-input
XOR gate, respectively. The second recursive equation, (7), is written as
	 ������ � ������

����
����

����
�����

������� � ��������
����
� �

����
� ���� .

One can notice that this operation has the critical path delay of �����
for general irreducible polynomials as well. As (6) and (7) are com-
puted in parallel, the computation of	 � in (4) has the critical path delay
of �� � �� and requires � � clock cycles (i.e., iterations).

Next, we consider (5). The structure proposed in [13] can be used to
implement this part. First, the following recursive equation is defined
with the maximum degree of � � � � using the SPB

�������� � ������ � ��	
� ��� (10)

Fig. 1. One-dimensional semi-systolic SPB multiplier.

where������ � � and � � �� � � � � ����. By rewriting (5) and using
(10), one obtains 	 �� � ���

��� � �����
��� � � � �� �����

�������,
which results in the following recursive equation:

	 ������� � �����
����� � 	 ������ � � �� � � � ��� � � (11)

where 	 ����� � � and 	 �� � 	 �������. Therefore, 	 �� is obtained
after � � iterations (i.e., clock cycles). Using the fact that �� �
�����

��� � � � �� ����� and similar to (9), (10) can be realized in
hardware with the critical path delay of �� � �� . Similarly, (11) can
be implemented with the critical path delay of �� � �� .

Similar to	 �� 	 �� is obtained by computing (10) and (11) in parallel.
As a result, this operation has the critical path delay of �� � �� and
requires � � clock cycles (i.e., iterations). It is noted that (4) is a
SPB multiplication which only processes least significant bits of the
operand�. Also, (5) is a PB multiplication which processes�� most
significant bits of the operand �. As a result, the delay of obtaining 	
directly depends on the maximum delay of computing (4) and (5) which
require � � and � � clock cycles with the critical path delay of
�� � �� , respectively. As 	 � and 	 �� are computed in parallel, it is
efficient to have equal latencies in computing (4) and (5). Thus, we are
interested in the following:

 � � � �� � �
�

�
� (12)

Note that (12) implies that � is an odd integer which is the common
case in cryptographic applications [31]. Therefore, based on (12), the
SPB multiplication can be performed efficiently if we choose �
���������. The algorithm associated with this SPB multiplication is
shown in Algorithm 1. In each cycle of this algorithm, two bits of �
are processed. In Steps 4 and 5 of this algorithm, we compute 	 � �
�

��� �������� � ������� �	
 � ���� and 	 �� � �

��� ������ �
�� �	
 � ���� which are equal to (4) and (5), respectively. Note that
in Algorithm 1, ��� � �.

Algorithm 1: Low time-complexity SPB multiplication algorithm

Inputs: ��� � �� ����� � ���� � ���������

Output: 	 � � � � �	
 � ���
Step 1: �� �� �� 	 � �� �� ��� �� ��	 �� �� �
Step 2: For � �� � to ���������
Step 3: �� �� �� � ��� �	
 � ���
Step 4: 	 � �� �������

� � 	 �

Step 5: 	 �� �� �����
�� � 	 ��

Step 6: ��� �� ��� � � �	
 � ���
Step 7: 	 �� 	 � � 	 �� �	
 � ���

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 19, NO. 11, NOVEMBER 2011 2127

Fig. 2. (a) Two-dimensional semi-systolic SPB multiplier, (b) the cell ��� ��,
(c) the left-most column cells (the black dots represent latches).

Fig. 3. Digit-level systolic array cell (the black dots represent latches).

Now, we present a semi-systolic structure for Algorithm 1 in Fig. 1
using (6), (7), (10), and (11). The main loop in Algorithm 1 (Step 2)
has � � � iterations and consequently, the semi-systolic array struc-
ture requires ��� processing elements (PEs). The PEs represented by
��� for � � � to � in Fig. 1 implement Steps 3–6 of Algorithm 1. To
show the parallel operations, these PEs are split into two smaller PEs.
The PEs represented by ����� implement Steps 3 and 4, and the ones
represented by ����� implement Steps 5 and 6 of the algorithm. This
means that����� realizes (6) and (7), and����� realizes (10) and (11).
Finally, the last step of the algorithm (Step 7) requires a different PE
which is labeled as ��� in Fig. 1.

Now, we present this semi-systolic array structure in more details as
shown in Fig. 2(a). The cells are shown with two indices represented
by ��� ��, where � � � � ������	�� is the row number starting from

Fig. 4. Digit-level systolic array implementation of the SPB multiplication
using general irreducible polynomials.

TABLE I
COMPARISON OF THE SEMI-SYSTOLIC ARRAY FINITE FIELD MULTIPLIERS

TABLE II
ASIC IMPLEMENTATION OF SEMI-SYSTOLIC STRUCTURES

the top row, and � � � � ��� is the column number starting from the
right-hand side column. The row � in Fig. 2(a) represents ��� shown
in Fig. 1. To explain this structure, we show the internal structure of
the main cell ��� �� in Fig. 2(b). Note that ����� and ����� have been
merged. However, to distinguish between different PEs, we have shown
the internal structures of ����� and ����� with gray and white gates,
respectively. Corresponding to Steps 3–4 and 5–6, these two sets of
gates work in parallel without any interaction. The last row of the struc-
ture implements Step 7 of Algorithm 1 (i.e., ��� is Fig. 1) which in-
cludes � two-input XOR gates. Note that in the first row of Fig. 2(a),

2128 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 19, NO. 11, NOVEMBER 2011

TABLE III
COMPARISON OF DIFFERENT SYSTOLIC ARRAY GF�� � MULTIPLIERS

one of the inputs � (the bottom horizontal line) is zero since in (4),
���� � � � ��� ��� � ��� should be obtained first.

Considering Fig. 2(b), it follows that the critical path delay of
this structure is �� � �� and its latency is ���������� � �� clock
cycle. This structure has two types of cells. As mentioned before,
����������� 	� first rows perform the multiplication (
�� to
��)
and the last row performs the final addition �
���. As a result, one can
state the following for the complexity of this multiplier.

Proposition 1: The semi-systolic implementation of the SPB mul-
tiplication includes � � ���������� � 	� cells of the first type (as
shown in Fig. 2), each of which contains four two-input AND gates,
four two-input XOR gates, and five latches for general irreducible poly-
nomials. Also, the last row requires � two-input XOR gates.

The cells shown in Fig. 2(b) can be further simplified in some cases.
Some of the inputs of the cells located on the top row are zero. This
results in removing some of the XOR gates. The same case happens in
the left-most and right-most columns as well, where �������

��� � � and
�
�������
��� � �, respectively. Also, all the cells located on the row la-

beled ��������� only produce 	 � and 	 ��. Consequently, all the gates
required to generate the other outputs can be removed. Fig. 2(c) shows
a case where the cells located on the left-most column have been opti-
mized based on �������

��� � � and
� � 	.

III. SYSTOLIC ARRAY IMPLEMENTATION OF THE SPB MULTIPLICATION

USING GENERAL IRREDUCIBLE POLYNOMIALS

In this section, we design a digit-level systolic SPB multiplier using
general irreducible polynomials. From Fig. 2(a), one can notice that the
inputs ��s, � � � � �, are connected to the cells using global lines
which should be removed to achieve a systolic structure. Therefore, it
is required to latch all the horizontal connections as well.

Without lack of generality and for sake of simplicity, we set the
digit size to � �. Each basic cell in Fig. 2(a) processes two bits
of the operand �. Here, we modify the basic cells shown in Fig. 2(a) to
process two bits of the operand � as well. In this regard, we combine
two neighboring cells to form a new cell which is shown in Fig. 3. The
small dots on the interconnections show the necessary latches.

Fig. 4 shows the digit-level systolic SPB multiplier using general
irreducible polynomials. The new cell ���� ��� in Fig. 4 is formed by
merging the cells ���� ���� and ���� ��� � 	� in Fig. 2(a). Since � is
chosen to be an odd number in cryptographic applications, the cells in
the left-most column have a simpler structure similar to the one shown
in Fig. 2(b). The small rectangular blocks on inputs ��s, � � � �
�, and outputs of row ��������� represent the number of delay units
required to be considered on the corresponding connection. The delay
units for the vertical inputs of the first row of the digit-level systolic
array have not been depicted in Fig. 4 for simplicity. Here again some
of the cells shown in Fig. 4 can be further simplified. This includes all

the cells of the first row, where some inputs are fixed to zero and the
cells on the second last row where just 	 � and	 �� should be computed.

From Figs. 3 and 4, the critical path delay of this structure is�����
with the latency of ����������� and each cell requires 8 two-input
AND gates, 8 two-input XOR gates, and 28 latches. The total number of
the cells is ���������� plus � two-input XOR gates for the last row.
The presented structure can be generalized for other even digit sizes as
well. Assuming is the digit size, the general structure is constructed
by merging the cells of �� rows and columns in Fig. 2(a). Then, the
cut-set systolization technique should be applied. As a result, each cell
will process bits of both � and �.

IV. COMPLEXITY ANALYSIS AND COMPARISONS

The complexity results of the semi-systolic array implementation of
the finite field multipliers are summarized in Table I. For all the designs,
it is assumed that the input � ��� is latched. Also, ��� and �� repre-
sent the delay of a three-input XOR gate and a multiplexer, respectively.
Assuming � is an odd positive integer [31], this structure (without
simplification) requires �� more two-input XOR gates and �� more
AND gates in comparison with [13]. However, the proposed structure
requires about ������ �� less latches than [13] and its latency is al-
most a half of the latency of the other classic semi-systolic finite field
multipliers (e.g., [12], [13], and [14]). In comparison to the existing
parallel structures with � � (i.e., [15], [16], and [30]), our proposed
multiplier offers the least critical path delay with a similar latency and
area complexity. Note that the multiplier of [30] requires some multi-
plexers and they have not been included in Table I. Also, the area com-
plexity of the multiplier proposed in [16] is presented in Table I for
general irreducible polynomials without any simplifying assumption.

To further evaluate the proposed semi-systolic SPB multiplier, it
has been implemented on 65 nm complimentary metal-oxide-semicon-
ductor (CMOS) ASIC technology using the Synopsys® Design Ana-
lyzer® and structural VHDL. We have also implemented the LSB-first
semi-systolic PB multiplier of [13] as a good comparison benchmark.
The Map Effort was set to medium with a target clock period of 1 ns.
The results are presented in Table II for some values of � up to 131
based on our available resources in the laboratory (i.e., memory con-
straints of the Sun machines). As one can see from the table, both struc-
tures have the same critical path delay. Since the proposed structure
requires less latches than the multiplier of [13] does, it has lower area
and power consumption.

The proposed digit-level systolic multiplier is compared to the ex-
isting systolic multipliers in Table III. Note that we have included the
multipliers which mostly have been designed for general irreducible
polynomials to have a fair comparison. However, some of the multi-
pliers included in this table are designed for trinomials which are ex-
pected to have better time and area complexities. It can be seen from
the table that the proposed multiplier has the critical path delay of

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 19, NO. 11, NOVEMBER 2011 2129

�� � �� and the latency of ���������� � �. One can notice from
Table III that the proposed digit-level systolic array SPB multiplier has
a better time complexity while its area complexity is comparable to
the existing structures reported in [3], [17], [19], and [23]. In compar-
ison to [26] and [27], our proposed multiplier is faster however it has a
higher area complexity. The multiplier reported in [25] for irreducible
trinomials has a better time and area complexities (the lower bound
of the area has been reported in Table III). It is noted that this is ex-
pected since having the restriction of the polynomial to be a trinomial
simplifies the multiplication algorithm and the hardware implementa-
tion. However, our multiplier is designed for general irreducible poly-
nomials without any assumptions. Comparing to the multipliers pre-
sented in this paper, the multipliers of [29] are in a different category of
multipliers (non-pipelined multipliers). The MSB-first bit-serial Mont-
gomery multiplier presented in [29] has the same critical path delay of
����� , however its latency is� clock cycles whereas the latency of
the semi-systolic multiplier proposed in this paper is ������� clock
cycles and it is pipelined. It can be concluded from Table III that our
proposed multiplier is faster than the existing ones designed for general
irreducible polynomials.

V. CONCLUSION

In this paper, we have proposed a digit-level semi-systolic array SPB
multiplier which has the critical path delay of �� � �� with the la-
tency of �������. This structure outperforms the existing semi-sys-
tolic structures in terms of time complexity (combination of critical
path delay and latency). Also, we have designed a digit-level systolic
array SPB multiplier which has the critical path delay of ����� and
the latency of ����������� �. The complexity results show that our
proposed systolic structure has a better time complexity (combination
of critical path delay and latency) than the existing counterparts using
general irreducible polynomials.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their constructive
comments.

REFERENCES

[1] H. Fan and M. Hasan, “Fast bit parallel shifted polynomial basis mul-
tipliers in �� �� �,” IEEE Trans. Circuits Syst. I: Fundam. Theory
Appl., vol. 53, no. 12, pp. 2606–2615, Dec. 2006.

[2] A. Reyhani-Masoleh and M. Hasan, “Low complexity bit parallel ar-
chitectures for polynomial basis multiplication over �� �� �,” IEEE
Trans. Comput., vol. 53, no. 8, pp. 945–959, Aug. 2004.

[3] C.-S. Yeh, I. S. Reed, and T. K. Truong, “Systolic multiplier for finite
fields �� �� �,” IEEE Trans. Comput., vol. C-33, pp. 357–360, Apr.
1984.

[4] T. Beth and D. Gollman, “Algorithm engineering for public key algo-
rithms,” IEEE J. Sel. Areas Commun., vol. 7, no. 4, pp. 458–466, May
1989.

[5] H. Fan and Y. Dai, “Fast bit-parallel �� �� � multiplier for all trino-
mials,” IEEE Trans. Comput., vol. 54, no. 4, pp. 485–490, Apr. 2005.

[6] S. M. Park and K. Y. Chang, “Low complexity bit-parallel squarer
for�� ��) defined by irreducible trinomials,” IEICE Trans. Fundam.
Electron., Commun. and Comput. Sci., vol. 89, pp. 2451–2452, 2006.

[7] H. Fan and M. Hasan, “A new approach to subquadratic space com-
plexity parallel multipliers for extended binary fields,” IEEE Trans.
Comput., vol. 56, no. 2, pp. 224–233, Feb. 2007.

[8] S. M. Park, K. Y. Chang, and D. Hong, “Efficient bit-parallel multiplier
for irreducible pentanomials using a shifted polynomial basis,” IEEE
Trans. Comput., vol. 55, no. 9, pp. 1211–1215, Sep. 2006.

[9] C. Negre, “Efficient parallel multiplier in shifted polynomial basis,” J.
Syst. Architecture, vol. 53, no. 2–3, pp. 109–116, 2007.

[10] A. Hariri and A. Reyhani-Masoleh, “Digit-serial structures for the
shifted polynomial basis multiplication over binary extension fields,”
in Proc. 2nd Int. Workshop Arithmetic Finite Fields (WAIFI), 2008,
vol. 5130, pp. 103–116, ser. Lecture Notes in Computer Science.

[11] B. Ansari and M. Hasan, “High performance architecture of elliptic
curve scalar multiplication,” IEEE Trans. Comput., vol. 57, no. 11, pp.
1443–1453, Nov. 2008.

[12] B. A. Laws and C. K. Rushforth, “A cellular-array multiplier for GF
�� �,” IEEE Trans. Comput., vol. C-20, no. 12, pp. 1573–1578, Dec.
1971.

[13] S. K. Jain, L. Song, and K. K. Parhi, “Efficient semisystolic architec-
tures for finite-field arithmetic,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 6, no. 1, pp. 101–113, Mar. 1998.

[14] C. W. Chiou, C. Y. Lee, A. W. Deng, and J. M. Lin, “Concurrent
error detection in montgomery multiplication over �� �� �,” IEICE
Trans. Fundam. Electron., Commun. Comput. Sci., vol. E89-A, no. 2,
pp. 566–574, Feb. 2006.

[15] L. Batina, N. Mentens, B. Preneel, and I. Verbauwhede, “Balanced
point operations for side-channel protection of elliptic curve cryptog-
raphy,” IEE Proc. Inf. Security, vol. 152, no. 1, pp. 57–65, Oct. 2005.

[16] P. K. Meher, “Systolic formulation for low-complexity serial-parallel
implementation of unified finite field multiplication over �� �� �,”
in Proc. IEEE Int. Conf. Appl.-specific Syst., Architectures Processors,
Montreal, QC, 2007, pp. 134–139.

[17] C. L. Wang and J. L. Lin, “Systolic array implementation of multipliers
for finite fields �� �� �,” IEEE Trans. Circuits Syst., vol. 38, no. 7,
pp. 796–800, Jul. 1991.

[18] C. Y. Lee, “Low-complexity bit-parallel systolic multipliers over
�� �� �,” Integr., VLSI J., vol. 41, no. 1, pp. 106–112, Jan. 2008.

[19] S. Kwon, C. H. Kim, and C. P. Hong, “More efficient systolic arrays for
multiplication in �� �� � using LSB first algorithm with irreducible
polynomials and trinomials,” Comput. Electr. Eng., vol. 35, no. 1, pp.
159–167, Jan. 2009.

[20] C. Y. Lee, E. H. Lu, and J. Y. Lee, “Bit-parallel systolic multipliers for
�� �� � fields defined by all-one and equally spaced polynomials,”
IEEE Trans. Comput., vol. 50, no. 5, p. 385, May 2001.

[21] J. H. Guo and C. L. Wang, “Digit-serial systolic multiplier for finite
fields �� �� �,” IEE Proc. Comput. Digital Techn., vol. 145, no. 2,
pp. 143–148, Mar. 1998.

[22] C. H. Kim, S. D. Han, and C. P. Hong, “An efficient digit-serial systolic
multiplier for finite fields �� �� �,” in Proc. 14th Annu. IEEE Int.
ASIC/SOC Conf., Arlington, VA, 2001, pp. 361–365.

[23] C. H. Kim, C. P. Hong, and S. Kwon, “A digit-serial multiplier for finite
field�� �� �,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol.
13, no. 4, pp. 476–483, Apr. 2005.

[24] C. Y. Lee, “Low complexity bit-parallel systolic multiplier over
�� �� � using irreducible trinomials,” IEE Proc. Comput. Digital
Tech., vol. 150, no. 1, pp. 39–42, Jan. 2003.

[25] C. Y. Lee, J. S. Horng, I. C. Jou, and E. H. Lu, “Low-complexity
bit-parallel systolic montgomery multipliers for special classes of
�� �� �,” IEEE Trans. Comput., vol. 54, no. 9, pp. 1061–1070, Sep.
2005.

[26] C. Y. Lee, C. W. Chiou, J. M. Lin, and C. C. Chang, “Scalable and sys-
tolic montgomery multiplier over �� �� � generated by trinomials,”
IET Circuits, Devices Syst., vol. 1, no. 6, pp. 477–484, Dec. 2007.

[27] C. C. Chen, C. Y. Lee, and E. H. Lu, “Scalable and systolic mont-
gomery multipliers over �� �� �,” IEICE Trans. Fund. Electron.,
Commun. Comput. Sci., vol. E91-A, no. 7, pp. 1763–1771, Jul. 2008.

[28] M. E. Kaihara and N. Takagi, “Bipartite modular multiplication
method,” IEEE Trans. Comput., vol. 57, no. 2, pp. 157–164, Feb.
2008.

[29] A. Hariri and A. Reyhani-Masoleh, “Bit-serial and bit-parallel mont-
gomery multiplication and squaring over �� �� �,” IEEE Trans.
Comput., vol. 58, no. 10, pp. 1332–1345, Oct. 2009.

[30] S. Moon, J. Park, and Y. Lee, “Fast VLSI arithmetic algorithms for
high-security elliptic curve cryptographic applications,” IEEE Trans.
Consum. Electron., vol. 47, no. 3, pp. 700–708, Aug. 2001.

[31] NIST, “Recommended Elliptic Curves for Federal Government Use,”
Jul. 1999 [Online]. Available: http://csrc.nist.gov/groups/ST/toolkit/
documents/dss/NISTReCur.pdf

