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Abstract—In cryptographic applications, the use of normal bases to represent elements of the finite field GFð2mÞ is quite

advantageous, especially for hardware implementation. In this article, we consider an important field operation, namely, multiplication

which is used in many cryptographic functions. We present a class of algorithms for normal basis multiplication in GFð2mÞ. Our

proposed multiplication algorithm for composite finite fields requires a significantly lower number of bit level operations and, hence, can

reduce the space complexity of cryptographic systems.

Index Terms—Finite fields, multiplication, normal bases, composite fields, optimal bases.
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1 INTRODUCTION

MANY cryptographic functions, such as key exchange,
signing, and verification, require significant amount

of computations in the finite field GFð2mÞ. The elements of
such a field can be represented in different ways. The choice
of the representation plays an important role in determining
the complexity of a finite field arithmetic unit and,
consequently, that of a cryptographic system. Among the
various ways one can represent field elements, the use of
normal bases has drawn significant attention, especially for
implementing cryptographic functions in hardware [1].

In a normal basis representation, squaring can be
performed simply by a cycle shift of the coordinates of an
element and, hence, in hardware, it is almost free of cost.
Such a cost advantage often makes the normal basis a
preferred choice of representation. However, a normal basis
multiplication is not so simple. In [10], Massey and Omura
proposed a normal basis multiplication scheme which can
be implemented in bit-parallel fashion using m identical
logic blocks whose inputs are cyclically shifted from one
another [25]. Although this normal basis multiplier offers
modularity, its space complexity1 is quite high.

In the recent past, considerable efforts have been made,
for example, [13], [23], [6], [9], and [20], to reduce the space
complexity of the normal basis multiplier. In [13], two
special types of normal bases were reported which are
known as type-I and type-II optimal normal bases. In [5], it

was shown that these two types are all the optimal normal
bases in GFð2mÞ. The use of these optimal normal bases can
considerably reduce the complexity of the multiplier [23],
[6], [3], and [20].

In this article, we first present an algorithm for multi-
plication in GFð2mÞ. This algorithm is quite generic in the
sense that it is not restricted to any special type of normal
bases. Compared to other generic algorithms for normal
basis multiplication in GFð2mÞ, the proposed one requires
fewer bit level multiplications. Although this is achieved at
the expense of extra bit level additions, the total number of
GF(2) operations is the same as that of the best known
generic algorithm. Unlike the existing normal basis multi-
plication algorithms, our algorithm is highly suitable for
software implementation on general purpose processors
and we give the number of main instructions needed by
such processors for multiplication over GFð2mÞ.

Our algorithm is then applied to the type-I optimal normal
basis to further reduce the number of bit level operations. We
then present an algorithm for normal basis multiplication in
composite finite fields. This algorithm significantly reduces
bit level operations, in terms of both addition and multi-
plication over GF(2). To show the advantage of the proposed
algorithms, we compare our results with those of the best
known normal basis multipliers.

The organization of the rest of this article is as follows: In
the next section, we briefly review the conventional normal
basis multiplication scheme, which relies on inner product
operations over the ground field. In Section 3, first we prove
a number of results for the normal basis multiplication matrix
and then derive an algorithm for multiplication over
GFð2mÞ. We also give the computational complexity of the
algorithm in terms of the number of bit level operations
needed. This algorithm is then adapted for its easy software
implementation on general purpose processors. In Section 4,
we apply the above algorithm to a special class of normal
bases, namely, the type-I optimal normal basis, and we give
an exact analysis for this case and compare our results with
those of existing schemes. Then, in Section 5, we consider
finite fields GFð2mÞ where m is a composite number. For
such composite finite fields, we give a multiplication
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1. Conventionally, the space complexity of the GFð2mÞmultiplier is given
in terms of the number of logic gates, namely XOR and AND gates, which
correspond to GR(2) (i.e., bit level) addition and multiplication, respec-
tively.
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algorithm, its complexity, and comparison results. Finally,
we make a few concluding remarks in Section 6.

2 PRELIMINARIES

2.1 Normal Basis Representation

It is well-known that there exists a normal basis (NB)
in the field GF ð2mÞ over GF ð2Þ for all positive
integers m. By finding an element � 2 GF ð2mÞ such
that f�; �2; � � � ; �2mÿ1g is a basis of GF ð2mÞ over GF ð2Þ, any
element A 2 GF ð2mÞ can be represented as

A ¼
Xmÿ1

j¼0

aj�
2j ¼ a0� þ a1�

2 þ � � � þ amÿ1�
2mÿ1

; ð1Þ

where aj 2 GF ð2Þ, 0 � j � mÿ 1, is the jth coordinate of A.
In short, this normal basis representation of A will be
written as A ¼ ða0; a1; � � � ; amÿ1Þ. In vector notation, (1) will
be written as

A ¼ a � �T ¼ � � aT ; ð2Þ

where a ¼ ½a0; a1; � � � ; amÿ1�, � ¼ ½�; �2; � � � ; �2mÿ1 �, and T
denotes vector transposition.

The main advantage of the NB representation is that an
element A can be easily squared by a cyclic shift of its
coordinates since

A2 ¼ ðamÿ1; a0; � � � ; amÿ2Þ
¼ amÿ1� þ a0�

2 þ � � � þ amÿ2�
2mÿ1

:
ð3Þ

2.2 Normal Basis Multiplication

Let A and B be any two elements of GF ð2mÞ and be
represented with respect to (w.r.t.) the NB as A ¼Pmÿ1

i¼0 ai�
2i and B ¼

Pmÿ1
j¼0 bj�

2j , respectively. Let C denote
their product, i.e.,

C ¼ A �B ¼ ða � �T Þ � ð� � bT Þ ¼ a �M � bT ; ð4Þ

where the multiplication matrix M is defined by

M ¼ �T � � ¼ �2iþ2j
h i

¼

�20þ20
�20þ21 � � � �20þ2mÿ1

�21þ20
�21þ21 � � � �21þ2mÿ1

..

. ..
. . .

. ..
.

�2mÿ1þ20
�2mÿ1þ21 � � � �2mÿ1þ2mÿ1

266664
377775:

ð5Þ

All entries of M belong to GFð2mÞ and if they are written
w.r.t. the NB, then the following is obtained

M ¼M0� þM1�
2 þ � � � þMmÿ1�

2mÿ1

; ð6Þ

where Mis are m�m matrices whose entries belong to
GF ð2Þ. Substituting (6) into (4), the coordinates of C are
found as follows:

ci ¼ a �Mi � bT 0 � i � mÿ 1

¼ aðiÞ �M0 � bðiÞ
T

0 � i � mÿ 1;
ð7Þ

where aðiÞ is the i-fold left cyclic shift of a and the same is for
bðiÞ

T

[6].

Example 1. Consider the finite field GF ð25Þ generated by
the irreducible polynomial F ðzÞ ¼ z5 þ z2 þ 1 and let �
be its root, i.e., F ð�Þ ¼ 0. We choose � ¼ �3, then
f�; �2; �4; �8; �16g is a normal basis. Then, using
Table 1 in [13], we have

M0 ¼

0 0 1 1 1
0 0 0 1 1
1 0 0 1 0
1 1 1 0 1
1 1 0 1 1

266664
377775:

Let A and B be two elements in GF ð25Þ, whose
representations w.r.t. the normal basis are

A ¼ ða0; a1; � � � ; a4Þ ¼
X4

i¼0

ai�
2i

and

B ¼ ðb0; b1; � � � ; b4Þ ¼
X4

i¼0

bi�
2i :

Thus, using (7), the coordinates of C are computed as

ci ¼ aÿiðb2ÿi þ b3ÿi þ b4ÿiÞ þ a1ÿiðb3ÿi þ b4ÿiÞ
þ a2ÿiðbÿi þ b3ÿiÞ þ a3ÿiðbÿi þ b1ÿi þ b2ÿi þ b4ÿiÞ
þ a4ÿiðbÿi þ b1ÿi þ b3ÿi þ b4ÿiÞ; 0 � i � 4;

where subtractions in subscripts are performed modulo 5.

Definition 1. The numbers of 1s in all Mis are equal. Let us
define this number by

CN ¼ HðMiÞ; 0 � i � mÿ 1; ð8Þ

which is known as the complexity of the NB [13]. In (8),
HðMiÞ refers to the Hamming weight, i.e., the number of 1s,
in Mi.

3 A NEW MULTIPLICATION SCHEME

3.1 Multiplication Matrix Revisited

In (5), the multiplication matrix M is symmetric, i.e., M ¼
MT and its diagonal entries are the elements of the NB.
Denoting M as ½�i;j�mÿ1

i;j¼0, where �i;j ¼ �j;i ¼ �2iþ2j , it is easy
to see that

�i;j ¼ �2
iÿ1;jÿ1; 0 < i; j � mÿ 1:

Thus, given the m entries of the 0th row of M, the
generation of all its other entries (except the leftmost
entries) require at most some squaring operations, which
are, however, essentially free of cost in a normal basis
representation. Now, if we let

�j ¼ �1þ2j j ¼ 0; 1; � � � ; v; ð9Þ

where v ¼ bm2c, then the entries of M can be conveniently
obtained from �js, as stated in the following lemma.

Lemma 1. For the multiplication matrix M ¼ ½�i;j�mÿ1
i;j¼0, the

following holds:
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�i;j ¼ �j;i ¼
�2i

jÿi; 0 < jÿ i � v;
�2j

mþiÿj; v < jÿ i � mÿ 1:

(
ð10Þ

Proof. Since M is symmetric, �i;j ¼ �j;i. For 0 < i < j � v,

�i;j ¼ �2iþ2j ¼ �1þ2jÿi
� �2i

¼ �2i

jÿi:

Now, for v < i < j � mÿ 1, we have jÿ i > v. Thus, mÿ

ðjÿ iÞ � v and the following holds:

�i;j ¼ �2iþ2j ¼ �2mþiÿjþ1
� �2j

¼ �2j

mþiÿj:

ut

Noting that

�mÿ1ÿv ¼
�v for m odd;
�vÿ1 for m even;

�
ð11Þ

and

�v � �2v

v for m even; ð12Þ

the multiplication matrix can be written as

M ¼
�0 �1 ��� �v �2vþ1

mÿ1ÿv �2vþ2

mÿ2ÿv ��� �2mÿ1

1

�1 �2
0 ��� �2

vÿ1 �2
v �2vþ2

mÿ1ÿv ��� �2mÿ1

2

..

. ..
.

��� ..
. ..

. ..
.

��� ..
.

�v �2vþ1

mÿ1ÿv ��� �2v

0 �2v

1 �2v

2 ��� �2v

mÿ1ÿv

�2vþ1

mÿ1ÿv �2
v ��� �2v

1 �2vþ1

0 �2vþ1

1 ��� �2vþ1

mÿ2ÿv

�2vþ2

mÿ2ÿv �2vþ2

mÿ1ÿv ��� �2v

2 �2vþ1

1 �2vþ2

0 ��� �2vþ2

mÿ3ÿv

..

. ..
.

��� ..
. ..

. ..
.

��� ..
.

�2mÿ1

1 �2mÿ1

2 ��� �2v

mÿ1ÿv �2vþ1

mÿ2ÿv �2vþ2

mÿ3ÿv ��� �2mÿ1

0

2666666666666664

3777777777777775
:
ð13Þ

Now, we write M as a sum of m matrices as follows:

M ¼Mð0Þ þMð1Þ þ � � � þMðmÿ1Þ ð14Þ

such that the nonzero entries of MðlÞ, 0 � l � mÿ 1, belong

to f�2l

0 ; �
2l

1 ; � � � ; �2l

v g. As an example, for m ¼ 5, the

representation of M given in (14) is as follows:

M ¼

�0 �1 �2 0 0

�1 0 0 0 0

�2 0 0 0 0

0 0 0 0 0

0 0 0 0 0

26666664

37777775þ
0 0 0 0 0

0 �2
0 �2

1 �2
2 0

0 �2
1 0 0 0

0 �2
2 0 0 0

0 0 0 0 0

26666664

37777775

þ

0 0 0 0 0

0 0 0 0 0

0 0 �22

0 �22

1 �22

2

0 0 �22

1 0 0

0 0 �22

2 0 0

26666664

37777775þ
0 0 0 �23

2 0

0 0 0 0 0

0 0 0 0 0

�23

2 0 0 �23

0 �23

1

0 0 0 �23

1 0

26666664

37777775

þ

0 0 0 0 �24

1

0 0 0 0 �24

2

0 0 0 0 0

0 0 0 0 0

�24

1 �24

2 0 0 �24

0

26666664

37777775:

From the structure of M given in (13), it is clear that these

nonzero entries of MðlÞ exist only along its row l and

column l. Since M ¼MT , we have MðlÞ ¼ MðlÞÿ �T
and,

hence, the lth column of MðlÞ is the transpose of its lth row.

The latter can be obtained by using (12) and (13), and, for m

odd, it is given by

�
ðlÞ
l;� ¼

½0; 0; � � � ; 0|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
l zeros

; �2l

0 ; �
2l

1 ; � � � ; �2l

v ;

0; 0; � � � ; 0|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
mÿlÿvÿ1 zeros

�;
0 � l � v;

½�2l

mÿl; �
2l

mÿlþ1; � � � ; �2l

v ; 0; 0; � � � ; 0|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
mÿvÿ1 zeros

;

�2l

0 ; �
2l

1 ; � � � ; �2l

mÿlÿ1�;
vþ 1 � l � mÿ 1;

8>>>>>>>>>>><>>>>>>>>>>>:
ð15Þ

and for m even

�
ðlÞ
l;� ¼

½0; 0; � � � ; 0|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
l zeros

; �2l

0 ; �
2l

1 ; � � � ; �2l

v ;

0; 0; � � � ; 0|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
mÿlÿvÿ1 zeros

�;
0 � l � vÿ 1;

½0; 0; � � � ; 0|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
mÿv zeros

; �2l

0 ; �
2l

1 ; � � � ; �2l

vÿ1�; l ¼ v;

½�2l

mÿl; �
2l

mÿlþ1; � � � ; �2l

vÿ1;

0; 0; � � � ; 0|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
mÿv zeros

; �2l

0 ; �
2l

1 ; � � � ; �2l

mÿlÿ1�; vþ 1 � l � mÿ 1:

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:
ð16Þ

Thus, the following lemma holds.

Lemma 2. For 0 � i; l � mÿ 1, let us denote the number of

nonzero entries of the ith row and the ith column of MðlÞ as

Hð�ðlÞi;�Þ a n d Hð�ðlÞ�;iÞ, r e s p e c t i v e l y . I f i 6¼ l, t h e n

Hð�ðlÞi;�Þ ¼ Hð�
ðlÞ
�;iÞ 2 f0; 1g. For i ¼ l, there are two cases

depending on m. If m is odd,
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Hð�ðlÞl;�Þ ¼ Hð�
ðlÞ
�;lÞ ¼ vþ 1; 8l;

and, for m even,

Hð�ðlÞl;�Þ ¼ Hð�
ðlÞ
�;lÞ ¼

vþ 1; 0 � l � vÿ 1;
v; v � l � mÿ 1:

�

Corollary 1. Let HðMðlÞÞ, 0 � l � mÿ 1, denote the number of

nonzero entries of MðlÞ. Then, for m odd,

HðMðlÞÞ ¼ 2vþ 1; 8l;

and, for m even,

HðMðlÞÞ ¼ 2vþ 1; 0 � l � vÿ 1;
2vÿ 1; v � l � mÿ 1:

�
Proof. We note that �

ðlÞ
l;l ¼ �2l

0 . Since the nonzero entries of

MðlÞ lie only in its row l and column l, we have

HðMðlÞÞ ¼ Hð�ðlÞl;�Þ þHð�
ðlÞ
�;lÞ ÿHð�

ðlÞ
l;l Þ:

The proof then follows from Lemma 2. tu
Now, we give another lemma which will be useful in our

algorithm formulation presented in the next section.

Lemma 3. For � and v as defined above, the following holds:

Xv
j¼1

�j þ �2ððÿjÞÞ

j

� �
¼ �0 þ �2ÿ1

0 for m odd;

�0 þ �2ÿ1

0 þ �v for m even;

�
ð17Þ

where ððxÞÞ indicates x modulo the degree of the field under

consideration (i.e., m).

Proof. From (9), we have

�2ððÿjÞÞ

j ¼ ð�1þ2jÞ2
mÿj
¼ �2mÿjþ2m ¼ �1þ2mÿj :

Thus,

L:H:S: ¼
Xv
j¼1

ð�j þ �2ððÿjÞÞ

j Þ ¼
Xv
j¼1

ð�1þ2j þ �1þ2mÿjÞ

¼ �
Xv
j¼1

ð�2j þ �2mÿjÞ

¼ �ð�2 þ �22 þ � � � þ �2v þ �2mÿ1 þ �2mÿ2 þ � � � þ �2mÿvÞ:

For the normal basis f�; �2; � � � ; �2mÿ1g, one hasPmÿ1
i¼0 �2i ¼ 1. Now, noting that

mÿ v ¼ mÿ m

2

j k
¼ mÿ mÿ1

2 ¼ vþ 1 for m odd;
mÿ m

2 ¼ v for m even;

�
we can write:

L:H:S: ¼

�
Pmÿ1

i¼1

�2i ¼ �2 þ � ¼ �0 þ �2ÿ1

0 ; for m odd;

� �2v þ
Pmÿ1

i¼1

�2i
� �

¼ �2 þ � þ �1þ2v

¼ �0 þ �2ÿ1

0 þ �v;
for m even:

8>>>>>>><>>>>>>>:
ut

3.2 Algorithm Formulation

Lemma 4. Let A and B be two elements of GF ð2mÞ and C be

their product. Then,

C ¼Pmÿ1

i¼0

aibi�
2iÿ1

0 þ
Pmÿ1

i¼0

Pv
j¼1

yi;j�
2i

j ; for m odd

Pmÿ1

i¼0

aibi�
2iÿ1

0 þ
Pmÿ1

i¼0

Pvÿ1

j¼1

yi;j�
2i

j þ
Pvÿ1

i¼0

yi;v�
2i

v ; for m even;

8>>><>>>:
ð18Þ

where

yi;j ¼
4 ðai þ aððiþjÞÞÞðbi þ bððiþjÞÞÞ; 1 � j � v; 0 � i � mÿ 1:

ð19Þ

Proof. Here, we present the case of m odd only. The case of

m even is similar.
From (4) and (14),

C ¼ a �M � bT ¼
Xmÿ1

i¼0

a �MðiÞ � bT :

Let CðiÞ ¼ a �MðiÞ � bT : Using (15), for 0 � i � v, we then

have

CðiÞ ¼ ½0; 0; � � � ; 0|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
i zeros

;
Xv
j¼0

aiþj�
2i

j ; ai�
2i

1 ; � � � ;

ai�
2i

v ; 0; 0; � � � ; 0|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
mÿiÿvÿ1 zeros

� � bT

¼
Xv
j¼0

aiþjbi�
2i

j þ
Xv
j¼1

aibiþj�
2i

j

¼ aibi�2i

0 þ
Xv
j¼1

ðaibiþj þ aiþjbiÞ�2i

j

and, for vþ 1 � i � mÿ 1,

CðiÞ ¼ ½ai�2i

mÿi; ai�
2i

mÿiþ1; � � � ; ai�2i

v ; 0; 0; � � � ; 0|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
mÿvÿ1 zeros

;

Xv
j¼0

aððiþjÞÞ�
2i

j ; ai�
2i

1 ; � � � ; ai�2i

mÿiÿ1� � bT

¼
Xv
j¼0

aððiþjÞÞbi�
2i

j þ
Xv
j¼1

aibððiþjÞÞ�
2i

j

¼ aibi�2i

0 þ
Xv
j¼1

ðaibððiþjÞÞ þ aððiþjÞÞbiÞ�2i

j :

Noting that iþ j ¼ ððiþ jÞÞ for 0 � i; j � v, we then have

REYHANI-MASOLEH AND HASAN: EFFICIENT MULTIPLICATION BEYOND OPTIMAL NORMAL BASES 431



C ¼ Cð0Þ þ Cð1Þ þ � � � þ Cðmÿ1Þ

¼
Xmÿ1

i¼0

aibi�
2i

0 þ
Xmÿ1

i¼0

Xv
j¼1

ðaibððiþjÞÞ þ aððiþjÞÞbiÞ�2i

j

¼
Xmÿ1

i¼0

aibi�
2i

0 þ
Xmÿ1

i¼0

Xv
j¼1

aibi þ aððiþjÞÞbððiþjÞÞ
ÿ �

�2i

j

þ
Xmÿ1

i¼0

Xv
j¼1

yi;j�
2i

j ðusing ð19ÞÞ:

After expansion and reindexing, one can verify that

Xmÿ1

i¼0

Xv
j¼1

aððiþjÞÞbððiþjÞÞ�
2i

j ¼
Xmÿ1

i¼0

Xv
j¼1

aibi�
2ððiÿjÞÞ

j :

Now, we can write

C ¼
Xmÿ1

i¼0

aibi�
2i

0 þ
Xmÿ1

i¼0

Xv
j¼1

aibi�
2i

j þ aibi�2ððiÿjÞÞ

j

� �
þ
Xmÿ1

i¼0

Xv
j¼1

yi;j�
2i

j

¼
Xmÿ1

i¼0

aibi �0 þ
Xv
j¼1

�j þ �2ððÿjÞÞ

j

� � !2i

þ
Xmÿ1

i¼0

Xv
j¼1

yi;j�
2i

j :

Then, using Lemma 3, the proof is complete. tu
Let hj, 1 � j � v, be the number of nonzero coordinates

of the normal basis representation of �j, i.e., hj ¼ Hð�jÞ, and

let wj;1, wj;2; � � � ; wj;hj denote the positions of such coordi-

nates, i.e.,

�j ¼
Xhj
k¼1

�2wj;k ; 1 � j � v; ð20Þ

where 0 � wj;1 < wj;2 < � � � < wj;hj � mÿ 1. Also, for even

values of m, we have v ¼ m
2 and �v ¼ �2

m
2

v . This implies that,

in the normal basis representation of �v, its ith coordinate is

equal to its ððm2 þ iÞÞ-th coordinate. Thus, hv is even and we

can write

�v ¼
Xhv2
k¼1

�2wv;k þ �2wv;kþv
� �

; v ¼ m
2
: ð21Þ

Now, substituting (20) and (21) into (18) and noting that

�2iÿ1

0 ¼ �2i , we have the following theorem.

Theorem 1. Let A and B be two elements of GF ð2mÞ and C be

their product. Then,

C ¼Pmÿ1

i¼0

aibi�
2i þ

Pv
j¼1

Phj
k¼1

Pmÿ1

i¼0

yððiÿwj;kÞÞ;j�
2i

� �
; for m odd

Pmÿ1

i¼0

aibi�
2i þ

Pvÿ1

j¼1

Phj
k¼1

Pmÿ1

i¼0

yððiÿwj;kÞÞ;j�
2i

� �
þ F; for m even;

8>>>><>>>>:
ð22Þ

where

F ¼
Xhv2
k¼1

Xvÿ1

i¼0

yððiÿwv;kÞÞ;vð�2i þ �2iþvÞ and v ¼ m
2
:

Note that, for a normal basis, the representation of �j is
fixed and so is wj;k, 1 � j � v; 1 � k � hj. Theorem 1 is
valid for any normal basis of GFð2mÞ over GF(2). A bit level
version of (22) has recently been reported in [3] for the
special case of type-II optimal normal bases. Based on (22),
now we have the following algorithm for low complexity
normal basis (LCNB) multiplication.

Algorithm 1. (Low Complexity Normal Basis Multiplication

over GF ð2mÞ
Input: A;B 2 GF ð2mÞ, wj;k, 1 � j � v, 1 � k � hj
Output: C ¼ AB
1. Generate yi;j ¼ ðai þ aððiþjÞÞÞðbi þ bððiþjÞÞÞ, 1 � j < v,

0 � i � mÿ 1,

where yi;j 2 GF ð2Þ.
2. Initialize ci :¼ aibi, 0 � i � mÿ 1, C :¼ ðc0; c1; � � � ; cmÿ1Þ
3. For j ¼ 1 to vÿ 1 {

4. T :¼ ðt0; t1; � � � ; tmÿ1Þ ¼ 0

5. For k ¼ 1 to hj {
6. ri :¼ yððiÿwj;kÞÞ;j, 0 � i � mÿ 1, R :¼ ðr0; r1; � � � ; rmÿ1Þ
7. T :¼ T þR
8. }

9. C :¼ C þ T
10. }

11. T :¼ 0

12. If m is odd,

13. s :¼ hv, t :¼ m
14. else s :¼ hv

2 , t :¼ m
2

15. Generate yi;v ¼ ðai þ aððvþiÞÞÞðbi þ bððvþiÞÞÞ, 0 � i � tÿ 1,

16. If m is even yiþv;v ¼ yi;v, 0 � i � m
2 ÿ 1

17. For k ¼ 1 to s

18. ri :¼ yððiÿwv;kÞÞ;v, 0 � i � tÿ 1

19. If m is even,

20. riþm2 :¼ ri, 0 � i � m
2 ÿ 1,

R :¼ ðr0; r1; � � � ; rm2ÿ1; r0; r1; � � � ; rm2ÿ1Þ
21. T :¼ T þR
22. }

23. C :¼ C þ T

Example 2. To illustrate the operation of the above
algorithm, we again use the field GFð25Þ and its normal
basis, as described in Example 1. Here, m ¼ 5 and
v ¼ b52c ¼ 2. Using Table 1 in [13], one has

�1 ¼ �3 ¼ �2 þ �4 þ �8;

h1 ¼ 3;

½w1;k�h1

k¼1 ¼ ½1; 2; 3�;
�2 ¼ �5 ¼ � þ �2 þ �4 þ �16;

h2 ¼ 4;

½w2;k�h2

k¼1 ¼ ½0; 1; 2; 4�:

Let A ¼ �2 þ �4 þ �8 ¼ ð01110Þ and B ¼ � þ �4 þ �16 ¼
ð10101Þ be two field elements. The generation of yi;js in
line 1 of the LCNB multiplication algorithm is shown in
Table 1a. Table 1b shows contents of variables R and C in
the order they are updated by the execution of the
algorithm. In this table, the row with j being “-” indicates
the initialization step (i.e., line 2) of the algorithm. The
final contents of C represent the product of A and B.
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3.3 Complexity and Comparison

Lemma 5. [9]. For hj as defined above, the complexity of the

normal basis N is

CN ¼ 2
Xvÿ1

j¼1

hj þ �hv

 !
þ 1; ð23Þ

where

� ¼4 1 for m odd
0:5 for m even:

�
ð24Þ

Theorem 2. For the LCNB multiplication algorithm, let

#MultLCNB and #AddLCNB denote the numbers of bit level

multiplications and additions, respectively. Then,

#MultLCNB ¼
mðmþ 1Þ

2
; ð25Þ

#AddLCNB ¼
m

2
ðCN þ 2mÿ 3ÿ ð1ÿ �Þðhv ÿ 2ÞÞ: ð26Þ

Proof. The number of bit level multiplications in lines 1, 2,

and 15 of Algorithm 1 are mðvÿ 1Þ, m, and t,

respectively. Thus, the total number of such multi-

plications is mvþ t ¼ mðmþ1Þ
2 . The number of additions

consists of two parts: 1) the bit level additions of lines 1

and 15, which are 2mðvÿ 1Þ and 2t, respectively, and

2) the word level additions of lines 7, 9, 21, and 23. The

bit level additions of lines 7 and 9 without considering

the first addition of line 7 with T ¼ 0 is m
Pvÿ1

j¼1 hj.

Similarly, the bit level additions of line 23 is m. For

line 21, the number of bit additions is ðsÿ 1Þt because,

for even values of m, half of the bits of R (and, hence, T )

are the same as the other half bits. Thus, the total number

of bit level additions is

#AddLCNB ¼ 2mðvÿ 1Þ þ 2tþm
Xvÿ1

j¼1

hj þmþ ðsÿ 1Þt:

ð27Þ

Using (23) and noting that s ¼ �hv, t ¼ �m, (27) gives the
proof. tu

Remark 1. In order to have a bit-parallel implementation of

Algorithm 1, one needs to generate all yi;js and aibis

using mðmþ1Þ
2 two input-AND gates and mðmÿ 1Þ two-

input XOR gates and the corresponding time delay is

TA þ TX , where TA and TX are time delays due to an

AND gate and an XOR gate, respectively. In lines 6

and 18 of the algorithm, when we add ris and aibis to

obtain cis, we need a total of
Pvÿ1

j¼1 hj þ �hv ¼ CNÿ1
2

XOR gates. If these gates are arranged in a binary tree

fashion, then the corresponding time complexity is

dlog2
CNþ1

2 eTX ¼ ðdlog2ðCN þ 1Þe ÿ 1ÞTX. Thus, the over-

all time complexity of the bit-parallel structure is

TA þ dlog2ðCN þ 1ÞeTX. Since CN is an odd integer, one

has dlog2ðCN þ 1Þe ¼ dlog2 CNe. Thus, the time complexity is

simplified to

Time delay ¼ TA þ log2 CNd eTX: ð28Þ

Table 2 compares the number of bit level operations of
the LCNB algorithm with those of the Massey-Omura (MO)
multiplier of [25] and the reduced redundancy Massey-
Omura (RR_MO) multiplier of [20]. The multipliers of [25]
and [20] are used for comparison as they appear to be the
first and the most recently reported work in this area and it
seems the total number of bit level operations of [20] is the
least among the existing normal basis schemes. All the
multipliers in Table 2 have the same time delay TA þ
dlog2 CNeTX in bit-parallel implementation. As can be seen
from the table, the total number of bit level operations of
our new LCNB algorithm matches that of [20]. More
importantly, the LCNB algorithm has the least number of
bit level multiplications that meets the lower bound on the
number of bit level multiplications determined in [3]. Since
the bit level multiplication corresponds to the multiplication
in the ground field GF(2), if the algorithm is extended to a
ground field of degree more than one, where a multi-
plication is more expensive than an addition operation, the
use of the LCNB algorithm will be advantageous. This is
investigated in Section 5 of this paper.

Remark 2. In Table 2, the numbers of bit level additions (and,
consequently, the total operations) are given in terms of CN . It
is well-known that CN � 2mÿ 1 [13]. If a normal basis has
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minimum CN , i.e., CN ¼ 2mÿ 1, then it is referred to as an

optimal normal basis (ONB). There are two types of ONBs,

namely, type-I and type-II, which are hereafter also referred to

as ONB-I and ONB-II, respectively. The ONBs do not exist for

all m. The list in [12] shows that only 23 percent of m �
2; 000 have ONBs. For a given m where an ONB exists, the

minimum number of bit level additions needed in the LCNB

algorithm can be obtained by substituting CN ¼ 2mÿ 1 in

(26), i.e., for an ONB we have

#AddLCNB ¼ 2mðmÿ 1Þ: ð29Þ

Recent results on multipliers using the special case of

ONB-II include references [23] and [3], which have the same

space and time complexities as those presented here. In

Section 4, we show that the number of bit level additions

can be further reduced by considering ONB-I.

3.4 Multiplication on General Purpose Processors

General purpose processors, such as Intel’s Pentium

processors, are not usually designed to efficiently add

l bits over GF(2), using a single (XOR or such) instruction,

even when l is less than the size of the internal registers of

the processor. However, the conventional approach2 to

normal basis multiplication relies on inner products over

GF(2), as shown in (7), and requires about m2

2 modulo 2

additions, on average, for each coordinate of the product.

Hence, this approach is considered not to be very efficient.

Below, we present a normal basis multiplication algorithm,

which is a variant of the LCNB algorithm and is suitable for

software implementation. From (22), we can write

C ¼Pmÿ1

i¼0

aibi�
2i þ

Pv
j¼1

Phj
k¼1

Pmÿ1

i¼0

yi;j�
2i

� �2wj;k

; for m odd

Pmÿ1

i¼0

aibi�
2i þ

Pvÿ1

j¼1

Phj
k¼1

Pmÿ1

i¼0

yi;j�
2i

� �2wj;k

þD; for m even;

8>>>><>>>>:
ð30Þ

where

D ¼
Xhv2
k¼1

Xvÿ1

i¼0

yi;vð�2i þ �2iþvÞ
 !2wv;k

and v ¼ m
2
: ð31Þ

Let us define

�wj;k ¼4 wj;k ÿ wj;kÿ1; 1 � j � v; 1 � k � hj; wj;0 ¼ 0; ð32Þ

where wj;ks are the positions of 1s in the normal basis

representation of �j as defined in (20). For a particular

normal basis, all wj;ks are fixed. Hence, all �wj;ks need to be

determined only once, i.e., at the time of choosing the basis.
Let A�B denote the bitwise AND operations

between the coordinates of A ¼ ða0; a1; � � � ; amÿ1Þ and

B ¼ ðb0; b1; � � � ; bmÿ1Þ, i.e.,

A�B ¼4 ða0b0; a1b1; � � � ; amÿ1bmÿ1Þ:

Let us denote i-fold left and right cyclic shifts of the

coordinates of A by A� i and A� i, respectively.
Based on (30), a software version of LCNB (referred to as

S-LCNB) multiplication algorithm can then be stated as

follows:

Algorithm 2. (S-LCNB Multiplication over GF ð2mÞ)
Input: A; B 2 GF ð2mÞ, �wj;k, 1 � j � v, 1 � k � hj
Output: C ¼ AB
1. Initialize C :¼ A�B, SA :¼ A, SB :¼ B
2. For j ¼ 1 to vÿ 1

3. SA � 1, SB � 1

4. LA :¼ Aþ SA, LB :¼ Bþ SB
5. R :¼ LA � LB
6. For k ¼ 1 to hj
7. R� �wj;k
8. C :¼ C þR
9. }

10. }

11. SA � 1, SB � 1

12. LA :¼ Aþ SA, LB :¼ Bþ SB
13. R :¼ LA � LB
14. If m is odd, s :¼ hv
15. else s :¼ hv

2

16. For k ¼ 1 to s

17. R� �wv;k
18. C :¼ C þR
19. }

Remark 3. In the above algorithm, shifted values of A and B are

stored in SA and SB, respectively. In lines 5 and 13, R 2
GF ð2mÞ contains ðy0;j; y1;j; � � � ; ymÿ1;jÞ, i.e.,

Pmÿ1
i¼0 yi;j�

2i .

Also, right cyclic shifts of R in lines 7 and 17 correspond to

ð
Pmÿ1

i¼0 yi;j�
2iÞ2

wj;k

. After the final iteration, C is the normal

basis representation of the required product A �B. Since, for

even values of m, yiþv;v ¼ yi;v, 0 � i � vÿ 1, where v ¼ m
2 ,

hence one may slightly reduce the computational cost of lines

12 and 13 by noting that the m
2 bits of each of the upper halves

of LA, LB, and R are the same as the m
2 bits of their respective

lower halves.

Example 3. Here, the multiplication of A ¼ ð01110Þ and B ¼
ð10101Þ of Example 2 is shown using Algorithm 2. Table 3

shows the contents of various variables of the algorithm

as they are updated. The row with j being “-” is for the

initialization step (i.e., line 1) of the algorithm.
In order to obtain the overall computation time for a

GF ð2mÞ multiplication using Algorithm 2, the coordinates

of the field elements can be divided into dm!e units where !

corresponds to the data path size of the processor. We

assume that the processor can perform bit-wise XOR and

AND of two !-bit operands using one single XOR and one

single AND instruction, respectively. Also, when a pro-

gramming language, such as C, is used, we assume that an

i-fold, 1 � i < !, left/right shift is emulated using a total of

p instructions. The value of p can be 4 or so when simple

logical instructions, such as AND, SHIFT, and OR, are used.

Theorem 3. The dynamic instruction count for Algorithm 2 is

given by
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#Instructions � ðpþ 1ÞCN ÿ 1

2
þ ð2pþ 3Þvþ 1

� �
m

!

l m
;

where CN , v, p, and w are as defined earlier.

Proof. Initialization of C in line 1 needs dmwe instructions.

Lines 3, 4, and 5 are repeated vÿ 1 times and require

ðvÿ 1Þð2pþ 3Þdmwe instructions. Lines 7 and 8 are inside a

two-level nested loop and require ð
Pvÿ1

j¼1 hjÞðpþ 1Þdmwe
instructions. For lines 11 to 13, one needs ð2pþ 3Þdmwe
instructions, whereas, for lines 17 and 18, �hvðpþ 1Þdmwe
instructions are needed. Adding up all these instructions

and assuming that overhead costs for the loops are small

(alternatively, assuming unrolled loops), one completes

the proof. tu

Algorithm 2 and the NB multiplication algorithm of [14]

have been implemented on an AMD Athlon XP 1500+

running at 1.33GHz with 480MB RAM. This implementa-

tion uses Visual C++ 6.0 and speed-optimized release build

to obtain the timing data. For comparison purposes, we

have used GFð2233Þ, which is one of the fields recom-

mended by NIST and has a type-II ONB. Our results show

that, for a GFð2233Þ multiplication, Algorithm 2 and the

multiplication algorithm of [14] require 22.53 �s and

607.8 �s, respectively.
Additional normal basis multiplication algorithms

suitable for general purpose processors are the subject of

discussions in another article by the authors [19].

4 TYPE-I OPTIMAL NORMAL BASIS

MULTIPLICATION

An ONB-I is generated by the roots of an irreducible all-one

polynomial (AOP), i.e.,

P ðzÞ ¼ zm þ zmÿ1 þ � � � þ zþ 1: ð33Þ

The AOP is irreducible if mþ 1 is prime and 2 is primitive

modulo mþ 1 [24]. Thus, the roots of (33), i.e., �2j ,

j ¼ 0; 1; � � �mÿ 1, form an ONB-I if and only if mþ 1 is

prime and 2 is primitive in modulo mþ 1.

Lemma 6 [20].

�j ¼
�2kj j ¼ 1; 2; � � � ; m2 ÿ 1

1 ¼
Pmÿ1

i¼0 �2i j ¼ m
2 ;

(
ð34Þ

where kj is obtained from

2j þ 1 � 2kj mod ðmþ 1Þ: ð35Þ

Substituting (34) into (18), the product C can be written as

C ¼
Xmÿ1

i¼0

aibi�
2i

 !
þ
Xvÿ1

j¼1

Xmÿ1

i¼0

yi;j�
2i

 !2kj

þ
Xvÿ1

i¼0

yi;v

 !
; ð36Þ

where the right most summation results in 0 or 1 and, in the

normal basis representation, 0 and 1 correspond to

ð0; 0; � � � ; 0Þ and ð1; 1; � � � ; 1Þ, respectively. Based on (36),

now we can state an algorithm for ONB-I multiplication as

follows:

Algorithm 3. (Low Complexity ONB-I Multiplication over

GF ð2mÞ)
Input: A;B 2 GF ð2mÞ, kj, 1 � j < v, v ¼ m

2

Output: C ¼ AB
1. Generate yi;j ¼ ðai þ aððiþjÞÞÞðbi þ bððiþjÞÞÞ, 1 � j < v,

0 � i � mÿ 1,

2. Generate yi;v ¼ ðai þ aððvþiÞÞÞðbi þ bððvþiÞÞÞ,
0 � i � vÿ 1,

3. Initialize ci :¼ aibi, 0 � i � mÿ 1, f :¼ y0;v, f 2 GF ð2Þ
4. For j ¼ 1 to vÿ 1 {

5. ri :¼ yi;j,0 � i � mÿ 1, R ¼ ðr0; r1; � � � ; rmÿ1Þ
6. R :¼ R2kj

7. C :¼ C þR
8. f :¼ f þ yj;v
9. }

10. If f is 1, C :¼ C þ ð1; 1; � � � ; 1; 1Þ
11. }

The above algorithm is hereafter referred to as LCONB-I.

Remark 4. In line 6 of the LCONB-I algorithm, the operation

R2kj can be accomplished by a kj-fold cyclic shift. The number

of bit level operations of lines 1, 2, and 8 are 2mðvÿ 1Þ, 2v,

and vÿ 1, respectively. Also, lines 7 and 10 need mðvÿ 1Þ
and m additions. Thus, the total number of additions is

#AddLCONBÿI ¼ 1:5m2 ÿ 0:5mÿ 1 ð37Þ

and the number of multiplications is the same as that of the

LCNB algorithm given in (25).

For comparison, we consider four other ONB-I multi-

pliers as shown in Table 4. This table shows the number of

bit operations of these multipliers and the time complexity

of multipliers in bit-parallel implementation. The multiplier

of [25] is considered to be the first such work published in

the open literature and those of [6], [7], [20] are more recent

work and have the best results among the known existing

ones. As can be seen in this table, although the total number

of operations of the proposed LCONB-I algorithm is the

same as those of the three best multiplication schemes, the

LCONB-I algorithm requires the least number of bit level
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multiplications, which can be advantageous in composite
finite fields, as discussed in the next section.

Remark 5. ONB-I can be treated as a polynomial basis after some

permutations and then various methods can be applied for field
multiplication [7], [8]. One of the methods is the Karatsuba-

Ofman algorithm. In the asymptotic sense, the Karatsuba-
Ofman algorithm has fewer bit level operations compared to
the previously reported algorithms. However, for this special

case of ONB-I, the value of m is composite. Using the
algorithms presented in Section 5 of this paper, one can obtain
an implementation for certain values of m, which has fewer

number of bit level operations than the Karatsuba-Ofman
algorithm based multiplier [17].

5 COMPOSITE FIELD MULTIPLICATION

In this section, we consider multiplications in the finite field
GFð2mÞ, where m is a composite number. These fields are
referred to as composite fields and have been used in the
recent past to develop efficient multiplication schemes [16],
[15]. If such a field is to be used for cryptographic
applications, special care needs to be taken in choosing
the composite value for m. In order to avoid the recent Weil
descent attack on elliptic curve cryptosystems [4], [22], the
reader is referred to references [11] and [2] for “good” and
“bad” composite values of m.

5.1 Algorithm Formulation

Theorem 4 [21]. Let m1 > 1, m2 > 1 be relatively prime. Let
N1 ¼ f�2i

1 j 0 � i � m1 ÿ 1g and N2 ¼ f�2j

2 j 0 � j � m2 ÿ
1g be normal bases for GF ð2m1Þ and GF ð2m2Þ, respectively.
Then, N ¼ f�2i

1 �
2j

2 j 0 � i � m1 ÿ 1; 0 � j � m2 ÿ 1g, is a
normal basis for GF ð2m1m2Þ over GF ð2Þ. The complexity of N

is CN ¼ CN1
CN2

, where CN1
and CN2

are the complexities of
N1 and N2, respectively.

Assume that m ¼ m1 �m2, where m1 and m2 are as
defined above. Let A 2 GF ðð2m2Þm1Þ, then A can be
represented w.r.t. the basis

N ¼ f�2j j 0 � j � mÿ 1g; � ¼ �1�2;

as follows:

A ¼
Xmÿ1

j¼0

aj�
2j ¼

Xm1m2ÿ1

j¼0

aj�
2j mod m1

1 �2j mod m2

2 ¼
Xm1ÿ1

i¼0

Ai�
2i

1 ; ð38Þ

where ajs are coordinates of A w.r.t. basis N and

Ai ¼
Xm2ÿ1

l¼0

aiþl�m1
�2iþl�m1mod m2

2 : ð39Þ

We assume this kind of representation for any two

elements: A and B 2 GF ðð2m2Þm1Þ, i.e., A ¼
Pm1ÿ1

i¼0 Ai�
2i

1 ,

B ¼
Pm1ÿ1

i¼0 Bi�
2i

1 , where Ai; Bi 2 GF ð2m2Þ. Without loss of

generality, then the product C ¼ AB can be obtained from

Lemma 4 as:

C ¼Pm1ÿ1

i¼0

AiBi
2iÿ1

0 þ
Pm1ÿ1

i¼0

Pv1

j¼1

Yi;j
2i

j ; for m1 odd

Pm1ÿ1

i¼0

AiBi
2iÿ1

0 þ
Pm1ÿ1

i¼0

Pv1ÿ1

j¼1

Yi;j
2i

j þ
Pv1ÿ1

i¼0

Yi;v1
2i

v1
; for m1 even;

8>>><>>>:
ð40Þ

where v1 ¼ bm1

2 c, j ¼ �
1þ2j

1 , 0 � j � v1, and

Yi;j ¼4 ðAi þAððiþjÞÞÞðBi þBððiþjÞÞÞ;
1 � j � v1; 0 � i � m1 ÿ 1:

ð41Þ

In (41), ððiþ jÞÞ ¼ iþ j mod m1 and the underlying field

operations are performed over the subfield GF ð2m2Þ.
Also, using (20), one can write j w.r.t. N1 as

j ¼
Xhð1Þj
k¼1

�2
w
ð1Þ
j;k

1 ; 1 � j � v1; ð42Þ

and, similarly to (22), the product C can also be obtained as

C ¼

Pm1ÿ1

i¼0

AiBi�
2i

1 þ
Pv1

j¼1

Phð1Þj
k¼1

Pm1ÿ1

i¼0

Yððiÿwð1Þ
j;k
ÞÞ;j�

2i

1

� �
; for m1 odd

Pm1ÿ1

i¼0

AiBi�
2i

1

þ
Pv1ÿ1

j¼1

Phð1Þj
k¼1

Pm1ÿ1

i¼0

Yðiÿwð1Þ
j;k
ÞÞ;j�

2i

1

� �
þD;

for m1 even;

8>>>>>>>>>><>>>>>>>>>>:
ð43Þ

where

D ¼
Xhð1Þv12
k¼1

Xv1ÿ1

i¼0

Yððiÿwð1Þ
v1 ;k
ÞÞ;v1
ð�2i

1 þ �2iþv1
1 Þ; v1 ¼

m1

2
:

436 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 4, APRIL 2003

TABLE 4
Comparison of Bit Level Operations of ONB-I-Based Multiplication Schemes



Based on (43), we can state the following algorithm for
multiplication in GFð2mÞ, where m ¼ m1 �m2.

Algorithm 4. (Composite Field Normal Basis Multiplication)

Input: A; B 2 GF ðð2m2Þm1Þ, j 2 GF ð2m1Þ, 1 � j � v1

Output: C ¼ AB
1. Ai½l0� :¼ A½iþm1l�, Bi½l0� :¼ B½iþm1l�, 0 � l � m2 ÿ 1,

0 � i � m1 ÿ 1, where l
0 ¼ iþm1lmodm1

2. Generate Yi;j :¼ ðAi þAððiþjÞÞÞðBi þBððiþjÞÞÞ,
1 � j < v1, 0 � i � m1 ÿ 1, where

Yi;j; Ai; Bi 2 GF ð2m2Þ.
3. Initialize Ci :¼ AiBi, 0 � i � m1 ÿ 1,eCC :¼ C0jjC1jj � � � jjCm1ÿ1

4. For j ¼ 1 to v1 ÿ 1 {

5. For k ¼ 1 to h
ð1Þ
j {

6. Ri :¼ Yððiÿwð1Þ
j;k
ÞÞ;j, 0 � i � m1 ÿ 1,

eRR :¼ R0jjR1jj � � � jjRm1ÿ1

7. eCC :¼ eCC þ eRR
8. }

9. }
10. If m1 is odd,

11. s :¼ hð1Þv1
, t :¼ m1

12. else s :¼ h
ð1Þ
v1

2 , t :¼ m1

2

13. Generate Yi;v ¼ ðAi þAððv1þiÞÞÞðBi þBððv1þiÞÞÞ,
0 � i � tÿ 1,

14. If m1 is even Yiþv1;v1
¼ Yi;v1

, 0 � i � m1

2 ÿ 1

15. For k ¼ 1 to s {
16. Ri :¼ Yððiÿwð1Þ

v1 ;k
ÞÞ;v1

, 0 � i � tÿ 1

17. If m1 is even,

18. Riþm1
2

:¼ Ri, 0 � i � m1

2 ÿ 1,

eRR :¼ R0jj � � � jjRm1
2 ÿ1jjR0jj � � � jjRm1

2 ÿ1

19. eCC :¼ eCC þ eRR
20. }

21. C½iþm1l� :¼ Ci½l0�, 0 � l � m2 ÿ 1, 0 � i � m1 ÿ 1.

Example 4. Let m ¼ 33,m1 ¼ 3, and m2 ¼ 11. As per Table 3
of [13], there are ONBs forGF ð23ÞandGF ð211Þ. Thus,N1 ¼
f�2i

1 j 0 � i � 2g and N2 ¼ f�2l

2 j 0 � l � 10g are type-II
optimal normal bases ofGF ð23ÞandGF ð211Þ, respectively.
Using Theorem 4, N ¼ f�2j j 0 � j � 32g, where � ¼ �1�2

is a normal basis ofGF ð233Þ overGF ð2Þ. The complexity of
N isCN ¼ CN1

CN2
¼ ð2 � 3ÿ 1Þð2 � 11ÿ 1Þ ¼ 105. Any two

field elements A;B 2 GF ð233Þ can be written w.r.t. N as

A ¼
X32

j¼0

aj�
2j ¼ A0�1 þA1�

2
1 þA2�

4
1

B ¼
X32

j¼0

bj�
2j ¼ B0�1 þB1�

2
1 þB2�

4
1 ;

where Ai ¼
P10

l¼0 aiþ3l�
2l
0

2 , Bi ¼
P10

l¼0 biþ3l�
2l
0

2 , 0 � j � 2,
and l0 ¼ iþ 3l mod 11. Let C ¼ C0�1 þ C1�

2
1 þ C2�

4
1 be

the product of A and B. Thus, using (40), we have

C ¼ A0B0�1 þðA0 þA1ÞðB0 þB1Þ�3
1

þA1B1�
2
1 þðA1 þA2ÞðB1 þB2Þ�6

1

þA2B2�
4
1 þðA2 þA0ÞðB2 þB0Þ�12

1 :

Using Table 2 in [9], for the type-II ONB over GF ð23Þ, we
have �3

1 ¼ �1 þ �2
1 . Thus,

C ¼ ððA0B0 þ ðA0 þA1ÞðB0 þB1Þ þ ðA2 þA0ÞðB2 þB0ÞÞ�1

þ ððA1B1 þ ðA1 þA2ÞðB1 þB2Þ þ ðA0 þA1ÞðB0 þB1ÞÞ�2
1

þ ððA2B2 þ ðA2 þA0ÞðB2 þB0Þ þ ðA1 þA2ÞðB1 þB2ÞÞ�4
1 :

ð44Þ

From (44), we see that six multiplications and
12 additions over subfield GF ð2m2Þ are needed to
generate C0, C1, and C2. Thus, the total numbers of bit
level multiplications and additions are 396 and 1,452,
respectively.

5.2 Complexity and Comparison

In Algorithm 4, eCC in line 3 is obtained by concatenating Cjs.eRR in line 6 is obtained in a similar way. The total number of

operations of the composite field NB (CFNB) multiplication

algorithm consists of two parts: multiplications and addi-

tions over the subfield GF ð2m2Þ. Using Theorem 2, the

numbers of multiplications and additions over GF ð2m2Þ are
m1ðm1þ1Þ

2 and m1

2 ðCN1
þ 2m1 ÿ 3Þ,3 respectively. Each

GF ð2m2Þ addition can be performed by m2 bit level (i.e.,

GF(2)) additions. If we use Algorithm 1 for subfield

operations, then, at the bit level, each GF ð2m2Þ multi-

plication requires m2ðm2þ1Þ
2 multiplications and m2

2 ðCN2
þ

2m2 ÿ 3Þ additions. Thus, the total numbers of bit level

operations are as follows:

#MultCFNB ¼
mðm1 þ 1Þðm2 þ 1Þ

4
; ð45Þ

and

#AddCFNB ¼
m1

2
ðCN1

þ 2m1 ÿ 3Þ �m2

þm1ðm1 þ 1Þ
2

�m2

2
ðCN2

þ 2m2 ÿ 3Þ

¼ m
2

CN1
þ 2m1 ÿ 3þm1 þ 1

2
CN2
þ 2m2 ÿ 3ð Þ

� �
:

ð46Þ

Thus, for a given m, we can use m1 < m2 to reduce the

number of addition operations given in (46). Additionally, if

m2 þ 1 is prime and 2 is primitive modulo m2 þ 1, then

there exists an ONB-I over GF ð2m2Þ and Algorithm 3 can be

used for GF ð2m2Þ multiplication. Thus, using (37), the

number of additions as given in (46) can be reduced to
m1

2 ðCN1
þ 2m1 ÿ 3Þm2 þ m1ðm1þ1Þ

2 ð1:5m2
2 ÿ 0:5m2 ÿ 1Þ.

In order to obtain the time complexity of the composite
field NB multiplication of GFðð2m2Þm1Þ over GFð2m2Þ in bit-
parallel implementation, one can easily replace the time delay
of AND gate with the time delay of subfield multiplication of
GFð2m2Þ over GF(2) into (28). Thus, the time delay of the
CFNB multiplier is TA þ ðdlog2 CN1

e þ dlog2 CN2
eÞTX .

Table 5 compares bit level operations for multiplication
over GFð233Þ for a number of algorithms. Rows 2, 3, and 4,
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3. For the sake of simplicity, we have not used the symmetrical property
for m even.



where CN ¼ 65, use ONB-II which exists for GFð233Þ over
GF(2). On the other hand, rows 5, 6, and 7, where
CN ¼ CN1

� CN2
¼ 105, use the two ONB-IIs which exist for

the subfields GFð23Þ and GFð211Þ as discussed in the above
example. This comparison shows that the proposed CFNB
multiplier has the least number of bit level operations. More
interestingly, for composite values of m, the well-known
optimal normal bases GFð2mÞ over GF(2) do not seem to be
the best choice when one considers bit level operations,
which in turn determines the space complexity for hard-
ware implementation of a normal basis multiplier.

In [15], two normal basis multipliers in the composite
field GFðð2m2Þm1Þ over GFð2m2Þ are proposed. The struc-
tures are only applicable to special cases of m ¼ m1m2,
gcdðm1;m2Þ ¼ 1, where there exists an ONB-I for the
subfield and ONB-II for the extension field or vice versa.
In both structures, the number of subfield multiplications
required is m2

1, which is about twice of what has been
proposed here, i.e., m1ðm1þ1Þ

2 .
We wind up this section by stating the following theorem

which gives the bit level operations for normal basis
multiplication over generalized composite fields.

Theorem 5. Let m ¼
Qn

i¼1 mi, 1 < m1 < m2 < � � � < mn,
where gcdðmi; mjÞ ¼ 1, i 6¼ j. Then, for a normal basis
multiplication over the composite field GFð2mÞ, the numbers
of bit level multiplications and additions are

#MultCFNB ¼
m

2n

Yn
i¼1

ðmi þ 1Þ ð47Þ

and

#AddCFNB ¼

m

2
CN1
þ 2m1 ÿ 3þ

Xnÿ1

j¼1

CNjþ1
þ 2mjþ1 ÿ 3

2j

Yj
i¼1

ðmi þ 1Þ
 !

;

ð48Þ

respectively.

6 CONCLUDING REMARKS

In this article, efficient algorithms for normal basis multi-
plication over GFð2mÞ have been proposed. These algo-
rithms are suitable for implementation of cryptographic
functions both in hardware and software. It has been shown

that, when m is composite, the proposed CFNB algorithm
requires significantly fewer numbers of bit level operations
compared to other similar algorithms available in the open
literature. More interestingly, it has been shown that, for
composite values of m, the well-known optimal normal
bases GFð2mÞ over GF(2) do not seem to be the best choice
when one considers bit level operations, which in turn
determines the space complexity for hardware implementa-
tion of a normal basis multiplier.

There are a number of possibilities for construction of the
composite field NB multipliers in hardware implementa-
tion. These depend on which architecture is chosen for
subfield implementation. Investigation is being carried out
to obtain the best composite field multiplier such that the
complexities of the multiplier architecture is minimum for
any given composite m 2 ½160; 600�.
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