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Abstract: The concept of varying the modulation
index of a continuous phase FSK (i.e. CPFSK)
waveform is applied to digital transmission using
chirp signals. These multimode chirp waveforms
are described and their ability to perform over the
coherent Gaussian channel is examined. It is
shown that the dual-mode phase-continuous chirp
signals out perform monomode signals by nearly
0.8dB, when corresponding high-SNR  5-bit
optimum minimum-bit-error-probability receivers
are employed. A low-complexity suboptimum
average matched filter receiver for multimode
chirp signals is examined and explicit expressions
for its performance are given.

1 Introduction

In a spread-spectrum system the transmitted signal is
spread over a wide frequency band, often much wider
than the minimum bandwidth needed for the informa-
tion to be conveyed. An instance of spectrum spreading
may be seen in conventional FM by employing fre-
quency deviations greater than unity. The wideband
FM thus produced is often classified as a spread spec-
trum system because the radio frequency spectrum gen-
erated is much wider than that of the transmitted
information. While in FM, the transmission bandwidth
is a function of both information bandwidth and the
amount of modulation, there exist techniques in which
spectrum spreading is accomplished using some signal
or operation other than the information signal that is
transmitted. Besides direct-sequence modulation and
FH/FSK, one technique is linear FM or chirp modula-
tion [1] in which a carrier is swept over a wide band
during a given data pulse interval.

Chirp modulation does not necessarily employ cod-
ing and produces a transmitted bandwidth much
greater than the bandwidth of the information being
sent. Furthermore, the growing interest in chirp sys-

tems is mainly due to the current state of art in surface -

acoustic wave (SAW) technology, which offers a rapid
close-to-optimum way for both generation and correla-
tion -of wideband chirp pulses [2]. While chirp signals
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have found their main application in radar systems [3],
they were first proposed by Winkler [4], motivated by
their anti-interference capability, for binary data com-
munication. Further, chirp signals are useful in certain
communication systems for reasons such as antieaves-
drop, low-Doppler sensitivity etc. [1]. Among the sev-
eral applications for binary chirp signals are air-ground
communication via satellite repeaters [5, 6] and high
frequency (HF) data transmission [7]. Combining the
chirp signalling technique with some kind of pseudor-
andom coding, it is possible to achieve substantial
improvement in antijam performance [8]. In [9], a
spread spectrum transmission of digital data suggests a
combination of chirp modulation and pseudonoise
PSK.

The performances of coherent and noncoherent
binary chirp signals over Gaussian channels have been
studied in [10, 11]. The optimum receivers are required
to make independent bit-by-bit decisions. Introducing
phase continuity in chirp signal at bit transitions,
allows for multiple bit detection schemes. These have
been studied in [12, 13], where an advantage of at most
1.66dB over BPSK is demonstrated. While in these
continuous phase chirp systems, the set of modulation
parameters employed over any bit interval is the same,
it is well known [14] that in a Continuous Phase FSK
waveform by using time-varying modulation parame-
ters, impressive gains in power are possible. It is the
purpose of the paper to apply this concept to chirp sig-
nals. The resulting class of signals will be known as
multimode continuous phase chirp modulation. Qur
results mainly include determination of optimum sets
of modulation parameters over appropriate ranges and
performance comparisons of the optimised signals with
monomode continuous phase chirp signals, chirp sig-
nals with discontinuous phase and PSK.

2 Signal description and properties

Any digitally modulated continuous phase signal is rep-
resented as

S(t,d) = \/2Ey /T cos(2m fot + P(t,a) + ¢o), 0 <t < nT
1)

where 4 = (a;, a3, ..., a,) is an n-bit uncorrelated
equally likely binary sequence, E; is the energy of the
signal in the bit duration T, f, is the carrier frequency
and ¢, is the starting phase assumed to be zero for
coherent transmission, and the information carrying
phase is given by:

ot a) = /ti%mif(T -@E-1)TYdr0<t<nT (2)

i=1
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where f(7) is the instantaneous frequency deviation dur-
ing the ith bit interval and for multimode continuous
phase chirp signalling is given by:

e [0 t< (G- 1T, t >4t
o) = { boowy GonT<i<ir O

by o
Representing the baseband phase function by:

;"zw/tf(f)df 0<t<nT @

eqn. 2 can be written as

B(t,8) = Zazgt~(z—1))-0§¢§n§l" (5)

where o . . :
(o <= )T, £ 4T
gt) =14 n {hi% —w; (%)2] (-DT<t<il  (8)
\ g =mlhy —w;) =T

In eqns. 3 and 6, &; and w; represent peak-to-peak fre-
quency deviation divided by bit rate and frequency
sweep width divided by bit rate, respectively, during the
ith bit interval. The excess phase accumulated due to
and at the end of the 7#th bit interval is +rg; depending
upon g; = 1. We denote the signal modulation param-
eters employed during the ith bit interval by the set {w;,
i} o
While in conventional {(mhonomode) continuous phase
chirp transmission w; =w and ¢; =g, fori=1, 2, ..., in
multimode transmission we cyclically select {w; g;}
from a set Qg of K sets of modulation parameters, i.e.
such that
Wip i = W; ®)
and ‘ '
Gk = )

thereby conveying that the signal parameter set used in
the ( + K)th bit interval is the same as that used in the
ith bit interval. That is {w,, ¢;}; { = 1, 2, ..., forms a
sequence of sets with perlod K.

h; ]

A

Fig.1 ' mstantaneous frequency deviations in dual-mode contirmous phase
chirp signalling systerm
@1 = Iy = o= By =Wy

In Fig. 1, the instantaneous frequency deviations in a
dual-mode continuous phase chirp signalling format is
sketched. It is noted that this Figure illustrates the rela-
tions among the modulation parameters used during
the ith bit interval (i.e. ¢; = &; — w;). In Fig. 2, all possi-
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ble phase evolutions of the phase function @(#) — ¢(0)
are plotted for chirp system employing {{1.0,0.25},
{1.0,8.5}}. Since the phase is modulo. 2, this plot actu-
ally lies on the surface of a cylinder.

I‘f...
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Fig.2 Phase trellis of binary dualamode chzrp .s’zgmzls with
@ = ({18, 025}, {1.0, 0.5}}

By restricting the values g; can assume to 0 <.g; < 1,
it is possible to apply, straightforwardly, the theory
developed in [15] for multi-h phase codes. Hence, by
choosing g;s from a set {0 < ¢; < 1;4=1, 2, ..., K} such
that g; = 1y/s {(I; and 5 being integers), it is possible to
obtain a periodic phase trellis composed only of transi-
tions between the 25 values &nfs (k= 0, 1, ..., 25 ~ 1).
Further, if no two subsets of {g;} have the same sum
modulo one, a maximum constraint length for a given
K is obtained. The set {w;} may be chosen based on
considerations such as spectral occupancy. Shown in
Fig. 2 is the trellis structure with ‘constraint length
equal to 2 (=K). This means that two trellis paths
remain separated over at least 3 (=K+1) bit intervals.

3 Receivers and performances

In this Section we briefly comment on the optimum.
and suboptimum receivers for multimode chirp signals
and their performances in. additive white Gaussian
noise of one sided spectral density N,. Ideal coherent
detection Is assumed.

The received signal may be written as {12, 16]:

r(t) = SP(t, 01, 4;) +nlt) 0<t <l (10)
where a; is the first data bit and A; is the {#-1)-tuple
(ay, az, v an) #{(1) is the additive whlte noise and the
supetfix p is used to denote the sequence of signal
parameter sets ({wy, 41}, . {Wy gy}) in the received n-
bit interval chirp signal. Followmg the development of
[16], the optimum receiver that observes #{(f) and pro-
duces an estimate 4, of 4, is governed by the decision
rule: : ‘
gR= 1 u16+1 or 1

2 exp(—mm) ) expl - v ()
where ’
nT . ) '
oy = / r{£)SP(t, a1 = 1, A;)dt (12)
0

The receiver structure implied by egn. 11 is identical to
that employed for monomode chirp signals (Fig. 2; -
[12]), except that the receiver for multimode chirp
signals has a priori information of the sequence of

TEE Proc~Cowmiman., Vol. 143, No. 2, April 1996



signal parameter sets employed at the transmitter.
While it is too complex to evaluate the performance of
optimum receiver precisely, bounds tight at low and
high SNRs can be determined.

For a large SNR approximation in eqn. 11, a subop-
timum receiver is obtained that computes all x%;; and
decides @; = +1 or -1 accordingly as whether the larg-
est one is within the set {x%,;} or within the set {x7;}.
The performance of this receiver may be upper and
lower bounded using the union bounding technique
[17]. The upper bound may be shown to be given by:

11 X% [(nE, :
P, high SNR S‘E‘zﬁ; ; ;Q {{m‘(l - pp(%)))} ]
(13)

where p,(i, j) is the normalised correlation between the
transmitted signals S7(¢, a; = +1, 4y and $°(1, a; = -1,
Aj). A simple expression for this correlation for multi-
mode chirp signals is given in the Appendix.

A lower bound on the performance of the high-SNR
suboptimum receiver can be shown to be given by [16]:

11 E& B 5
P high SNR > fﬁ; ; Q [{“]‘V“;‘(l - P;(l))} ]
(14)

where p*(l) = max;p,(/, j). Using eqns. 13 and 14, the
error probability perfli)rmance of the optimum receiver
at large values of SNR can be estimated.

By using a low SNR approximation in eqn. 11 a
suboptimum receiver that, for its operation, requires
only two correlators is obtained. In the literature, this
type of receiver is referred to as the average matched
filter (AMF) receiver [18]. The performance of this
receiver will provide an upper bound on the perform-
ance of the optimum receiver at low values of SNR, as
the true performance of the optimum receiver is always
better than that of the suboptimum receiver. The AMF
receiver is governed by the decision rule:
d1=+1

Z 0
ag=-—1

(15)

= / O o = +1) Pt 01 =~

where
gn= 1

Pt,a =x1)= Y SP(t,a = £1,4;)  (16)
=1

“The performance of the receiver given by eqn. 15 may
be shown to be given by:

K 27@-1 P
11 [ Eo Py
PejowsNk = 75007 > Y Q [ m—al] (17)
p=1 j=1

where p4; is the expected value of the decision variable
7, given a particular data sequence 4; and a; = +1 is
transmitted and ©,? is the variance of r,. For multi-
mode chirp signaﬁing closed-form expressions for u

and o are obtained and are given in the Appendix.

In egns. 13, 14 and 17, Q[y] is the area under zero-
mean unit-variance normal curve from y to oo. Further,
in these eqns. ¥, has been used for averaging over all
possible sequences of ({wy, ¢1}, {W2.q2} »-es {Wn Qu})-
While these eqns. may be used to evaluate bounds on
the performance of the optimum receiver, a composite
bound [16] that is representative of the true perform-
ance of the optimum receiver at all SNRs may be con-
structed by choosing the minimum of the high and low
SNR upper bounds at all SNRs.
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Fig.3  Performance of optimum {{1.68, 0.27}, {1.68, 0.49}} dual-mode
chir[; set '
n=

SK
- {{1.68, 0.27},{1.68, 0.49}}
——————— single mode, w = 2.33, ¢ = 0.21

4  Numerical results

The performance bounds given by eqns. 13, 14 and 17
have been numerically computed for various cases. It is
noted that the optimum receiver performance is a func-
tion of: i) SNR, E,/Ny; ii) number of observed bit inter-
vals n; iii) signal parameter set Qg. For the case of K =
2, i.e. dual-mode binary chirp signals, sets Q, = {{w,,
a1}, {ws, g2}} have been determined that minimise the
performance bound of eqn. 13 for 2 < n < 5 and for
SNR = 6, 8, 10dB. The minimisation has been carried
out in the signal parameter space given by 0 < w < 10 x
0 < gy, ¢, £ 1, and the results are given in Table 1. The
performance of the optimum receiver, in terms of lower
and upper union bounds and the matched filter upper
bound, for the optimum sets evaluated at an SNR of
8dB are shown in Figs. 3 and 4, forn =4 and n = 5,

Table 1. Optimum dual-mode continuous phase chirp sets

E,/iNg n=2 n=3 n=4 n=5
6 {1.85; 0.28, 0.28} {1.37; 0.26, 0.49} {1.62; 0.27, 0.49} {1.63; 0.30, 0.49}
8 {1.88; 0.27, 0.27} {1.36; 0.26, 0.49} {1.68; 0.27, 0.49} {1.68, 0.30, 0.50}

10 {1.93; 0.26, 0.26} {1.35, 0.26, 0.49}

{1.66; 0.28, 0.50} {1.58; 0.31, 0.50}

{w; g1, go} is used to denote Q, = H{w;, g:}, (w, o}
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respectively. In Fig. 5 is shown the performance upper
bounds of the optimum monomode continuous and
discontinuous phase chirp signals and the performances
of dual-mode continuous phase chirp signals and PSK.
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Fig.4 Performance of optimum {{1.68, 0.30}, {1.68, 0.50}} dual-mode
chirp set
n=>5
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Fig.5 Performance comparison of optimum dual-mode chirp sets
an=35{{1.68, 0.3}, {1.68, 0.50}}
bn=4{{168 027, {1.68, 0.40})
cn =5 single mode, w = 2.37, g = 0.19
dn :KS, {{1.36, 0.26}, {1.36, 0.49}}
e

f Single-bit optimum chirp signal

The optimised average matched filter receiver for
dual-mode chirp signals provides a performance equal
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to that of binary PSK. The performance is achieved for
the optimum set Q, = {{w, 0.5), {w, 0.5}} and an
observation length of 27" In [12], it is shown that for
monomode continuous phase chirp signals, the opti-
mum matched filter performance occurs for Q; = {w,
0.5} and n = 2. These results can easily be verified ana-
Iytically by examining equations given in the appendix
for the performance of AMF receiver for multimode
chirp signals. It can be shown that for dual-mode chirp
signals the set Qg = {{w, 0.5}, {w, 0.5}} provides per-
formance equal to that of PSK forn =2, 3, ....

From Table 1 we observe that, for a given n, the
signal parameters of the optimum sets show mild varia-
tion with received SNR. Also, for dual-mode signals (K
= 2) it is noted that for » = 2, the optimum sets are
with ¢; = ¢, [12]. From Fig. 5, we observe that dual-
mode chirp signals exist which are superior to. binary
PSK by 1.63, 2.15, and 2.40dB for observation lengths
37, 4T, and 57, respectively. The optimum 3-bit
dual-mode chirp system {{1.36, 0.26}, {1.36, 0.49}}
performs nearly as well as the optimum 5-bit mono-
mode system {2.37, 0.19}. Finally we observe that the
optimum 5-bit dual-mode chirp system {{1.68, 0.30},
{1.68, 0.50}} outperforms optimum coherent single-bit
discontinuous chirp system {1.55, 0.35} by nearly
3.4dB.

10

-30 . s . _
0 02 0.4 06 08 1.0 12
fT .
Fig.6 Power spectra of binary monomode chirp sets
MSK.

e (w = 1.55, ¢ = 0.25)
————(w=1388,4=027)

10r

G(f),dB
i
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=30 . ‘ , . i "
0 02 0.4 06 08 1.0 1:2
T
Fig.7  Power spectra of binary dual-mode chirp sets
MSK.

———— {{1.68,0.30}, {1.68, 0.50}}
— = —{{1.36, 0.26}, {1.36, 0.50}}

In Figs. 6 and 7 the normalised power spectra of
monomode and dual-mode chirp systems have been
plotted. In these Figures power spectrum of MSK are
also given for comparison. It is noted from Fig. 6 that
the difference between the maximum value of G(f) in
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the main lobe and the maximum value in the first side
lobe is nearly 11dB for {w = 1.55, ¢ = 0.25} binary
monomode chirp system and —1.4dB for {w = 1.88, ¢ =
0.27} chirp system. This shows significant signal energy
distribution in side lobes. The spectra of binary mono-
mode chirp systems is quite sensitive to even small var-
iations in the sweep width parameter w. It is noted
that, as w increases, the ripple associated with spectra
decreases, and as g (0 < ¢ < 1) increases, for a fixed w,
the main lobe shifts away from frequency zero and the
value of the peak itself increases in value.

5 Conclusions

In this paper we have introduced the concept of time-
varying modulation parameters into the continuous
phase chirp signals and analysed their performance
ability over a coherent Gaussian channel. The optimum
coherent receiver for multimode chirp signals is identi-
fied, for arbitrary observation intervals, and its error
rate performance in terms of high and low SNR
bounds have been determined. It has been shown that
the dual-mode chirp system performs better than the
known single-mode chirp system. A simple and easy-to-
implement AMF receiver, for dual-mode chirp signals,
has been obtained that performs close to that of the
optimum receiver at low values of SNR. The best per-
formance of this receiver is achieved with a minimum
observation length of two bit intervals and for an
unbounded range of w (the sweep width parameter of
the signal), with ¢; = ¢, = 0.5. The performance thus
achieved is equal to that of PSK.

Although the numerical results presented in this
paper are for dual-mode chirp systems, our treatment
of the problem and analytical results presented, in gen-
eral, hold good for arbitrary multimode chirp systems.
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8 Appendix

8.1 Correlation expression for multimode
chirp signals

An expression for the normalised sequence correlation
required in eqns. 13 and 14 may be shown to be given
by:

NN -
po(i,J) = ~ > ooy ) (18)
k=1
where
k=1
. i =0
ok (i, ) = cos(m rgﬂlq ke
(2lylwy) ™% {cos(O) @} +sin(OF) UF} 1k # 0
(19)
with
P 0.25 4 P\2 i J - P
o = E‘z_ﬂ-l'ml(wk —gf)* +sgn(al —al)m Y q? (20)
r=1
& = C(B-) + C(6s) (21)
¥i = 85(8-) + S(8+) (22)
where
Y = i, — a (23)
and
1
Bz = (lnl/2wf)? (wf + g5) (24)
The terms a;' and @/ denote kth data bits of the ith
and jth sequences with a' = +1 and ¢/ = -1. The

parameters w# and g;” belong to the kth set of pth of
K possible sequences of sets ({wy, g1}, {Wa2, g2} »--es {Wan»

9,3 [19].

8.2 Closed-form expressions for i and ¢
The expressions for g and o required in eqn. 17 are
given by

Wiy =MP+ Y M3, (25)
k=2
and
R=VP+ > VP (26)
k=2
where
MP = 1— —— {cos(P)A? +sin(@))IF}  (27)

NG
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k
M? = sin(ngf) H cos® ¥) (rg?) { sin(6%;)
i=1
o
k [sin{®L)AL — cos(DF)TE] ¢ (28)

2+/wh
VP=1- = {cos(©F) A} + sin(OF)IT} (29)
wy
and

k
VF =0.5(1 — cos2n¢l) H cos? () (rgP) {1

=1

2/w?

b1 (cos(@?)AT + sin(@i)Fﬁ}} (30)

with
x )
Y = W(wi’ + q%)? + sgn(a},)6%, (31)
: k
Of = = (wf +¢})° (32)
2wy,
92

AP = C(v_) + Cluy) ~ (33)

'Y =8(w_)+ S(vy) (34)
k=1
9?19 =7 Z alqy ‘ -+ (35)
r=1 .
wh ¢} ‘
vg = —-L{U-pq']i (36)
k

In egns. 28 and 30 o) are as given in Table 1 of [19].
The functions C(.) and S(.) are the standard Fresnel
integrals defined as [20]

C(z) =/ cos Sy2dy | (37)
, 2
and
S(z) = / sin Ty2dy (38)
O 2

In eqns. 28 and 35 a;;j refers to the kth data bit of the
jth of the 21 data sequences that can be transmitted
with the first bit data always equal to a +1.
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