
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 60, NO. 1, JANUARY 2013 41

High-Performance Implementation of Point
Multiplication on Koblitz Curves

Reza Azarderakhsh and Arash Reyhani-Masoleh

Abstract—Fast and high-performance computation of finite-
field arithmetic is crucial for elliptic curve cryptography (ECC)
over binary extension fields. In this brief, we propose a highly
parallel scheme to speed up the point multiplication for high-speed
hardware implementation of ECC cryptoprocessor on Koblitz
curves. We slightly modify the addition formulation in order to
employ four parallel finite-field multipliers in the data flow. This
reduces the latency of performing point addition and speeds up
the overall point multiplication. To the best of our knowledge, the
proposed data flow of point addition has the lowest latency in com-
parison to the counterparts available in the literature. To make
the cryptoprocessor more efficient, we employ a low-complexity
and efficient digit-level Gaussian normal basis multiplier to per-
form lower level finite-field multiplications. Finally, we have im-
plemented our proposed architecture for point multiplication on
an Altera Stratix II field-programmable gate array and obtained
the results of timing and area.

Index Terms—Cryptoprocessor, elliptic curve cryptography
(ECC), field-programmable gate array (FPGA), Koblitz curves,
parallel processing, point multiplication.

I. INTRODUCTION

INFORMATION security in the networked environments
aims to optimally use wide variety of cryptographic al-

gorithms. These algorithms need to operate efficiently using
minimal available resources. Elliptic curve cryptography (ECC)
[2], [3] has been identified as an efficient method for public key
cryptography. The efficiency of ECC implementations is based
on point (or scalar) multiplication which is the most resource-
consuming operation. Point multiplication is an operation of
successively adding a point along an elliptic curve to itself.
Binary Koblitz curves are special class of generic curves that
point multiplication can be efficiently computed using their spe-
cial properties. These curves employ Frobenius map (instead
of doubling) and point addition operation for computing point
multiplication. In the recent past, considerable efforts have been
made to accelerate the computation of point multiplication over
binary elliptic curves. Those include parallelization [4], [1] and
interleaving [5], [6]. Parallelization is a well-known approach to
accelerate the ECC computations, employing multiple parallel
field arithmetic units (FAUs; mainly multipliers) in the finite-

Manuscript received September 7, 2012; accepted November 16, 2012. Date
of publication January 14, 2013; date of current version March 11, 2013. This
brief was recommended by Associate Editor Y. Ha.

R. Azarderakhsh is with the Department of Combinatorics and Optimization,
University of Waterloo, Waterloo, ON N2L 3G1, Canada (e-mail: razarder@
uwaterloo.ca).

A. Reyhani-Masoleh is with the Department of Electrical and Computer
Engineering, The University of Western Ontario, London, ON N6A 5B9,
Canada (e-mail: areyhani@uwo.ca).

Digital Object Identifier 10.1109/TCSII.2012.2234916

field computations. It is worth mentioning that, in the case
of dependences among lower level computations, achieving
parallelization is a challenging task, and employing more than
certain number of parallel arithmetic units will not increase the
speed of ECC computations. Recently, several methods to per-
form parallel computations for point addition on Koblitz curves
have been proposed in [4] and [6]–[8]. It has been claimed that
the maximum number of the finite-field multipliers to achieve
the highest parallelization in computing point multiplication
on Koblitz curves is three parallel finite-field multipliers [4].
However, in this brief, we slightly modify the point addition
formulation in such a way to employ four multipliers to reduce
the latency of point addition. This techniques will increase the
overall speed of point multiplication on Koblitz curves. In this
effect, we modify the point addition formulation to employ
four parallel finite-field multipliers to reduce the latency of
point multiplication from 4M + 13 to 3M + 13, where M is
the latency (number of clock cycles) for a digit-level Gaussian
normal basis (GNB) multiplication operation. Therefore, the
number of multiplications in the critical path reduced from four
to three. For investigating the practical performance of the pro-
posed architecture, we implement it on a field-programmable
gate array (FPGA) for different digit sizes over GF (2163)
targeting high-performance applications. It is noted that our
method can be applied to any finite-field representation, and for
the sake of efficient implementation and comparison, we use
GNB in this brief.

II. PRELIMINARIES

A. GNB

It is well known that, for any positive integer m ≥ 1,
there exists a normal basis of GF (2m) over GF (2) [9]. Let
N = {β, β2, β22 , . . . , β2m−1} be a normal basis of GF (2m)
for β ∈ GF (2m). Then, β is called a normal element of
GF (2m) such that the set is the normal basis of GF (2m).
Therefore, the representation of a field element, for exam-
ple, A = (a0, a1, . . . , am−1) ∈ GF (2m), is A =

∑m−1
i=0 aiβ

2i ,
where coefficient ai ∈ GF (2). In normal basis, squaring can be
achieved by simple right cyclic shift of coordinates of A, i.e.,
A2 =

∑m−1
i=0 aiβ

2i+1
= (am−1, a0, a1, . . . , am−2). The multi-

plication of two elements A and B, C = A×B, over GNB is
based on a multiplication matrix R(m−1)×T [10]. Let A and B
be two field elements represented by GNB over GF (2m). Then,
their product in GF (2m) can be obtained from [10]

c0 = a0b1 +

m−1∑
i=1

ai

⎛
⎝ T∑

j=1

bR(i,j)

⎞
⎠ (1)

1549-7747/$31.00 © 2013 IEEE

42 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 60, NO. 1, JANUARY 2013

where R(i, j), 0 ≤ R(i, j) ≤ m− 1, 1 ≤ i ≤ m− 1, 1 ≤ j ≤
T denotes the (i, j)th element of R(m−1)×T matrix. Note that,
to obtain the lth coordinates of C, i.e., cl, one needs to add “l
mod m” to all indices in (1).

B. Arithmetic on Binary Elliptic Curves

A nonsupersingular binary generic elliptic curve can be
defined by a set of points (x, y) and a special point at infinity O
(group identity) that satisfy the following equation:

Ea,b/GF (2m) : y2 + xy = x3 + ax2 + b (2)

where a, b∈GF (2m) and b �=0 [11]. For allP ∈Ea,b(GF (2m)),
P +O = O + P = P . The negative of point P = (x, y) is
−P = (x, x+ y), where (x, y) + (x, x+ y) = O. The scalar
k, 1 ≤ k ≤ r − 1 (r is the order of point P , rP = O), is defined
as an integer, and the point multiplication in elliptic curve is
defined over the Abelian group as Q = kP , where P and Q
are two points on Ea,b(GF (2m)) and k > 1 is an integer. The
point P is called the base point and Q is the result point. Binary
elliptic curves are also called anomalous binary curves or
Koblitz curves if a ∈ {0, 1} and b = 1, i.e., defined over GF (2)
[3]. In GF (2m), Frobenius map φ is an endomorphism that
raises every element to its power of two, i.e., φ : x → x2. Then,
Frobenius endomorphism can be carried out efficiently (cost
free) if the elements of finite field are represented in normal ba-
sis [11]. Koblitz showed that point doublings can be performed
efficiently by utilizing the Frobenius endomorphism if the
binary curve is defined over GF (2) and a ∈ {0, 1}. Then, the
Frobenius map can be defined as φ : (x, y) → (x2, y2). Then, if
one represents the scalar k in τ -adic nonadjacent form (τNAF),
i.e., k =

∑l−1
i=0 kiτ

i for ki ∈ {0, 1,−1} and kiki+1 = 0, then
point multiplication can be computed as kP =

∑l−1
i=0 kiτ

i(P).
It results in the Hamming weight of τNAF to be the same as the
one of the binary non adjacent form (NAF), i.e., ≈ (log2 k)/3,
and its length to be approximately 2 m, which is twice the length
of the binary NAF. Solinas [12] proposed a method and reduced
the length of the τNAF over the remainder of k to m. Recently,
efficient hardware architectures for τNAF conversion have been
proposed in [13] and [14].

C. Point Addition on Koblitz Curves

Point addition on Koblitz curve can be performed us-
ing different coordinate systems such as, Jacobian, standard
projective, and Lopez–Dahab projective coordinates. Among
them, the Lopez–Dahab coordinate system provides efficient
point addition formulation. For the Lopez–Dahab coordi-
nates [15], the triple coordinates (X,Y, Z) are used to rep-
resent (X/Z, Y/Z2) in affine coordinates having Z �= 0 and
O = (1, 0, 0). The curve equation in this coordinate is Y 2 +
XY Z = X3Z + aX2Z2 + bZ4,, where a, b ∈ GF (2m), and
the costs of point addition and doubling are 13M+ 4S+ 9A
and 5M+ 4S+ 5A, respectively. Note that M, S, and A are
the costs of multiplication, squaring, and addition, respectively.
In the Lopez-Dahap coordinates where one of the points rep-

resented in affine, the cost of mixed projective point addition,
i.e., (X3, Y3, Z3) = (X1, Y1, Z1) + (x2, y2), reduces to 9M+
5S+ 9A. The explicit formulation is given as follows [11]:

Z :

⎧⎨
⎩

A = Y1 + y2Z
2
1 , B = X1 + x2Z1

C = BZ1

Z3 = C2

X :

{
D = x2Z3

X3 = A2 + C(A+B2 + aC)

Y : Y3 = (D +X3)(AC + Z3) + (y2 + x2)Z
2
3 (3)

where a ∈ {0, 1} for Koblitz curves, and hence, its cost reduces
to 8M+ 5S+ 9A.

D. Point Multiplication on Koblitz Curves

Algorithm 1 Point multiplication on Koblitz curves using
double-and-add-or-subtract algorithm [11].

Inputs: A point P = (x, y) ∈ EK(GF (2m)) on curve and
integer k, k =

∑l−1
i=0 kiτ

i for ki ∈ {0,±1}.
Output: Q = kP .
1: initialize

a: if kl−1 = 1 then Q ← (x, y, 1)
b: ifkl−1 = −1 then Q ← (x, x+ y, 1)

2: fori from l − 2 downto 0 do
Q ← φ(Q) = (X2, Y 2, Z2)
if ki �= 0 then

Q ← Q+ kiP = (X,Y, Z)± (x, y)
end if

end for
3: return Q ← (X/Z, Y/Z2)

The algorithm for computing point multiplication, i.e., Q =
kP , on Koblitz curves is given in Algorithm 1, where the
scalar k is presented in τNAF [11]. This algorithm requires,
on average, m− 1 Frobenius maps and m/3− 1 point addi-
tions or subtractions. Since the Frobenius maps can be com-
puted with free squarings in normal basis, the computation of
point addition determines the efficiency of point multiplication.
Therefore, our main focus is on high-performance computation
of point addition employing multiple efficient digit-level finite-
field multipliers. In the following, we study the parallelization
of point addition on Koblitz curves.

III. HIGH-SPEED PARALLELIZATION OF POINT ADDITION

Parallelization for hardware implementation of point addi-
tion on Koblitz curves has been considered recently employing
different number of field multipliers in [4], [8], and [16]. In
[4], it is shown that employing two finite-field multipliers
reduces the number of multiplications (and, hence, the latency
of ECC point multiplication) in the data path to five. Also, it is
shown in [4] that the maximum number of parallel finite-field

AZARDERAKHSH AND REYHANI-MASOLEH: IMPLEMENTATION OF POINT MULTIPLICATION ON KOBLITZ CURVES 43

Fig. 1. Data dependence graph for parallel computation of point addition on Koblitz curves. (a) Using three finite-field multipliers adopted from [4]. (b) Proposed
scheme employing four multipliers.

multipliers that can be employed to implement the fastest point
multiplication is three. The data dependence graph for point
addition employing three multipliers is depicted in Fig. 1(a)
[4]. As one can see, the latency of point addition is 4M + 13,
where M is the latency for a multiplication. In Step S4, only one
multiplier is operating, and the other two multipliers are idle.
This is mainly because of the dependence of computing C to B
[as shown in (3)]. This does not allow us to compute B and C
in parallel. As can be seen from Fig. 1(a), a potential bottleneck
occurs in computing C which uses only one multiplier in Step
S4. This results in 66% multiplier utilization for the data de-
pendence graph presented in Fig. 1(a) employing three parallel
multipliers. The formulation of point addition can be modified
to employ one additional parallel multiplication to reduce its
latency, as stated in the following proposition.

Proposition 1: In computing the Z coordinate of the point
addition formulation of (3), the data dependence in computing
C can be eliminated by the following:

Z :

{
A = Y1 + y2Z

2
1 , B = X1 + x2Z1

C = x2Z
2
1 +X1Z1, Z3 = C2.

(4)

As one can see from (4), the computation of C can be
performed in parallel with B at the cost of employing one
more multiplier as compared to the formulation presented in
(3). Therefore, we can employ four multipliers in parallel to
compute point addition. The data dependence graph for com-
puting point addition based on (4) is depicted in Fig. 1(b), which
employs four parallel multipliers. As one can see in Step S2 in
Fig. 1(b), four multipliers are operating in parallel. Therefore,
the multiplication in Step S4 in Fig. 1(a) is eliminated. As can
be seen in Fig. 1(b), the number of field multipliers in the data

TABLE I
COMPARISON OF THE COSTS OF PERFORMING POINT ADDITION IN THE

MAIN LOOP ON KOBLITZ CURVES IN TERMS OF THE NUMBER OF

MULTIPLICATIONS OVER GF (2163), INCLUDING THE

COST OF ADDITIONS AND SQUARINGS

path is reduced to three multipliers with the overall latency of
3M + 13 clock cycles.

A. Latency of Point Multiplication

The point multiplication on Koblitz curves needs to per-
form τNAF conversion, the main computation (addition and
Frobenius map), and the coordinate conversion. In [14], an
efficient circuitry is presented for τNAF conversion which
requires m+ 6 clock cycles for m = 163. Also, the latency of
coordinate conversion from projective Lopez–Dahab to affine
is 11M + 11 based on the Itoh–Tsujii method [17]. Since these
latencies are fixed for all implementations, we only compare the
latency for the main processor in computing point additions, as
given in Table I. We assume that four multipliers, two adders,
and three squarers are available based on the data dependence
graph depicted in Fig. 1(b) (one extra squarer is employed to
perform Frobenius maps of all three coordinates, i.e., X3, Y3,
and Z3 in parallel). In this table, H(k) is the Hamming weight
of τNAF expansion of k, and the latency of the main loop is
computed by multiplying the number of nonzero terms in k to
the latency of a point addition. We assume that the point addi-
tions and point subtractions are divided evenly and 163 clock

44 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 60, NO. 1, JANUARY 2013

Fig. 2. Architecture of point multiplication cryptoprocessor.

cycles are required to perform Frobenius maps. Therefore, the
total latency of point multiplication over GF (2163) (without
considering τNAF conversion) is computed as (H(k)− 1)×
(3M + 13) + 163 + 11M + 11, where (H(k)− 1)× (3M +
13) is the latency of computing point addition in the main loop.

IV. PROPOSED CRYPTOPROCESSOR

FOR POINT MULTIPLICATION

The architecture of the cryptoprocessor is depicted in Fig. 2
and is explained in the following.

A. FAU

The FAU performs three basic arithmetic operations em-
ploying four digit-level GNB multipliers, two GF (2m) adders,
and two squarers. Multiplication in GF (2m) plays the main
role in determining the efficiency of the point multiplication.
We employ a low-complexity digit-level parallel-in parallel-
out GNB multiplier presented in [1] and efficiently pipelined
it in this work. This architecture, which implements (1), is
optimized for even values of T , T > 2 GNB [18]. In a digit-
level parallel-in parallel-out GNB multiplier, the results will be
available in parallel after q = 	m/d
 clock cycles. Therefore,
as the pipelining adds one extra clock cycle to the latency
of multiplication, the latency of the multiplier is given by
M = 	m/d
+ 1, 1 ≤ d ≤ m. For the given field size m = 163
(which is type 4 GNB), digit size d is chosen in such a way
to reduce the latency while increasing d. Therefore, we choose
the digit sizes from the set d = {11, 21, 33, 41, 55} for m =
163. The time complexity of the employed digit-level GNB
multiplier is TA + (log2 T
+ 	log2(d+ 1)
)TX , and its area
complexity is dm AND gates and ≤ (d(m− 1)/2)(T − 1) +
dm XORs, which is further reduced by a complexity reduc-
tion algorithm [1] to np + vp((T/2)− 1) + dm XOR gates,
where np, np � min{(vpT/2),

(
m
2

)
} and vp = d(m− 1)/2.

Note that the exact value of np can be obtained after em-
ploying common subexpression sharing and depends on the
digit size d[1]. Also, the pipelined multiplier requires (3 + �)m
registers, and its critical-path delay is max{(TA + (log2 T
+
	log2 K
)TX), (log2(�+ 1)
TX)}, where � is the level of
accumulation and K = 	d/�
. The GF (2m) adder uses m XOR

gates to perform the addition and requires only a clock cycle to
store the results in the registers. The squarer is simple rewiring
in normal basis and requires a clock cycle to store its results
in the registers. Note that the Frobenius map is performed for
coordinates of X , Y , and Z independently.

TABLE II
IMPLEMENTATION RESULTS OF THE POINT MULTIPLICATION ON KOBLITZ

CURVES ON THE STRATIX II EP2S180F1020C3 DEVICE

B. Control Unit and the Register File

The control unit is designed with a finite-state machine
(FSM) to perform the point multiplication with other units.
First, the coordinates of P , i.e., (xP , yP), are loaded to the
registers. Once k is available in the τNAF representation, at
the input of the control unit, the FAU starts the computations
based on the FSM stored in the control unit. The final and
intermediate results are stored in the registers. The data bus
width is set to 163 bits. The projective coordinates of Q =
kP , i.e., (X,Y, Z), are converted to the affine coordinates of
Q, i.e., (xQ, yQ) = (X/Z, Y/Z2), using one of the available
multipliers and a squarer based on the Itoh–Tsujii’s scheme [17]
instead of using dedicated hardware. This resulted in saving in
the entire area of the cryptoprocessor.

V. FPGA IMPLEMENTATIONS AND COMPARISONS

FPGAs have advantages for prototyping and the proof of
concepts. To have a fair comparison with previous works, we
have selected the Altera Stratix II EP2S180F1020C3 device as
the target FPGA for our implementations. The presented archi-
tecture for point multiplication of the cryptoprocessor presented
in Section IV is coded in the Very high speed integrated circuit
Hardware Description Language and synthesized for different
digit sizes d, d ∈ {11, 21, 33, 41, 55}, for the Koblitz curve
defined over GF (2163).

We use the Altera Quartus II version 11 design software for
our implementations. The results of the area and maximum
clock frequencies of the implementations after the place and
route are reported in Table II. As one can see, increasing the
digit size results in the reduction of the latency of the point
multiplication, i.e., LTotal, at the cost of the increase in the
area and decrease in the operating clock frequency. The point
multiplication time is provided by dividing the total number
of clock cycles (LTotal) by the maximum operating clock
frequency (fmax). The pipelined (one level) digit-level GNB
multiplier adds one clock cycle to the latency of multiplier, as
can be seen in the second column of Table II (i.e., M = q + 1).
The latency of loading the operands to the multipliers is counted
in the total latency, as shown in the data dependence graph
illustrated in Fig. 1. The total latency of point multiplication
is computed as LTotal = (H(k)− 1)(3M + 13) + 163 +
11M + 11, H(k) ≈ 163/3 ≈ 54.33 (without considering
τ -adic conversion). Note that the fastest computation of
point multiplication is obtained for d = 41, which is 9.15 μs,
employing 23 084 adaptive logic module (ALM) including
control unit. In Table III, the best results in terms of time

AZARDERAKHSH AND REYHANI-MASOLEH: IMPLEMENTATION OF POINT MULTIPLICATION ON KOBLITZ CURVES 45

TABLE III
COMPARISON OF RELATED WORKS FOR FPGA IMPLEMENTATIONS OF PARALLEL POINT MULTIPLICATION ON KOBLITZ CURVES

OVER GF (2163) USING DIGIT-LEVEL FINITE-FIELD MULTIPLIERS. NOTE THAT ALL OF THE ARCHITECTURES

ARE IMPLEMENTED ON ALTERA STRATIX II TO HAVE FAIR COMPARISONS

and area are summarized for point multiplications on Koblitz
curve over GF (2163), i.e., the National Institute of Standards
and Technology (NIST) K-163. The latency of the proposed
architecture for point addition is less than the counterparts
proposed in [4] and [19], as shown in Table III. Our proposed
scheme results in faster time of point multiplication in
comparison to the one proposed in [4]. In [6] and [5], a new
scheme known as interleaving is proposed to reduce the latency
of point addition on Koblitz curves. This scheme reduces the
latency of point addition about 50% of the one proposed in [4]
employing four finite-field multipliers. It is worth mentioning
that one can improve the timing results for this scheme
employing the digit-level multiplier employed in this work.
The work presented in [6] computes a point multiplication
in 9.48 μs, employing four multipliers with d = 17 which
occupies 23 580 ALMs. Also, with choosing d = 19, the time
of point multiplication reduces to 8.64 μs occupying 25 366
ALMs. However, our proposed scheme with d = 33 occupies
18 964 ALMs and computes a point multiplication in 9.85 μs.
In this brief, the implementation results highlight the fact that
the finite-field multiplier employed here (adopted from [20]
and [1]) outperforms the ones used in other works available
in the literature. In comparison to the scheme proposed in [6],
the following can be summarized: 1) The digit-level GNB
multiplier employed in this work (adopted from [20] and
[1]) operates at higher clock frequencies, and 2) in terms of
time–area product which is mentioned by (A× T) in Table III,
our proposed architecture is more efficient or favorably
comparable with the counterparts.

VI. CONCLUSION

We have proposed a new fast data flow graph for the point
addition formulation using the Lopez–Dahab mixed coordi-
nates employing four parallel multipliers on Koblitz curves. It
is shown that the data flow graph has three multipliers in its
critical path as compared to four multipliers for the best scheme
available in the literature. We have employed a low-complexity
digit-level GNB multiplier (proposed in [1]) to perform finite-
field multiplications. The analysis results show that our method
results in smaller latencies in computing point addition. More-
over, the implementation results on Altera Stratix II indicate
that our parallel multipliers operate at higher clock frequencies
and the point multiplication results are more efficient in terms
of time–area product and are favorably comparable with the
ones available in the literature.

REFERENCES

[1] R. Azarderakhsh and A. Reyhani-Masoleh, “Efficient FPGA implementa-
tions of point multiplication on binary Edwards and generalized Hessian
curves using Gaussian normal basis,” IEEE Trans. Very Large Scale In-
tegr. (VLSI) Syst., vol. 20, no. 8, pp. 1453–1466, Aug. 2012.

[2] V. S. Miller, “Use of elliptic curves in cryptography,” in Proc. CRYPTO
1985, 1986, pp. 417–426.

[3] N. Koblitz, “Elliptic curve cryptosystems,” Math. Comput., vol. 48,
pp. 203–209, 1987.

[4] K. Järvinen and J. Skyttä, “On parallelization of high-speed processors for
elliptic curve cryptography,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 16, no. 9, pp. 1162–1175, Sep. 2008.

[5] K. Järvinen, “Optimized FPGA-based elliptic curve cryptography proces-
sor for high-speed applications,” Integr., VLSI J., vol. 44, no. 4, pp. 270–
279, Sep. 2011.

[6] K. Järvinen and J. Skyttä, “Fast point multiplication on Koblitz curves:
Parallelization method and implementations,” Microprocess. Microsyst.,
vol. 33, no. 2, pp. 106–116, Mar. 2009.

[7] B. Ansari and M. Anwar Hasan, “High-performance architecture of el-
liptic curve scalar multiplication,” IEEE Trans. Comput., vol. 57, no. 11,
pp. 1443–1453, Nov. 2008.

[8] J. Adikari, V. S. Dimitrov, and R. J. Cintra, “A new algorithm for double
scalar multiplication over Koblitz curves,” in Proc. IEEE ISCAS, 2011,
pp. 709–712.

[9] A. J. Menezes, I. F. Blake, S. Gao, R. C. Mullin, S. A. Vanstone, and
T. Yaghoobian, Applications of Finite Fields. Boston, MA: Kluwer,
1993.

[10] A. Reyhani-Masoleh, “Efficient algorithms and architectures for field
multiplication using Gaussian normal bases,” IEEE Trans. Comput.,
vol. 55, no. 1, pp. 34–47, Jan. 2006.

[11] D. R. Hankerson, S. A. Vanstone, and A. J. Menezes, Guide to Elliptic
Curve Cryptography. New York: Springer-Verlag, 2004.

[12] J. A. Solinas, “Efficient arithmetic on Koblitz curves,” Des., Codes Cryp-
tograph., vol. 19, no. 2/3, pp. 195–249, Mar. 2000.

[13] B. B. Brumley and K. U. Järvinen, “Conversion algorithms and implemen-
tations for Koblitz curve cryptography,” IEEE Trans. Comput., vol. 59,
no. 1, pp. 81–92, Jan. 2010.

[14] J. Adikari, V. Dimitrov, and K. Jarvinen, “A fast hardware architecture for
integer to τ -NAF conversion for Koblitz curves,” IEEE Trans. Comput.,
vol. 61, no. 5, pp. 732–737, May 2012.

[15] J. López and R. Dahab, “Fast multiplication on elliptic curves over
GF(2m) without precomputation,” in Proc. Workshop CHES, 1999,
pp. 316–327.

[16] O. Ahmadi, D. Hankerson, and F. Rodríguez-Henríquez, “Parallel formu-
lations of scalar multiplication on Koblitz curves,” J. Univ. Comput. Sci.,
vol. 14, no. 3, pp. 481–504, 2008.

[17] T. Itoh and S. Tsujii, “A fast algorithm for computing multiplicative
inverses in GF (2m) using normal bases,” Inf. Comput., vol. 78, no. 3,
pp. 171–177, Sep. 1988.

[18] IEEE Standard Specifications for Public-Key Cryptography, IEEE Std.
1363-2000, Jan. 2000.

[19] V. S. Dimitrov, K. U. Järvinen, M. J. Jacobson, Jr., W. F. Chan, and
Z. Huang, “Provably sublinear point multiplication on Koblitz curves
and its hardware implementation,” IEEE Trans. Comput., vol. 57, no. 11,
pp. 1469–1481, Nov. 2008.

[20] R. Azarderakhsh and A. Reyhani-Masoleh, “A modified low complexity
digit-level Gaussian normal basis multiplier,” in Proc. 3rd Int. WAIFI,
M. A. Hasan and T. Helleseth, Eds., Jun. 2010, vol. 6087, pp. 25–40.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

