
K. Grolinger, E. Mezghani, M.A.M. Capretz, E. Exposito, Knowledge as a Service Framework for Disaster Data 

Management, The 22nd IEEE WETICE conference, pp. 313-318, 2013, DOI: 10.1109/WETICE.2013.48   

Copyright: http://www.ieee.org/documents/ieeecopyrightform.pdf 

Knowledge as a Service Framework for Disaster 

Data Management 
 

Katarina Grolinger, Miriam A.M. 

Capretz  
Department of Electrical and Computer Engineering, 

Faculty of Engineering, Western University 

London, ON, Canada N6A 5B9 

{kgroling, mcapretz}@uwo.ca 

 

Emna Mezghani, Ernesto Exposito 
CNRS; LAAS; 7 av. du Colonel Roche, F-31400 

Toulouse, FRANCE 

Université de Toulouse; UPS, INSA, INP, ISAE; 

LAAS; F-31400 Toulouse, France  

{emezghan, eexposit@}laas.fr 

 

 
Abstract— Each year, a number of natural disasters strike 

across the globe, killing hundreds and causing billions of 

dollars in property and infrastructure damage. Minimizing the 

impact of disasters is imperative in today’s society. As the 

capabilities of software and hardware evolve, so does the role 

of information and communication technology in disaster 

mitigation, preparation, response, and recovery. A large 

quantity of disaster-related data is available, including 

response plans, records of previous incidents, simulation data, 

social media data, and Web sites. However, current data 

management solutions offer few or no integration capabilities. 

Moreover, recent advances in cloud computing, big data, and 

NoSQL open the door for new solutions in disaster data 

management. In this paper, a Knowledge as a Service (KaaS) 

framework is proposed for disaster cloud data management 

(Disaster-CDM), with the objectives of 1) storing large 

amounts of disaster-related data from diverse sources, 2) 

facilitating search, and 3) supporting their interoperability and 

integration. Data are stored in a cloud environment using a 

combination of relational and NoSQL databases. The case 

study presented in this paper illustrates the use of Disaster-

CDM on an example of simulation models.  

Keywords: disaster management; cloud computing; NoSQL; 

Knowledge as a Service (KaaS); big data. 

I.  INTRODUCTION 

Each year, a number of natural disasters strike across the 
globe, killing hundreds and causing billions of dollars in 
property and infrastructure damage. Extreme weather events 
have been predicted by climate scientists and have been 
attributed to global warming. As the number of such events 
increases, minimizing the impact of disasters becomes 
imperative in today’s society.  

The role of information and communication technology 
in disaster management has been evolving. Large quantities 
of disaster-related data are being generated. Behaviour of 
critical infrastructures is being explored through simulation, 
response plans are being created by government agencies 
and individual organizations, sensory systems are providing 
potentially relevant information, and social media (Twitter, 
Facebook) have been flooded with disaster information [1]. 
Current data storage systems are disparate and provide few 
or no integration capabilities. To make the most of available 
information, a reliable and scalable storage system supported 

by information sharing, reuse, integration, and analysis is 
needed. 

In other domains, recent advances in cloud computing, 
big data, and NoSQL have been changing how data are 
captured, stored, and analyzed. NoSQL solutions have been 
especially popular in Web applications [2], including 
Facebook, Twitter, and Google. However, the use of cloud 
and NoSQL solutions in disaster management has been 
sparse.  

A solution to store disaster related data in a cloud 
environment can provide the following benefits to disaster 
management [3]: 

 High availability. Within the cloud environment, data 
are automatically replicated, often across large 
geographic distances. If a region is affected by a disaster 
and a local data centre fails, the system remains 
available because it can switch to another data centre. 

 Scalability and elasticity. The amount of disaster-related 
data is immense, and a cloud solution could adapt 
storage resources based on real time needs and priorities. 
Data can be automatically redistributed to take 
advantage of heterogeneous servers.  

 There is no need for a large initial investment. The 
system can start small and be expanded by adding 
heterogeneous nodes as needed.  

Moreover, NoSQL databases have a number of 
characteristics that can benefit disaster management, 
including [4]: 

 Flexible data structure. Disaster data are extremely 
diverse, and therefore it would be almost impossible to 
store them in a predetermined data structure. 

 Great horizontal scalability. NoSQL databases were 
designed for a cloud environment, and therefore they 
scale easily over a large number of commodity servers. 

 Performance. For simple read/write operations, NoSQL 
databases can provide excellent performance. 

Consequently, this paper proposes a Knowledge as a Service 
(KaaS) framework for disaster cloud data management 
(Disaster-CDM).  KaaS [20] aims to generate from stored 
data in a cloud environment, knowledge such as advice or 
response to meet organizational needs. Therefore, Disaster-
CDM has the following objectives of 1) Storing large 
amounts of disaster-related data from diverse sources, 2) 
Facilitating search of disaster data, and 3) Supporting their 
interoperability and integration. 



The storage of large amounts of heterogeneous data will 
be achieved by using relational and NoSQL databases in the 
cloud environment. Knowledge delivery architecture will use 
semantic integration to facilitate search and interoperability. 

The remainder of the paper is organized as follows: 
Section II reviews related work; the proposed Disaster-CDM 
is portrayed in Section III, while Section IV depicts a case 
study. Finally, conclusions and future work are presented in 
Section V. 

II. RELATED WORK 

Research in disaster management involves many fields, 
including health science, environmental science, computer 
science, and a number of engineering disciplines. Crisis 
informatics [5,6], the area of research concerned with the 
role of information and technology in disaster management, 
has been attracting increased research attention recently.  

Hristidis et al. [1] surveyed data management and 
analysis in the disaster domain. The main focus of their 
survey was on data analysis techniques without the storage 
aspect. In contrast, in Disaster-CDM, storage and analysis 
are considered as integral parts. Hristidis et al. identified the 
following data analysis technologies as relevant in disaster 
data management: information extraction, information 
retrieval, information filtering, data mining, and decision 
support. Similarly, Disaster-CDM uses a number of 
technologies from information extraction and retrieval. The 
survey reveals that the majority of research has focused on a 
very narrow area of disaster management, for example, a 
specific disaster event such as an earthquake or a flood, or 
specific disaster-related activities such as communication 
among actors, estimating disaster damage, and use of mobile 
devices. Hristidis et al. recognized the need for flexible and 
customizable disaster-management solutions that could be 
applied in different disaster situations. Disaster-CDM aims to 
provide such a solution using cloud and NoSQL approaches. 

Silva et al. [7] aimed to integrate diverse, distributed 
information sources by bringing them into a standardized 
and exchangeable common data format. Their approach 
focused on data available on public Web sites. Data were 
first extracted from different source Web sites and stored in a 
relational database. Next, the data were transformed into 
Linked Open Data (LOD) and published. In contrast to their 
work which addressed data available on public Web sites, 
the proposed Disaster-CDM can accommodate various 
information sources. In addition, Disaster-CDM is designed 
for high availability and large amounts of data. 

Palen et al. [5] presented a vision of technology-
supported public participation during disaster events. They 
focused on the role of the public in disasters and how 
information and communication technology can transform 
that role. Similarly to [1], they recognized information 
integration as a core concern in crisis informatics.  

Anderson and Schram [8], like Palen et al. [5], studied 
the role of public and social media in disaster events. They 
proposed a crisis-informatics data analytic infrastructure for 
the collection, analysis, and storage of information from 
Twitter. The main objective of their work was the support of 
other crisis information research by extracting disaster-

related tweets from Twitter and storing them in a database. 
In their initial study [8], data were stored in a relational 
database, specifically MySQL. Later, after encountering 
scalability challenges, they transitioned to a hybrid 
architecture that incorporates relational and NoSQL 
databases [6]. Similarly, Disaster-CDM also uses a 
combination of relational and NoSQL databases. However, a 
combination of several NoSQL databases has been used to 
address the storage requirements of diverse data. 
Specifically, Disaster-CDM allows choice of storage 
solutions to suit data structures and access patterns. For 
example, ontologies are stored in a graph database because 
ontologies closely resemble a graph structure.  

To provide disaster knowledge services, Disaster-CDM 
uses a KaaS approach. Within KaaS, a knowledge provider 
answers requests presented by knowledge consumers 
through knowledge services [9]. This approach has been 
used in various domains including disaster management [10, 
11, 21]. Lino et al. [21] discuss KaaS for emergency 
response in natural disasters like tsunami and earthquakes, 
which is restricted to Interactive Digital TV. In Disaster-
CDM, KaaS is suitable for accommodating structured and 
unstructured data stored in relational and NoSQL databases. 

III. DISASTER-CDM ARCHITECTURE 

The heterogeneity of the data involved in disaster-related 
activities is one of the main challenges in providing a 
comprehensive solution that could be used by various 
stakeholders in diverse disaster situations. Disaster-CDM 
addresses this challenge using the KaaS approach; disaster-
related knowledge is provided as a knowledge service. 

The Disaster-CDM architecture is illustrated in Fig. 1. It 
consists of two parts: knowledge acquisition and knowledge 
delivery services. Knowledge acquisition is responsible for 
acquiring knowledge from diverse sources, processing it to 
add structure to unstructured or semi-structured data, and 
storing it in databases. Data are stored in a cloud 
environment, specifically in a variety of relational and 
NoSQL databases. The second part, knowledge delivery 
services, is responsible for integrating information from 
different databases and delivering knowledge to consumers. 

It was decided to process the information and to store the 
processed, enriched data because the time required for 
queries and information integration would be compatible 
with near real-time requirements of emergency situations.  
Therefore, this will allow shorter response time to the queries 
than performing the processing “on the fly”. 

The main reasons for choosing NoSQL databases in a 
cloud environment are 1) high availability ensures continuity 
during disasters, and 2) excellent scalability over a large 
number of commodity servers. 
The following two sections describe the two main parts of 
Disaster-CDM: knowledge acquisition and knowledge 
delivery.  

A. Knowledge acquisition 

The Disaster-CDM knowledge acquisition function obtains 
data from heterogeneous data sources, processes them, and 
stores them in the cloud environment.  



 

 
Figure 1.  Disaster-CDM architecture. 

1) Heterogeneous Data Sources 
A few examples of information related to disasters are 

disaster plans, incident reports, situation reports, social 
media, simulation models including infrastructure and 
health-care simulation. As for representation formats, 
examples include MS Word, pdf, xml, a variety of image 
formats (jpeg, png, tiff), and simulation model formats 
specific to simulation packages. Data representation is 
important because it determines the methods that can be used 
to add structure to unstructured or semi-structured data.  

From our experience working with local disaster-
management agencies, the majority of information is stored 
in unformatted documents, primarily pdf and MS Word files. 
This agrees with the work of Hristidis et al. [1], who 
reported that most information is in pdf and MS Word files. 

2) Data processing 
Because the input data are so diverse, they cannot be 

processed using a single approach. Therefore, the processing 
is driven by the input data and by data processing rules, as 
illustrated in Fig. 1. Data processing rules specify what 
processes are to be applied to which input data and in which 
order. For example, a pdf incident report must go through file 
metadata separation, text extraction, and pattern processing. 

The main processes with their associated outputs are 
included in Fig. 1. However, Disaster-CDM can be easily 
expanded to include new data processing methods. 

Text Extraction from Images recognizes the text in an 
image and separates it [12]. This step prepares images and 
pdf files for other processing steps such as tagging. Text 
extraction is especially important in the case of diagrams 
such as flowcharts or event-driven process chains because 
these documents contain large amounts of text that can be 
used for tagging. MS Word documents also go through text 
extraction because they often contain images that may 
include relevant information.  

File Metadata Separation makes use of file and 
directory attributes, including file name, creation date, last 
modified date, owner, and access permissions. File names 
themselves carry important information about content 
because they are typically chosen with the aim of describing 
the content. They are processed to separate the words 
contained in the file name. Keywords can also be used in the 
file name as a descriptive metadata. The creation date and 
last modified date can assist in distinguishing newer and 
potentially more relevant information from older and 
possibly outdated information. The file directory structure 
contains additional information about file content such as file 
structure (table of content) because directories are used to 
organize files. Directories can be seen as a categorization and 
therefore should be included in metadata separation.  

Pattern Processing makes use of existing patterns within 
documents to extract the desired structure. Hristidis et al. [1] 
observed that most available information is stored in 
unstructured documents, but that “typically the same 



organization follows a similar format for all its reports” [1]. 
Therefore, it is feasible to use patterns for information 
extraction. However, the number of organizations involved 
in disaster management is large, which may result in a large 
number of patterns. This represents a challenge because the 
patterns need to be identified before pattern processing can 
be applied. Another challenge is with new sources where 
people must be involved in identifying patterns.  

Simulation Model Transformation is the process of 
converting simulation models into a representation which 
enables model queries and integration with other disaster-
related data. Simulation is considered especially important 
for this project because it involves various domains which 
are crucial to disaster management. Therefore, simulation-
related activities are described here in more detail.  

Although the act of simulation is not domain-specific, 
simulation packages are usually application-oriented, 
meaning that they are designed for simulation experiments in 
a specific domain. These packages use different modeling 
approaches and domain-specific vocabularies and store 
simulation models in simulation-engine-specific file formats. 
Such simulation models cannot be directly queried, nor can 
they be integrated with other disaster-related data.  

To extract as much information as possible from 
simulation model files, an ontology-based representation of 
simulation models has been used [13]. Unlike text-
processing approaches, an ontology-based representation 
makes it possible to 1) address simulator-specific 
terminology, 2) remain schema-independent because 
ontologies do not have predefined schemata, and 3) focus on 
entities and their relations. 

To transform simulator model files to their corresponding 
ontology-based models, the process described in [13] has 
been used. This process requires two simulator-specific 
entities to be created for each simulator: a simulator 
ontology, which identifies the simulator’s building blocks 
[14]; and a simulation model reader [13], which is 
responsible for reading the simulator model files. Once those 
two entities have been created for a specific simulator, any 
model represented in that format can be transformed to its 
ontology-based representation. In the next step, these 
ontology-based simulation models will be stored in the cloud 
database. 

Tagging and semantic annotation. Tagging is the 
process of attaching keywords or terms to a piece of 
information with the objective of assisting in classification, 
identification, or search [15]. Semantic annotations 
additionally specify how entities are related. In disaster-
management data tagging, both manual and automated 
tagging are needed. Automated tagging applies various 
natural language processing (NLP) and soft computing 
techniques to add tags automatically to pieces of 
information. Because disaster data are immensely diverse, it 
might not be feasible to tag all content automatically. Images 
are examples of data which may require computationally 
expensive tagging. Therefore, manual tagging is used to 
supplement the automated approach. Tagging will be 
explored first, and semantic annotations will be addressed in 
later stages of the project. 

3) Data Storage in the Cloud Environment 
Relational databases (RDBs) are traditional data-storage 

systems designed for structured data. They have been used 
for decades due to their reliability, consistency, and query 
capabilities through a standard SQL language. However, 
they do not gracefully meet mass data needs. In other words, 
RDBs exhibit horizontal scalability challenges, big data 
inefficiencies, and limited availability [16].  

In this context, the next generation of databases, namely 
NoSQL databases, have been designed for a distributed 
environment [3]. They are mainly dedicated to projects that 
are distributed, that involve large amounts of data, or that 
must scale. In the case of simple operations, NoSQL 
databases improve performance relative to traditional RDBs.  

Disaster-CDM, as illustrated in Fig. 1, uses both 
relational and NoSQL databases. Even though there are four 
main categories of NoSQL databases [4], Disaster-CDM 
uses only three. The following discussion introduces all four 
categories and explains the choice of not including key-value 
databases in Disaster-CDM architecture. 

Key-value databases are used for fast and simple 
operations. They have the simplest data model: they provide 
a simple mapping from the key to the corresponding value. 
When using a key-value database, relations between data are 
handled at the application level. This data model greatly 
restricts integration capabilities, and therefore it is not 
included in Disaster-CDM. 

Document databases offer a flexible data model with 
query possibilities. They focus on optimized storage and 
access for semi-structured documents as opposed to rows or 
records. Document databases are considered an evolution of 
key-value databases because they include all the benefits of 
the key-value databases while adding query capabilities. 

Column-family databases are suitable for very large 
datasets which have to be scaled at larger size. On the 
surface, they are similar to relational databases, but the 
difference lies on how they store the data. A relational 
database stores data by rows, while a column-family 
database stores them by columns. Each column is identified 
by a key value (row) and can be extended with arbitrary 
values. Column-family databases provide query capabilities. 

Graph databases are specialized for efficient 
management of heavily linked data. Applications based on 
data with many relationships are well suited for graph 
databases because the cost of intensive operations like 
recursive “join” operation can be replaced by efficient graph 
traversals [4].  

Despite the advantages of NoSQL databases, Disaster-
CDM also accommodates relational databases. RDBs are 
still an appropriate solution for many applications because of 
their characteristics such as ACID transactions, their status 
as an established technology, and their advanced query 
capabilities. Moreover, existing data in relational databases 
do not need to be migrated. However, integration among 
relational and NoSQL databases is a challenge. Part of this 
challenge is the fact that NoSQL databases do not support a 
standard query language.  



B. Knowledge delivery 

The Disaster-CDM knowledge delivery service will 
answer information requests submitted by service consumers 
by integrating information stored in the cloud. As presented 
in Fig. 1, data access is mainly composed of three parts: 

 Ontologies: These provide an overall view of the local 
ontologies representing each database independently of 
its category. Ontologies represent the mapping between 
heterogeneous sources which is needed to unify query 
capabilities. 

 Data interfaces: After querying the ontology, it is 
necessary to access the data. Data interfaces enable 
translation of the generic query into a specific language 
that corresponds to the underlying database system. 
Thus, the data stored in heterogeneous sources can be 
accessed, analyzed, and administered. 

 Services: This is the access layer for users. It provides 
services independently of how the data are stored. Thus, 
users are unaware of the storage architecture and are 
provided with a unified view of the data.  

Security and privacy are outside the scope of this work; 
however, they are included in Fig. 1 to underline their 
importance. 

IV. CASE STUDY 

The use of the proposed Disaster-CDM will be 
demonstrated here on an example including simulation 
models. This choice is motivated by the importance of 
simulation in a number of domains crucial for disaster 
management. Moreover, simulation models contain complex 
information that should be preserved in the transformation 
process. The complexity and heterogeneity of simulation 
models represents a challenge for storage and integration.  

Specifically, the I2Sim [17] model, which was developed 
for the investigation of infrastructure interdependencies, is 
used. I2Sim is an interdependency simulator built upon 
MATLAB’s Simulink engine. Simulink provides block 
libraries which can be customized to conform to a specific 
simulation domain. Complex models are managed by 
dividing models into hierarchies of sub-models. 
Accordingly, I2Sim builds upon Simulink by customizing 
Simulink blocks and providing entities specific to 
infrastructure interdependency simulation.  

The I2Sim simulator model used in this case study was 
developed to investigate infrastructure interdependencies in 
an incident on the Western University campus. The model 
involves a number of infrastructures, including electricity, 
water, and steam distribution. It is complex and consists of 
several hierarchy levels. These hierarchy levels hide 
complexity and aid in model creation and management; 
however, they pose a challenge for model checking. To 
verify that the model conforms to a specific requirement, the 
user typically must open and review each sub-model in the 
hierarchy. Storing ontology-base representations in a 
database provides querying abilities and thus facilitates 
model checking. The simulation models are first processed to 
convert them into ontology-based models; then they are 
saved in a cloud database. 

A. Simulation model processing 

 As described in Section III.A.2, simulation models are 
processed by transforming each simulator-specific 
proprietary model to its corresponding ontology-based 
model. In the case of I2Sim, the simulator model is stored in 
a Simulink-style .mdl file. The transformation of this .mdl 
file to an ontology-based model has been described in [13]. 

The transformation approach [13] enables the 
representation of ontology-based models in different 
ontology languages. In this case study, OWL [18] was used 
because it is the W3C-recommended ontology language.  

B. Storing simulation models 

Disaster-CDM is designed to enable the choice of a 
storage solution that corresponds to the data requirements in 
terms of data structure as well as access patterns.  

After the simulation models have been transformed into 
ontologies, they are represented in OWL, which is 
characterized by a formal semantic and an abstract ontology 
structure that can be perceived as a graph. 

Graph databases use graph structures with nodes, edges, 
and properties to represent and store data. They are 
optimized for efficient management and storage of graph- 
like data. Consequently, because ontologies can be perceived 
as graphs, it is apparent that graph databases are a good 
choice for storing ontologies as well as ontology-based 
simulation models. Another characteristic that makes a graph 
database a good choice is its query capabilities. Graph 
database implementations typically offer query capabilities 
using specialized graph query languages. Specifically, this 
case study uses the Neo4j graph database [19]. Neo4j can be 
queried using Cypher, a property graph query language 
developed by Neo4j; using Gremlin, a graph traversal 
language; or even using the RDF query language, SPARQL. 

The processing stage creates ontology-based 
representations of simulation models in the OWL language. 
Next, these ontologies are loaded into Neo4j. Because Neo4j 
is a graph database and OWL ontologies are forms of graphs, 
loading ontologies into the database proved to be 
straightforward. 

After ontologies are stored in the database, they can be 
queried, what makes it possible to perform model checking 
that otherwise would be done manually. This can be 
illustrated using an example involving channels and 
production cells. In simple terms, an I2Sim production cell is 
an entity that transforms inputs into outputs, while a channel 
transports entities. It was necessary to find which production 
cells were directly connected by channels. To do this directly 
on the I2Sim model, the user needs to check each channel to 
determine whether it directly connects to production cells. 
The hierarchy of sub-models makes this task especially 
challenging because each sub-model needs to be checked as 
well.   

However, Disaster-CDM provides querying for 
model checking. In the following query, SPARQL is used to 
list all production cells that are directly connected by a 
channel, together with the sub-models to which they belong: 

 



SELECT ?cell1Name ?cell2Name ?subModel1 ?subModel2 

WHERE {?cell1 a i2sim:production_cell. 

?cell2 a i2sim:production_cell. 

?cell1 simmodel:Name ?cell1Name. 

?cell2 simmodel:Name ?cell2Name. 

?channel simupper:hasStartNode ?cell1. 

?channel simupper:hasEndNode ?cell2. 

?cell1 i2sim:parentSystem ?subModel1. 

?cell1 i2sim:parentSystem ?subModel2.} 

Instead of each sub-model having to be checked 
manually, this query provides a unified view of all 
production cells, in all sub-models, that are directly 
connected by channels. The first few rows of the results of 
this query are displayed in Table I. Note that the names of 
the connected production cells in the first two rows are 
identical. However, the first row indicates a connection in 
the steam_house-boiler_3 sub-model and the second row a 
connection in steam_house-boiler_2. The same query could 
have been executed against OWL ontology without storing 
the ontology in the database. However, disaster management 
deals with a large number of simulation models making the 
use of a database preferable to store ontologies as OWL files.  

 This section presented a simple case study that has been 
intended to illustrate how Disaster-CDM can be used in 
order to provide a high-available, scalable and low-cost 
solution to manage heterogeneity and semantics in 
large/complex simulation models to benefit disaster 
management through the use of the cloud environment. 

V. CONCLUSIONS 

In recent years, we have witnessed a number of extreme 
weather events and natural disasters. At the same time, 
changes in software and hardware have created opportunities 
for new solutions in disaster management.  

This paper has proposed Disaster-CDM, a KaaS 
framework for disaster data management. Disaster-CDM 
stores large amounts of data while maintaining high 
availability by using NoSQL and cloud solutions. Search of 
disaster data, interoperability, and integration are facilitated 
through knowledge acquisition and knowledge delivery. 
Knowledge acquisition applies language processing, 
information extraction, and retrieval techniques to add 
structure and metadata to largely unstructured disaster data. 
Knowledge delivery services integrate information from 
different databases and deliver knowledge to consumers. 

Disaster-CDM is still at the design stage, and only a part 
of the simulation model data acquisition process is included 
in this work. The remaining part of the framework will need 
to be implemented to evaluate the entire framework fully. In 
addition, security and privacy concerns must be addressed.  

TABLE I.  QUERY OUTPUT 

cell1Name cell2Name subModel1 subModel2 

Combustion 
chamber 

Super heater Steam_house-boiler_3  Steam_house-boiler_3  

Combustion 
chamber 

Super heater Steam_house-boiler_2  Steam_house-boiler_2  

Air fan Super heater Steam_house-boiler_3  Steam_house-boiler_3  

Air fan Super heater Steam_house-boiler_4  Steam_house-boiler_4  
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