
K. Grolinger, E. Mezghani, M.A.M. Capretz, E. Exposito, Knowledge as a Service Framework for Disaster Data

Management, The 22nd IEEE WETICE conference, pp. 313-318, 2013, DOI: 10.1109/WETICE.2013.48

Copyright: http://www.ieee.org/documents/ieeecopyrightform.pdf

Knowledge as a Service Framework for Disaster

Data Management

Katarina Grolinger, Miriam A.M.

Capretz
Department of Electrical and Computer Engineering,

Faculty of Engineering, Western University

London, ON, Canada N6A 5B9

{kgroling, mcapretz}@uwo.ca

Emna Mezghani, Ernesto Exposito
CNRS; LAAS; 7 av. du Colonel Roche, F-31400

Toulouse, FRANCE

Université de Toulouse; UPS, INSA, INP, ISAE;

LAAS; F-31400 Toulouse, France

{emezghan, eexposit@}laas.fr

Abstract— Each year, a number of natural disasters strike

across the globe, killing hundreds and causing billions of

dollars in property and infrastructure damage. Minimizing the

impact of disasters is imperative in today’s society. As the

capabilities of software and hardware evolve, so does the role

of information and communication technology in disaster

mitigation, preparation, response, and recovery. A large

quantity of disaster-related data is available, including

response plans, records of previous incidents, simulation data,

social media data, and Web sites. However, current data

management solutions offer few or no integration capabilities.

Moreover, recent advances in cloud computing, big data, and

NoSQL open the door for new solutions in disaster data

management. In this paper, a Knowledge as a Service (KaaS)

framework is proposed for disaster cloud data management

(Disaster-CDM), with the objectives of 1) storing large

amounts of disaster-related data from diverse sources, 2)

facilitating search, and 3) supporting their interoperability and

integration. Data are stored in a cloud environment using a

combination of relational and NoSQL databases. The case

study presented in this paper illustrates the use of Disaster-

CDM on an example of simulation models.

Keywords: disaster management; cloud computing; NoSQL;

Knowledge as a Service (KaaS); big data.

I. INTRODUCTION

Each year, a number of natural disasters strike across the
globe, killing hundreds and causing billions of dollars in
property and infrastructure damage. Extreme weather events
have been predicted by climate scientists and have been
attributed to global warming. As the number of such events
increases, minimizing the impact of disasters becomes
imperative in today’s society.

The role of information and communication technology
in disaster management has been evolving. Large quantities
of disaster-related data are being generated. Behaviour of
critical infrastructures is being explored through simulation,
response plans are being created by government agencies
and individual organizations, sensory systems are providing
potentially relevant information, and social media (Twitter,
Facebook) have been flooded with disaster information [1].
Current data storage systems are disparate and provide few
or no integration capabilities. To make the most of available
information, a reliable and scalable storage system supported

by information sharing, reuse, integration, and analysis is
needed.

In other domains, recent advances in cloud computing,
big data, and NoSQL have been changing how data are
captured, stored, and analyzed. NoSQL solutions have been
especially popular in Web applications [2], including
Facebook, Twitter, and Google. However, the use of cloud
and NoSQL solutions in disaster management has been
sparse.

A solution to store disaster related data in a cloud
environment can provide the following benefits to disaster
management [3]:

 High availability. Within the cloud environment, data
are automatically replicated, often across large
geographic distances. If a region is affected by a disaster
and a local data centre fails, the system remains
available because it can switch to another data centre.

 Scalability and elasticity. The amount of disaster-related
data is immense, and a cloud solution could adapt
storage resources based on real time needs and priorities.
Data can be automatically redistributed to take
advantage of heterogeneous servers.

 There is no need for a large initial investment. The
system can start small and be expanded by adding
heterogeneous nodes as needed.

Moreover, NoSQL databases have a number of
characteristics that can benefit disaster management,
including [4]:

 Flexible data structure. Disaster data are extremely
diverse, and therefore it would be almost impossible to
store them in a predetermined data structure.

 Great horizontal scalability. NoSQL databases were
designed for a cloud environment, and therefore they
scale easily over a large number of commodity servers.

 Performance. For simple read/write operations, NoSQL
databases can provide excellent performance.

Consequently, this paper proposes a Knowledge as a Service
(KaaS) framework for disaster cloud data management
(Disaster-CDM). KaaS [20] aims to generate from stored
data in a cloud environment, knowledge such as advice or
response to meet organizational needs. Therefore, Disaster-
CDM has the following objectives of 1) Storing large
amounts of disaster-related data from diverse sources, 2)
Facilitating search of disaster data, and 3) Supporting their
interoperability and integration.

The storage of large amounts of heterogeneous data will
be achieved by using relational and NoSQL databases in the
cloud environment. Knowledge delivery architecture will use
semantic integration to facilitate search and interoperability.

The remainder of the paper is organized as follows:
Section II reviews related work; the proposed Disaster-CDM
is portrayed in Section III, while Section IV depicts a case
study. Finally, conclusions and future work are presented in
Section V.

II. RELATED WORK

Research in disaster management involves many fields,
including health science, environmental science, computer
science, and a number of engineering disciplines. Crisis
informatics [5,6], the area of research concerned with the
role of information and technology in disaster management,
has been attracting increased research attention recently.

Hristidis et al. [1] surveyed data management and
analysis in the disaster domain. The main focus of their
survey was on data analysis techniques without the storage
aspect. In contrast, in Disaster-CDM, storage and analysis
are considered as integral parts. Hristidis et al. identified the
following data analysis technologies as relevant in disaster
data management: information extraction, information
retrieval, information filtering, data mining, and decision
support. Similarly, Disaster-CDM uses a number of
technologies from information extraction and retrieval. The
survey reveals that the majority of research has focused on a
very narrow area of disaster management, for example, a
specific disaster event such as an earthquake or a flood, or
specific disaster-related activities such as communication
among actors, estimating disaster damage, and use of mobile
devices. Hristidis et al. recognized the need for flexible and
customizable disaster-management solutions that could be
applied in different disaster situations. Disaster-CDM aims to
provide such a solution using cloud and NoSQL approaches.

Silva et al. [7] aimed to integrate diverse, distributed
information sources by bringing them into a standardized
and exchangeable common data format. Their approach
focused on data available on public Web sites. Data were
first extracted from different source Web sites and stored in a
relational database. Next, the data were transformed into
Linked Open Data (LOD) and published. In contrast to their
work which addressed data available on public Web sites,
the proposed Disaster-CDM can accommodate various
information sources. In addition, Disaster-CDM is designed
for high availability and large amounts of data.

Palen et al. [5] presented a vision of technology-
supported public participation during disaster events. They
focused on the role of the public in disasters and how
information and communication technology can transform
that role. Similarly to [1], they recognized information
integration as a core concern in crisis informatics.

Anderson and Schram [8], like Palen et al. [5], studied
the role of public and social media in disaster events. They
proposed a crisis-informatics data analytic infrastructure for
the collection, analysis, and storage of information from
Twitter. The main objective of their work was the support of
other crisis information research by extracting disaster-

related tweets from Twitter and storing them in a database.
In their initial study [8], data were stored in a relational
database, specifically MySQL. Later, after encountering
scalability challenges, they transitioned to a hybrid
architecture that incorporates relational and NoSQL
databases [6]. Similarly, Disaster-CDM also uses a
combination of relational and NoSQL databases. However, a
combination of several NoSQL databases has been used to
address the storage requirements of diverse data.
Specifically, Disaster-CDM allows choice of storage
solutions to suit data structures and access patterns. For
example, ontologies are stored in a graph database because
ontologies closely resemble a graph structure.

To provide disaster knowledge services, Disaster-CDM
uses a KaaS approach. Within KaaS, a knowledge provider
answers requests presented by knowledge consumers
through knowledge services [9]. This approach has been
used in various domains including disaster management [10,
11, 21]. Lino et al. [21] discuss KaaS for emergency
response in natural disasters like tsunami and earthquakes,
which is restricted to Interactive Digital TV. In Disaster-
CDM, KaaS is suitable for accommodating structured and
unstructured data stored in relational and NoSQL databases.

III. DISASTER-CDM ARCHITECTURE

The heterogeneity of the data involved in disaster-related
activities is one of the main challenges in providing a
comprehensive solution that could be used by various
stakeholders in diverse disaster situations. Disaster-CDM
addresses this challenge using the KaaS approach; disaster-
related knowledge is provided as a knowledge service.

The Disaster-CDM architecture is illustrated in Fig. 1. It
consists of two parts: knowledge acquisition and knowledge
delivery services. Knowledge acquisition is responsible for
acquiring knowledge from diverse sources, processing it to
add structure to unstructured or semi-structured data, and
storing it in databases. Data are stored in a cloud
environment, specifically in a variety of relational and
NoSQL databases. The second part, knowledge delivery
services, is responsible for integrating information from
different databases and delivering knowledge to consumers.

It was decided to process the information and to store the
processed, enriched data because the time required for
queries and information integration would be compatible
with near real-time requirements of emergency situations.
Therefore, this will allow shorter response time to the queries
than performing the processing “on the fly”.

The main reasons for choosing NoSQL databases in a
cloud environment are 1) high availability ensures continuity
during disasters, and 2) excellent scalability over a large
number of commodity servers.
The following two sections describe the two main parts of
Disaster-CDM: knowledge acquisition and knowledge
delivery.

A. Knowledge acquisition

The Disaster-CDM knowledge acquisition function obtains
data from heterogeneous data sources, processes them, and
stores them in the cloud environment.

Figure 1. Disaster-CDM architecture.

1) Heterogeneous Data Sources
A few examples of information related to disasters are

disaster plans, incident reports, situation reports, social
media, simulation models including infrastructure and
health-care simulation. As for representation formats,
examples include MS Word, pdf, xml, a variety of image
formats (jpeg, png, tiff), and simulation model formats
specific to simulation packages. Data representation is
important because it determines the methods that can be used
to add structure to unstructured or semi-structured data.

From our experience working with local disaster-
management agencies, the majority of information is stored
in unformatted documents, primarily pdf and MS Word files.
This agrees with the work of Hristidis et al. [1], who
reported that most information is in pdf and MS Word files.

2) Data processing
Because the input data are so diverse, they cannot be

processed using a single approach. Therefore, the processing
is driven by the input data and by data processing rules, as
illustrated in Fig. 1. Data processing rules specify what
processes are to be applied to which input data and in which
order. For example, a pdf incident report must go through file
metadata separation, text extraction, and pattern processing.

The main processes with their associated outputs are
included in Fig. 1. However, Disaster-CDM can be easily
expanded to include new data processing methods.

Text Extraction from Images recognizes the text in an
image and separates it [12]. This step prepares images and
pdf files for other processing steps such as tagging. Text
extraction is especially important in the case of diagrams
such as flowcharts or event-driven process chains because
these documents contain large amounts of text that can be
used for tagging. MS Word documents also go through text
extraction because they often contain images that may
include relevant information.

File Metadata Separation makes use of file and
directory attributes, including file name, creation date, last
modified date, owner, and access permissions. File names
themselves carry important information about content
because they are typically chosen with the aim of describing
the content. They are processed to separate the words
contained in the file name. Keywords can also be used in the
file name as a descriptive metadata. The creation date and
last modified date can assist in distinguishing newer and
potentially more relevant information from older and
possibly outdated information. The file directory structure
contains additional information about file content such as file
structure (table of content) because directories are used to
organize files. Directories can be seen as a categorization and
therefore should be included in metadata separation.

Pattern Processing makes use of existing patterns within
documents to extract the desired structure. Hristidis et al. [1]
observed that most available information is stored in
unstructured documents, but that “typically the same

organization follows a similar format for all its reports” [1].
Therefore, it is feasible to use patterns for information
extraction. However, the number of organizations involved
in disaster management is large, which may result in a large
number of patterns. This represents a challenge because the
patterns need to be identified before pattern processing can
be applied. Another challenge is with new sources where
people must be involved in identifying patterns.

Simulation Model Transformation is the process of
converting simulation models into a representation which
enables model queries and integration with other disaster-
related data. Simulation is considered especially important
for this project because it involves various domains which
are crucial to disaster management. Therefore, simulation-
related activities are described here in more detail.

Although the act of simulation is not domain-specific,
simulation packages are usually application-oriented,
meaning that they are designed for simulation experiments in
a specific domain. These packages use different modeling
approaches and domain-specific vocabularies and store
simulation models in simulation-engine-specific file formats.
Such simulation models cannot be directly queried, nor can
they be integrated with other disaster-related data.

To extract as much information as possible from
simulation model files, an ontology-based representation of
simulation models has been used [13]. Unlike text-
processing approaches, an ontology-based representation
makes it possible to 1) address simulator-specific
terminology, 2) remain schema-independent because
ontologies do not have predefined schemata, and 3) focus on
entities and their relations.

To transform simulator model files to their corresponding
ontology-based models, the process described in [13] has
been used. This process requires two simulator-specific
entities to be created for each simulator: a simulator
ontology, which identifies the simulator’s building blocks
[14]; and a simulation model reader [13], which is
responsible for reading the simulator model files. Once those
two entities have been created for a specific simulator, any
model represented in that format can be transformed to its
ontology-based representation. In the next step, these
ontology-based simulation models will be stored in the cloud
database.

Tagging and semantic annotation. Tagging is the
process of attaching keywords or terms to a piece of
information with the objective of assisting in classification,
identification, or search [15]. Semantic annotations
additionally specify how entities are related. In disaster-
management data tagging, both manual and automated
tagging are needed. Automated tagging applies various
natural language processing (NLP) and soft computing
techniques to add tags automatically to pieces of
information. Because disaster data are immensely diverse, it
might not be feasible to tag all content automatically. Images
are examples of data which may require computationally
expensive tagging. Therefore, manual tagging is used to
supplement the automated approach. Tagging will be
explored first, and semantic annotations will be addressed in
later stages of the project.

3) Data Storage in the Cloud Environment
Relational databases (RDBs) are traditional data-storage

systems designed for structured data. They have been used
for decades due to their reliability, consistency, and query
capabilities through a standard SQL language. However,
they do not gracefully meet mass data needs. In other words,
RDBs exhibit horizontal scalability challenges, big data
inefficiencies, and limited availability [16].

In this context, the next generation of databases, namely
NoSQL databases, have been designed for a distributed
environment [3]. They are mainly dedicated to projects that
are distributed, that involve large amounts of data, or that
must scale. In the case of simple operations, NoSQL
databases improve performance relative to traditional RDBs.

Disaster-CDM, as illustrated in Fig. 1, uses both
relational and NoSQL databases. Even though there are four
main categories of NoSQL databases [4], Disaster-CDM
uses only three. The following discussion introduces all four
categories and explains the choice of not including key-value
databases in Disaster-CDM architecture.

Key-value databases are used for fast and simple
operations. They have the simplest data model: they provide
a simple mapping from the key to the corresponding value.
When using a key-value database, relations between data are
handled at the application level. This data model greatly
restricts integration capabilities, and therefore it is not
included in Disaster-CDM.

Document databases offer a flexible data model with
query possibilities. They focus on optimized storage and
access for semi-structured documents as opposed to rows or
records. Document databases are considered an evolution of
key-value databases because they include all the benefits of
the key-value databases while adding query capabilities.

Column-family databases are suitable for very large
datasets which have to be scaled at larger size. On the
surface, they are similar to relational databases, but the
difference lies on how they store the data. A relational
database stores data by rows, while a column-family
database stores them by columns. Each column is identified
by a key value (row) and can be extended with arbitrary
values. Column-family databases provide query capabilities.

Graph databases are specialized for efficient
management of heavily linked data. Applications based on
data with many relationships are well suited for graph
databases because the cost of intensive operations like
recursive “join” operation can be replaced by efficient graph
traversals [4].

Despite the advantages of NoSQL databases, Disaster-
CDM also accommodates relational databases. RDBs are
still an appropriate solution for many applications because of
their characteristics such as ACID transactions, their status
as an established technology, and their advanced query
capabilities. Moreover, existing data in relational databases
do not need to be migrated. However, integration among
relational and NoSQL databases is a challenge. Part of this
challenge is the fact that NoSQL databases do not support a
standard query language.

B. Knowledge delivery

The Disaster-CDM knowledge delivery service will
answer information requests submitted by service consumers
by integrating information stored in the cloud. As presented
in Fig. 1, data access is mainly composed of three parts:

 Ontologies: These provide an overall view of the local
ontologies representing each database independently of
its category. Ontologies represent the mapping between
heterogeneous sources which is needed to unify query
capabilities.

 Data interfaces: After querying the ontology, it is
necessary to access the data. Data interfaces enable
translation of the generic query into a specific language
that corresponds to the underlying database system.
Thus, the data stored in heterogeneous sources can be
accessed, analyzed, and administered.

 Services: This is the access layer for users. It provides
services independently of how the data are stored. Thus,
users are unaware of the storage architecture and are
provided with a unified view of the data.

Security and privacy are outside the scope of this work;
however, they are included in Fig. 1 to underline their
importance.

IV. CASE STUDY

The use of the proposed Disaster-CDM will be
demonstrated here on an example including simulation
models. This choice is motivated by the importance of
simulation in a number of domains crucial for disaster
management. Moreover, simulation models contain complex
information that should be preserved in the transformation
process. The complexity and heterogeneity of simulation
models represents a challenge for storage and integration.

Specifically, the I2Sim [17] model, which was developed
for the investigation of infrastructure interdependencies, is
used. I2Sim is an interdependency simulator built upon
MATLAB’s Simulink engine. Simulink provides block
libraries which can be customized to conform to a specific
simulation domain. Complex models are managed by
dividing models into hierarchies of sub-models.
Accordingly, I2Sim builds upon Simulink by customizing
Simulink blocks and providing entities specific to
infrastructure interdependency simulation.

The I2Sim simulator model used in this case study was
developed to investigate infrastructure interdependencies in
an incident on the Western University campus. The model
involves a number of infrastructures, including electricity,
water, and steam distribution. It is complex and consists of
several hierarchy levels. These hierarchy levels hide
complexity and aid in model creation and management;
however, they pose a challenge for model checking. To
verify that the model conforms to a specific requirement, the
user typically must open and review each sub-model in the
hierarchy. Storing ontology-base representations in a
database provides querying abilities and thus facilitates
model checking. The simulation models are first processed to
convert them into ontology-based models; then they are
saved in a cloud database.

A. Simulation model processing

 As described in Section III.A.2, simulation models are
processed by transforming each simulator-specific
proprietary model to its corresponding ontology-based
model. In the case of I2Sim, the simulator model is stored in
a Simulink-style .mdl file. The transformation of this .mdl
file to an ontology-based model has been described in [13].

The transformation approach [13] enables the
representation of ontology-based models in different
ontology languages. In this case study, OWL [18] was used
because it is the W3C-recommended ontology language.

B. Storing simulation models

Disaster-CDM is designed to enable the choice of a
storage solution that corresponds to the data requirements in
terms of data structure as well as access patterns.

After the simulation models have been transformed into
ontologies, they are represented in OWL, which is
characterized by a formal semantic and an abstract ontology
structure that can be perceived as a graph.

Graph databases use graph structures with nodes, edges,
and properties to represent and store data. They are
optimized for efficient management and storage of graph-
like data. Consequently, because ontologies can be perceived
as graphs, it is apparent that graph databases are a good
choice for storing ontologies as well as ontology-based
simulation models. Another characteristic that makes a graph
database a good choice is its query capabilities. Graph
database implementations typically offer query capabilities
using specialized graph query languages. Specifically, this
case study uses the Neo4j graph database [19]. Neo4j can be
queried using Cypher, a property graph query language
developed by Neo4j; using Gremlin, a graph traversal
language; or even using the RDF query language, SPARQL.

The processing stage creates ontology-based
representations of simulation models in the OWL language.
Next, these ontologies are loaded into Neo4j. Because Neo4j
is a graph database and OWL ontologies are forms of graphs,
loading ontologies into the database proved to be
straightforward.

After ontologies are stored in the database, they can be
queried, what makes it possible to perform model checking
that otherwise would be done manually. This can be
illustrated using an example involving channels and
production cells. In simple terms, an I2Sim production cell is
an entity that transforms inputs into outputs, while a channel
transports entities. It was necessary to find which production
cells were directly connected by channels. To do this directly
on the I2Sim model, the user needs to check each channel to
determine whether it directly connects to production cells.
The hierarchy of sub-models makes this task especially
challenging because each sub-model needs to be checked as
well.

However, Disaster-CDM provides querying for
model checking. In the following query, SPARQL is used to
list all production cells that are directly connected by a
channel, together with the sub-models to which they belong:

SELECT ?cell1Name ?cell2Name ?subModel1 ?subModel2

WHERE {?cell1 a i2sim:production_cell.

?cell2 a i2sim:production_cell.

?cell1 simmodel:Name ?cell1Name.

?cell2 simmodel:Name ?cell2Name.

?channel simupper:hasStartNode ?cell1.

?channel simupper:hasEndNode ?cell2.

?cell1 i2sim:parentSystem ?subModel1.

?cell1 i2sim:parentSystem ?subModel2.}

Instead of each sub-model having to be checked
manually, this query provides a unified view of all
production cells, in all sub-models, that are directly
connected by channels. The first few rows of the results of
this query are displayed in Table I. Note that the names of
the connected production cells in the first two rows are
identical. However, the first row indicates a connection in
the steam_house-boiler_3 sub-model and the second row a
connection in steam_house-boiler_2. The same query could
have been executed against OWL ontology without storing
the ontology in the database. However, disaster management
deals with a large number of simulation models making the
use of a database preferable to store ontologies as OWL files.

 This section presented a simple case study that has been
intended to illustrate how Disaster-CDM can be used in
order to provide a high-available, scalable and low-cost
solution to manage heterogeneity and semantics in
large/complex simulation models to benefit disaster
management through the use of the cloud environment.

V. CONCLUSIONS

In recent years, we have witnessed a number of extreme
weather events and natural disasters. At the same time,
changes in software and hardware have created opportunities
for new solutions in disaster management.

This paper has proposed Disaster-CDM, a KaaS
framework for disaster data management. Disaster-CDM
stores large amounts of data while maintaining high
availability by using NoSQL and cloud solutions. Search of
disaster data, interoperability, and integration are facilitated
through knowledge acquisition and knowledge delivery.
Knowledge acquisition applies language processing,
information extraction, and retrieval techniques to add
structure and metadata to largely unstructured disaster data.
Knowledge delivery services integrate information from
different databases and deliver knowledge to consumers.

Disaster-CDM is still at the design stage, and only a part
of the simulation model data acquisition process is included
in this work. The remaining part of the framework will need
to be implemented to evaluate the entire framework fully. In
addition, security and privacy concerns must be addressed.

TABLE I. QUERY OUTPUT

cell1Name cell2Name subModel1 subModel2

Combustion
chamber

Super heater Steam_house-boiler_3 Steam_house-boiler_3

Combustion
chamber

Super heater Steam_house-boiler_2 Steam_house-boiler_2

Air fan Super heater Steam_house-boiler_3 Steam_house-boiler_3

Air fan Super heater Steam_house-boiler_4 Steam_house-boiler_4

REFERENCES

[1] V. Hristidis, S. Chen, T. Li, S. Luis, and Y. Deng, "Survey of Data
Management and Analysis in Disaster Situations," Journal of Systems
and Software, vol. 83, no. 10, pp. 1701-1714, 2010.

[2] S. Sakr, A. Liu, D.M. Batista, and M. Alomari, "A Survey of Large
Scale Data Management Approaches in Cloud Environments," IEEE
Comm. Surveys & Tutorials, vol. 13, no. 3, pp. 311-336, 2011.

[3] D. Kossmann and T. Kraska, "Data Management in the Cloud:
Promises, State-of-the-Art, and Open Questions," Datenbank-
Spektrum, vol. 10, no. 3, pp. 121-129, 2010.

[4] R. Hecht, S. Jablonski, "NoSQL Evaluation: A Use Case Oriented
Survey," Conf. on Cloud and Service Computing, pp. 336-341, 2011.

[5] L. Palen, K.M. Anderson, G. Mark, J. Martin, D. Sicker, M. Palmer,
and D. Grunwald, "A Vision for Technology-Mediated Support for
Public Participation and Assistance in Mass Emergencies &
Disasters," Conf. on Visions of Computer Science, pp. 1-12, 2010.

[6] A. Schram, K.M. Anderson, "MySQL to NoSQL: Data Modeling
Challenges in Supporting Scalability," 3rd Conf. on Systems,
Programming, and Applications: Software for Humanity, pp. 191-
202, 2012.

[7] T. Silva, V. Wuwongse, and H.N. Sharma, "Linked Data in Disaster
Mitigation and Preparedness," Third Int. Conf. on Intelligent
Networking and Collaborative Systems, pp. 746-751, 2011.

[8] K.M. Anderson and A. Schram, "Design and Implementation of a
Data Analytics Infrastructure in Support of Crisis Informatics
Research: NIER Track," Proc. 33rd International Conference on
Software Engineering, pp. 844-847, 2011.

[9] S. Khoshnevis and F. Rabeifa, "Toward Knowledge Management as a
Service in Cloud-Based Environments," Int. Journal of Mechatronics,
Electrical and Computer Technology, vol. 2, no. 4, pp. 88-110, 2012.

[10] I. Lai, S. Tam, and M. Chan, "Knowledge Cloud System for Network
Collaboration: A Case Study in Medical Service Industry in China,"
Expert Syst.Appl., vol. 39, no. 15, pp. 12205-12212, 2012.

[11] Y. Qirui, "Kaas-Based Intelligent Service Model in Agricultural
Expert System," Proc. 2nd International Conference on Consumer
Electronics, Communications, and Networks, pp. 2678-2680, 2012.

[12] C.P. Sumathi, G.Gayathri Devi, T. Santhanam, "A Survey on Various
Approaches to Text Extraction in Images," Int. Journal of Computer
Science and Engineering Survey, vol. 3, no. 4, pp. 27-42, 2012.

[13] K. Grolinger, M.A.M. Capretz, J.R. Marti, and K.D. Srivastava,
"Ontology-based Representation of Simulation Models," 24th Int.
Conf. on Software Engineering and Knowledge Engineering, 2012.

[14] K. Grolinger, M.A.M. Capretz, A. Shypanski, and G.S. Gill,
"Federated Critical Infrastructure Simulators: Towards Ontologies for
Support of Collaboration," IEEE CCECE - Workshop on Connecting
Engineering Applications and Disaster Management, 2011.

[15] M. Wang, B. Ni, X. Hua, and T. Chua, "Assistive Tagging: A Survey
of Multimedia Tagging with Human-Computer Joint Exploration,"
ACM Computing Surveys, vol. 44, no. 4, pp. 1-24, 2012.

[16] J. Han, M. Song, J. Song, "A Novel Solution of Distributed Memory
NoSQL Database for Cloud Computing," Proc. 10th IEEE/ACIS Int.
Conf. on Computer and Information Science, pp. 351-355, 2011.

[17] H.A. Rahman, M. Armstrong, D. Mao, and J.R. Marti, "I2Sim: A
Matrix-Partition Based Framework for Critical Infrastructure
Interdependencies Simulation," Electric Power Conf., pp. 1-8, 2008.

[18] W3C OWL Working Group, "OWL 2 Web Ontology Language,"
http://www.w3.org/TR/owl2-overview/, 2009.

[19] "Neo4j," http://www.neo4j.org/, 2013.

[20] R. Abdullah, Z. D. Eri, A. M. Talib, "A model of knowledge
management system for facilitating knowledge as a service (KaaS) in
cloud computing environment," Int. Conf. on Research and
Innovation in Information Systems (ICRIIS), 2011 , vol., no., pp.1-4.

[21] N. C. Q. Lino, C. A. Siebra, M. Amaro, A. Tate, " EmergencyGrid –
Planning in Convergence Environments", 22nd Int. Conf. on
Automated Planning and Scheduling, SPARK workshop, 2012

http://www.w3.org/TR/owl2-overview/
http://www.neo4j.org/

