

 Int. J. Cloud Computing, Vol. 4, No.1, 2015 1

Collaborative knowledge as a service applied to the
disaster management domain

Katarina Grolinger*

Department of Electrical and Computer Engineering

Faculty of Engineering

Western University,

London, ON, Canada N6A 5B9

E-mail: kgroling@uwo.ca

*Corresponding author

Emna Mezghani

CNRS; LAAS

7 av. du Colonel Roche

F-31400 Toulouse, FRANCE

Université de Toulouse;

UPS, INSA, INP, ISAE; LAAS

F-31400 Toulouse, France

E-mail: emezghan@laas.fr

Miriam A.M. Capretz

Department of Electrical and Computer Engineering

Faculty of Engineering

Western University,

London, ON, Canada N6A 5B9

E-mail: mcapretz@uwo.ca

Ernesto Exposito

CNRS; LAAS

7 av. du Colonel Roche

F-31400 Toulouse, FRANCE

Université de Toulouse;

UPS, INSA, INP, ISAE; LAAS

F-31400 Toulouse, France

E-mail: eexposit@laas.fr

mailto:kgroling@uwo.ca
mailto:mcapretz@uwo.ca
mailto:eexposit@laas.fr

Abstract—Cloud computing offers services which promise to meet

continuously increasing computing demands by using a large number of

networked resources. However, data heterogeneity remains a major hurdle for

data interoperability and data integration. In this context, a Knowledge as a

Service (KaaS) approach has been proposed with the aim of generating

knowledge from heterogeneous data and making it available as a service. In

this paper, a Collaborative Knowledge as a Service (CKaaS) architecture is

proposed, with the objective of satisfying consumer knowledge needs by

integrating disparate cloud knowledge through collaboration among distributed

KaaS entities. The NIST cloud computing reference architecture is extended by

adding a KaaS layer that integrates diverse sources of data stored in a cloud

environment. CKaaS implementation is domain-specific; therefore, this paper

presents its application to the disaster management domain. A use case

demonstrates collaboration of knowledge providers and shows how CKaaS

operates with simulation models.

Keywords: cloud computing; data interoperability; data integration; data

heterogeneity; knowledge as a service (KaaS); NoSQL storage; disaster

management

Biographical notes: Katarina Grolinger is currently a Postdoctoral Fellow at

Western University, Canada. She received her Ph.D. and M. Eng. Degrees in

Software Engineering from Western University. Previously, she obtained her

M. Sc. and B. Sc. in Mechanical Engineering from the University of Zagreb,

Croatia. She is also a Certified Oracle Database Administrator with over ten

years of industry experience in database administration and software

development. Her research interests include NoSQL data stores, cloud

computing, Big Data management, disaster data management, data integration

and interoperability.

Emna Mezghani is currently a Ph.D. student in Software Engineering at the

University of Toulouse. Previously, she obtained her M. Sc. degree in

Computer Science and her B.Sc. degree in Computer Engineering from the

National School of Engineering of Sfax, Tunisia. Her research interests include

service oriented architecture, collaborative systems, cloud computing, Big data,

semantics and knowledge management.

Miriam A. M. Capretz is an Associate Professor in the Department of Electrical

and Computer Engineering at Western University, Canada. Before joining

Western University, she was an Assistant Professor in the Software

Engineering Laboratory at the University of Aizu, Japan. Dr. Miriam Capretz

received her B.Sc. and M.E.Sc. degrees from UNICAMP, Brazil and her Ph.D.

from the University of Durham, UK. She has been involved with the

organization of several workshops and symposia as well as has been serving on

program committees in several international conferences. She was a Program

Co-Chair of the IEEE Workshop Web2Touch – living experience through web

(W2T) in 2008 and 2009 and was the Program Chair of the IEEE Symposium

on Human and Socio-Cultural Service Oriented Computing 2009. She has been

working in the software engineering area for more than 30 years. Her current

research interests include cloud computing, Big Data Analytics, service

oriented architecture, ontology and semantic integration, business process

management, software security and privacy.

Ernesto Exposito is an Associate Professor at the INSA of Toulouse and a

researcher at the LAAS laboratory of the CNRS, France. In 2004, he worked as

researcher in the National ICT Australia Limited (NICTA) research center in

Sydney, Australia. In 2003, he earned his Ph.D. in “Informatique et

Télécommunications” from the Institut National Polytechnique de Toulouse,

France. In 2010, he earned his "Habilitation à diriger des recherches" from the

Institut National Polytechnique de Toulouse. He has served as chair and

member of program committee of many international conferences. He has

contributed in several European and French research projects and currently he

is the coordinator at LAAS of the IMAGINE European project related to

Dynamic Manufacturing Networks. His research interests include designing,

modeling and developing service-oriented, component-based and ontology-

driven autonomic transport, middleware and cloud communication services.

1 Introduction

With the development of information and communication technologies (ICT), software

and hardware capabilities have been evolving continuously, and therefore large quantities

of heterogeneous data are being generated and stored. Due to the size, complexity, and

diversity of these data, traditional computing systems are encountering challenges with

handling, processing, storing, and analyzing them. Moreover, computing systems are

facing ever-increasing and strict availability and scalability requirements.

In the domain of distributed and networked information systems, cloud computing

promises to meet this demand by using large numbers of networked resources. The cloud

computing approach is well known for providing on-demand computing services

(Almorsy et al., 2011). It aims to minimize user-perceived latency by providing advanced

mechanisms for data storage, computation, and dynamic resource allocation according to

real-time computation needs. Consequently, a large number of IT companies, including

Amazon, Google, and Microsoft, are now providing cloud computing services. The

National Institute of Standards and Technology (NIST) has defined a generic cloud

computing reference architecture (Liu et al., 2011). From the service perspective, this

reference model includes three layers: Infrastructure as a Service (IaaS), Platform as a

Service (PaaS), and Software as a Service (SaaS). The IaaS layer contains the physical

resources, such as servers, processors, and networks, on which the platforms will be

deployed. The PaaS layer offers platforms for data storage, programming languages, and

Web application servers. Finally, the SaaS layer handles software applications that

directly access infrastructure resources or refer to the PaaS layer for their computing

platform and for data access. Storing data in a cloud environment, more precisely in the

PaaS layer, can provide the following benefits (Kossmann and Kraska, 2010):

 High availability. Within the cloud environment, data are automatically replicated,
often across large geographic distances. If a local data centre fails, the system
remains available because it can switch to another data centre.

 Scalability and elasticity. A cloud solution can adapt storage resources based on real-
time needs and priorities. Data can be automatically redistributed to take advantage
of heterogeneous servers.

 There is no need for a large initial investment. The system can start small and be
expanded by adding heterogeneous nodes as needed.

Recent advances in cloud computing (Erl et al., 2013), including big data (Gupta et al.,

2012), (Mohanty et al., 2013), (Wigan and Clarke, 2013) and NoSQL (Sadalage and

http://www.nist.gov/

Fowler 2013), (Stonebraker et al., 2007), (Grolinger et al., 2013a), (Brewer, 2012), (Hu

and Qu, 2013) approaches, have been changing how data are captured, stored, and

analyzed. They have been especially popular in Web applications (Sakr et al., 2011),

including Facebook, Twitter, and Google. NoSQL approaches (Hecht and Jablonski,

2011) are characterized by flexible data models, horizontal scalability, and excellent

performance with simple read/write operations.
However, data heterogeneity remains a major hurdle for data integration, analysis,

and decision-making. In this context, the Knowledge as a Service (KaaS) approach

(Abdullah et al., 2011) was proposed. KaaS provides a collection of lessons learned, best

practices, and case studies that can help systems leverage knowledge from anywhere in a

distributed computing environment. The main objective of KaaS is to generate

knowledge from heterogeneous data located in a cloud environment and make it available

as a knowledge service. In KaaS, knowledge is considered as an understanding of

information based on its relevance to a problem area and is perceived as a precious

resource essential for decision-making.

Consequently, this paper proposes Collaborative Knowledge as a Service (CKaaS), a

generic architecture that integrates disparate cloud knowledge through collaboration

among distributed KaaS entities with the goal of satisfying consumer knowledge needs.

CKaaS has the following objectives:

1) storing large amounts of data from diverse sources,

2) supporting interoperability and integration, and

3) offering a scalable reconfigurable cloud solution for efficient resource consumption.

Based on the NIST reference architecture (Liu et al., 2011), CKaaS is a distributed cloud

architecture that offers collaboration capabilities and dynamic provisioning of resources.

CKaaS delivers knowledge as a service while relying on semantic integration to facilitate

search and interoperability. Storage of large amounts of heterogeneous data is achieved

by using relational databases and NoSQL data stores in the cloud environment.

In this paper, the proposed CKaaS is applied to the disaster management domain.

Disaster-related data are massive, heterogeneous and complex; they include response and

mitigation plans, sensory information, simulation models exploring critical infrastructure

behaviour, and disaster-related social media information. However, current data storage

systems in disaster management are disparate and provide few if any integration

capabilities. CKaaS represents a powerful collaborative system that enriches disaster

knowledge management solutions by adding scalable storage and integration capabilities.

Consequently, in the disaster management domain, CKaaS facilitates better decision-

making by integrating distributed disaster-related information and providing knowledge

as a service.

The remainder of the paper is organized as follows. In Section 2, the proposed

CKaaS is portrayed, and its application in the disaster management domain is detailed in

Section 3. A case study is described in Section 4, while Section 5 reviews work related to

Knowledge as a Service and presents approaches to data and information management in

the disaster management domain. Section 6 identifies CKaaS limitations, challenges, and

opportunities, and conclusions and future work are presented in Section 7.

2 CKaaS architecture

This section proposes CKaaS, a generic architecture based on the NIST1 reference model

for knowledge integration through collaboration among distributed KaaS entities.

Cloud computing is well known for its ability to deliver highly scalable distributed

computing platforms in which computational resources are offered as a service (Almorsy

et al., 2011). The CKaaS architecture has been designed on the basis of the NIST cloud

computing reference architecture, which represents a generic cloud computing model

(Liu et al., 2011). Other reference architectures, such as those proposed by IBM2 and

CISCO3, have enhanced the NIST model by proposing specializations in specific areas

such as business and communication networks.

The proposed CKaaS architecture is illustrated in Figure 1. It is based on the NIST

reference model with the intention of providing a collaborative cloud-based knowledge

management solution. CKaaS incorporates KaaS as a new sub-layer on top of the

standard PaaS layer of each Cloud Provider and enriches the basic Cloud Broker by

adding the KaaS Broker. It was decided to locate KaaS on top of the PaaS layer because

it offers a knowledge integration service by taking full advantage of the available PaaS-

level resources and services. Likewise, by means of the PaaS, the KaaS layer is able to

use virtual and physical network resources available in the IaaS layer to integrate

distributed and collaborative knowledge sources.

The main purpose of this distributed cloud architecture is to facilitate collaboration

among various KaaS Cloud Providers and to address the knowledge-incompleteness

limitation that can be encountered with isolated Cloud Providers. The architecture is

domain-independent, although its implementation is intended to be domain-dependent

because it relies on ontologies in a specific knowledge domain. A domain-specific

implementation of CKaaS is an instantiation of this distributed cloud architecture in

which several Cloud Providers contain complementary domain-dependent knowledge.

Cloud Consumers will be able to retrieve this knowledge by accessing one specific Cloud

Provider directly or several cloud providers indirectly through the Cloud Broker.

The main advantages of this distributed cloud architecture in the CKaaS solution are:

 First, by interconnecting several KaaS entities, the platform can facilitate

collaboration and orchestrate disparate knowledge sources (from various KaaS

providers) through the intermediation service deployed by the broker.

 Second, KaaS services can be efficiently managed by the distributed cloud

architecture to provide adequate QoS levels from two perspectives: intra-cloud and

inter-cloud. Management strategies include continuous monitoring and dynamic

configuration (provisioning/re-provisioning) of the resources and services offered by

one or several Cloud Providers.

The CKaaS architecture, as shown in Figure 1, defines three actors: Cloud Consumer,

Cloud Broker, and Cloud Provider.

1 NIST: National Institute of Standards and Technology
2 IBM Cloud Computing Reference Architecture

https://www.opengroup.org/cloudcomputing/uploads/40/23840/CCRA.IBMSubmission.02282011.doc
3 CISCO Cloud Reference Architecture Framework

http://www.cisco.com/en/US/solutions/collateral/ns340/ns517/ns224/ns836/ns976/white_paper_c11-617239.html

Figure 1. CKaaS architecture.

2.1 Cloud Consumer

In CKaaS, a Cloud Consumer is any entity that establishes and maintains a knowledge-

based business process and consumes services offered by the KaaS Cloud Provider under

specific service level agreements (SLA). These entities may represent human actors, such

as end users or administrators, or logical resources such as software applications. As

presented in Figure 1, Cloud Consumers can consume knowledge services directly from

one Cloud Provider or indirectly through the Cloud Broker.

2.2 Cloud Broker

In the CKaaS solution, the Cloud Broker represents a mediator between the Cloud

Consumers and the KaaS services of various Cloud Providers. This mediation is achieved

by the Cloud Broker based on its interpretation and adaptation of the Cloud Consumer’s

requests to provide efficient access to the appropriate KaaS Cloud Providers. The KaaS

Broker, which is part of the Cloud Broker, can also provide a knowledge-based cache that

is built from previous requests/responses to improve the Cloud Consumer’s quality of

experience. At the time of the first request, this cache is empty and cannot respond to

users’ requests, but it dynamically learns from subsequent requests. Consequently, for

new requests, the KaaS Broker refers to this cache to verify whether it can directly

respond to these requests without forwarding the requests to the KaaS Cloud Providers.

The KaaS Broker cache implements adequate maintenance strategies (i.e., well-known

cache-design pattern strategies) to guarantee the temporal validity of the cached

knowledge.

Basically, the broker is implemented based on three fundamental services: service

intermediation, service aggregation, and service arbitrage. These services implement

advanced policies to integrate distributed knowledge by enabling collaboration between

disparate KaaS Cloud Providers. Service intermediation facilitates communication

between Cloud Consumers and KaaS Cloud Providers. It enhances the Cloud Broker

with an advanced API that adapts requests according to the appropriate provider

characteristics (communication protocol, message format, data model, etc.) by

dynamically creating equivalent requests (e.g., SPARQL-based requests). If the

requirement is not satisfied in the KaaS Broker, the service intermediation facility can

replicate the adapted requests in parallel to all Cloud Providers to locate the appropriate

KaaS source(s) which can provide the response. Two policies can be followed when

implementing the service intermediation facility:

 Once the service intermediation facility receives a response, it cancels the incoming

responses from the other KaaS Cloud Providers.

 The service intermediation facility waits for all responses and delegates them to the

service aggregation facility, which combines the multiple responses into a final and

integrated response.

Within these two policies, the KaaS Broker is dynamically learning about Cloud Provider

performance and knowledge services based on the returned responses. The learned

knowledge is stored in the cache.

The broker also implements the service arbitrage capability, which is the most

advanced and intelligent service because it is based on learning strategies which enable

the KaaS Broker to construct an overall view of the KaaS Cloud Providers and the

performance of each. Based on this view, the KaaS Broker will be able to select the best

KaaS Cloud Provider for future requests based on the Cloud Consumer’s requests and

QoS requirements.

2.3 Cloud Provider

Each Cloud Provider offers adequate facilities to guarantee service provisioning in a

secure way. As previously described, in CKaaS, the service layer of the Cloud Provider

has been extended by adding a KaaS sub-layer on top of the PaaS layer. The KaaS layer

will use the services provided by the PaaS to access the required virtual or physical

resources such as servers, processors, or networks that are offered as services and

allocated accordingly by the IaaS layer. The PaaS layer contains platform services related

to data storage, programming language, and integration solutions. Based on this general

platform service, the KaaS layer will be able to transform the data stored within the PaaS

into knowledge and offer them as services.
One important non-functional aspect that has been considered in the KaaS design is

performance management when delivering knowledge services. This functionality is

provided by the Cloud Service Management component as defined in the NIST

architecture, which includes well-adapted components and strategies. In the proposed

distributed cloud architecture, these components guarantee efficient delivery of

knowledge services. Cloud Service Management provides three basic functionalities:

 Monitoring. It supervises and observes execution of cloud services and their impacts

on resource consumption (e.g., CPU and memory usage).

 SLA management. This includes SLA and key performance indicator (KPI)

monitoring and evaluation based on SLA contracts.

 Configuration. Based on monitoring and SLA evaluation, adequate reconfiguration

strategies will be enforced to improve service performance by adjusting resource

allocation or dynamically deploying new resources to satisfy increasing demands.

Security and privacy are outside the scope of this work; however, they are included in the

CKaaS architecture presented in Figure 1 to underline their importance.

Based on the generic CKaaS architecture presented in this section, the next section

will describe how this solution has been adapted to the disaster management domain.

More precisely, the KaaS Cloud Provider and KaaS Broker architecture will be

described.

3 CKaaS applied to the disaster management domain

The key element of the proposed Collaborative KaaS architecture is the KaaS added to

the NIST cloud provider’s service layer. Therefore, the Cloud Provider service layer as

introduced in Figure 1 is further described in this section. Moreover, KaaS is detailed

because it is the basis for providing knowledge to consumers and the core entity

responsible for offering a collaborative cloud-based knowledge management solution.

KaaS internals are application-dependent; in this section, a Collaborative KaaS

application in the disaster management domain is presented. The choice of the disaster

management domain is motivated by a number of reasons, including the importance of

knowledge in disaster decision-making, the potential to reduce the impact of disasters on

human lives and property, the distributed nature of disaster-related knowledge, and the

authors’ previous experience with disaster data management. The heterogeneity of the

data involved in disaster-related activities and its distributed nature are the main

challenges in providing a comprehensive knowledge-management solution that could be

used by various stakeholders in diverse disaster situations.

Figure 2 illustrates a Cloud Provider service layer in the disaster management

domain. The four layers, IaaS, PaaS, SaaS, and KaaS, are included, with the elements

belonging to each layer. IaaS is unchanged from the NIST layer and includes physical

computing resources such as computers, storage, and networks. The PaaS layer consists

of the NIST PaaS layer and the added KaaS. The traditional NIST layer provides a

platform and includes entities such as operating systems, programming languages, Web

frameworks, and databases. In Figure 2, the database element is further detailed to show

that in the disaster management domain, the cloud storage can include both relational

databases and non-relational, so-called NoSQL data stores (Sakr, 2013), including

document, column, and graph stores. The second part of the PaaS layer is the KaaS layer

which was added within PaaS, but on top of the traditional PaaS components. The KaaS

layer uses the disaster cloud data management (Disaster-CDM) approach proposed by

Grolinger et al. (2013b). Finally, the SaaS layer provides access to software and

databases, and in the disaster management domain, contains services such as simple data

access, administration, analytics, and model checking. The SaaS layer can access both the

PaaS and KaaS layers according to application requirements.

The remainder of this section provides details of the KaaS service layer. The services

provided by the KaaS can be classified as knowledge acquisition and knowledge delivery

services, as shown in Figure 2. Knowledge acquisition is responsible for acquiring

knowledge from diverse sources, processing it to add structure to unstructured or semi-

structured data, and storing it in databases. The second part, knowledge delivery services,

is responsible for integrating information from different data stores and delivering

knowledge to consumers. It was decided to extract and store the knowledge because the

time required for queries and information integration would be incompatible with the

requirements of emergency response. This would enable shorter response time to queries

than performing processing “on the fly”.

The following two subsections describe the two main parts of the KaaS Cloud

Provider: knowledge acquisition and knowledge delivery.

Figure 2: Cloud Provider Service Layer

3.1 Knowledge acquisition

The knowledge acquisition function obtains data from heterogeneous data sources,

processes them to extract knowledge, and stores them in the cloud environment.

3.1.1 Heterogeneous data sources

A few examples of information related to disasters are disaster plans, incident reports,

situation reports, social media, and simulation models, including infrastructure and

health-care simulation. As for representation formats, examples include MS Word, PDF,

XML, a variety of image formats (jpeg, png, tiff), and simulation package-specific model

formats. Data representation is important because it determines the methods that can be

used to add structure to unstructured or semi-structured data.

From the authors’ experience working with local disaster-management agencies, the

majority of information is stored in unformatted documents, primarily PDF and MS

Word files. This agrees with the work of Hristidis et al. (2010), who reported that most

information is in PDF and MS Word files.

3.1.2 Knowledge extractor

Because the input data are so diverse, the knowledge they contain cannot be extracted

using a single approach. Therefore, processing is driven by the input data and by data

processing rules, as illustrated in Figure 2. Data processing rules specify what processes

are to be applied to which input data and in which order. For example, an incident report

stored in a PDF file format must go through file metadata separation, text extraction, and

pattern processing.

The main processes with their associated outputs are included in Figure 2:

 Text Extraction from Images recognizes and separates the text in an image

(Sumathi et al., 2012). This step prepares images and PDF files for other processing

steps such as tagging. Text extraction is especially important in the case of diagrams

such as flowcharts or event-driven process chains because these documents contain

large amounts of text that can be used for tagging.

 File Metadata Separation makes use of file and directory attributes, including file

name, creation date, last modified date, owner, and access permissions. For example,

the creation date and last modified date can assist in distinguishing newer and

potentially more relevant information from older and possibly outdated information.

 Pattern Processing makes use of existing patterns within documents to extract the

desired structure. Hristidis et al. (2010) observed that most of the available

information is stored in unstructured documents, but that “typically the same

organization follows a similar format for all its reports” (Hristidis et al., 2010).

Therefore, it is feasible to use patterns for information extraction.

 Simulation Model Transformation is the process of converting simulation models

into a representation which enables model queries and integration with other

disaster-related data. Simulation is considered especially important for this study

because it involves various domains which are crucial to disaster management. To

extract as much knowledge as possible from simulation model files, an ontology-

based representation of simulation models has been developed (Grolinger et al.,

2012). Unlike text-processing approaches, an ontology-based representation makes it

possible to 1) address simulator-specific terminology, 2) remain schema-independent

because ontologies do not have predefined schemata, and 3) focus on entities and

their relations.

 Tagging and semantic annotation. Tagging is the process of attaching keywords or

terms to a piece of information with the objective of assisting in classification,

identification, or search (Wang et al., 2012). Semantic annotations additionally

specify how entities are related. In disaster-management data tagging, both manual

and automated tagging are needed. Automated tagging applies various natural

language processing (NLP) and soft computing techniques to add tags automatically

to pieces of information.

The processes presented above are common processes for addressing file-style data;

nevertheless, CKaaS can be easily expanded to include new data processes.

3.1.3 Storage in the cloud environment

Relational databases (RDBs) are traditional data storage systems designed for structured

data. They have been used for decades due to their reliability, consistency, and query

capabilities through SQL. However, they do not gracefully meet mass data needs. In

other words, RDBs exhibit horizontal scalability challenges, big data inefficiencies, and

limited availability (Han et al., 2011).

In this context, the next generation of databases, namely NoSQL data stores, have

been designed for a distributed environment (Kossmann and Kraska, 2010). They are

mainly dedicated to projects that are distributed, that involve large amounts of data, or

that must scale. In the case of simple operations, NoSQL data stores improve

performance relative to traditional RDBs. Consequently, as illustrated in Figure 2, the

CKaaS storage solution incorporates NoSQL data stores. The work of Grolinger et al.

(2013b) provides details of database use in the context of a Disaster-CDM approach,

which is used in this study.

3.2 Knowledge delivery

The consumer and the KaaS Broker can access the KaaS Cloud Provider’s service

directly through query endpoints or by means of the SaaS layer which offers the services

to reply to knowledge requests. As presented in Figure 2, knowledge consumption is

mainly achieved through:

 Ontologies: These provide an overall view of the local ontologies representing each
database independently of its category. Ontologies represent a mapping between
heterogeneous sources, which is needed to unify query capabilities. A query endpoint
is provided to access the KaaS Cloud Provider and enable direct querying of
underlying data. This makes KaaS consumers unaware of the storage architecture and
provides a unified view of the data. Specifically, the SPARQL endpoint is used here,
but other kind of endpoints can be integrated as well.

 Data interfaces: After querying the ontology, it is necessary to access the data. Data
interfaces enable translation of the generic query into a specific language that
corresponds to the underlying database system. Thus, data stored in heterogeneous
sources can be accessed, analyzed, and administered.

4 Case study

This section presents the ability of CKaaS to manage heterogeneity and semantics in both

inter-cloud and intra-cloud environments. Section 4.1 demonstrates the behaviour of the

CKaaS in an inter-cloud environment and shows collaboration of the distributed KaaS

Cloud Providers. Section 4.2 illustrates CKaaS in an intra-cloud environment; it shows

how a KaaS Cloud Provider operates with domain-specific simulation models.

4.1 CKaaS in inter-cloud management: CKaaS collaborative behaviour

Collaboration of knowledge providers in the disaster management domain is essential for

successful decision-making; without this collaboration, knowledge provided to

consumers might be incomplete. In a classic cloud architecture, the Cloud Consumer is

connected to a single Cloud Provider to benefit from the services offered. If that Cloud

Provider cannot satisfy the request, no answer is delivered. As a result, the Cloud

Consumer cannot make informed decisions.

Collaboration between different KaaS Cloud Providers (inter-cloud management)

remains necessary to satisfy Cloud Consumer requirements by integrating service

providers’ knowledge. CKaaS enables this through the Cloud Broker. As presented in

Figure 3, the Cloud Consumer sends its request to the KaaS Broker. The KaaS Broker

refers first to the knowledge-based cache; if it can find the answer to the request there, it

sends the response back to the consumer. However, if the knowledge is not found, or in

other words, if the cache cannot satisfy the request, advanced services are activated

which enforce collaboration between several KaaS Cloud Providers.

The first service activated is service intermediation. In this example, it is assumed

that the request is complex. Therefore, service intermediation interprets this request and

decomposes it into a sequence of requests. For the requests that cannot be satisfied by the

KaaS Broker, service intermediation adapts them accordingly to the Cloud Providers’

API characteristics and replicates them to the KaaS Cloud Providers to obtain all their

responses. To provide a complete response, it waits for all Cloud Provider responses.

After gathering all responses, service aggregation combines them and provides the KaaS

Broker with the new response (knowledge service learning). Finally, the KaaS Broker

provides the Cloud Consumer with the right response.

CKaaS collaboration is illustrated with a simple scenario in the Emergency Response

and Crisis Management System that contains two KaaS Cloud Providers and a Cloud

Consumer. The first KaaS provider knows about critical infrastructures, including gas

distribution; specifically, its knowledge is in simulation models which describe different

infrastructures and have been used to explore the behaviours of real-life infrastructures.

The second KaaS provider offers best practices and recommendations about gas-related

disaster management decisions. The Cloud Consumer represents the supervisor who

manages the gas infrastructure and makes decisions about the operation of the gas

infrastructure.

If a fire is threatening the lines supplying gas to a particular area, the supervisor

(Cloud Consumer) sends a request to the Cloud Broker to make the right decision about

turning off the gas. This decision will be based on collaboration between the two KaaS

Cloud Providers as follows: the first KaaS provider will find, using the simulation

models, the elements that are supplied with gas, while the second KaaS will recommend

to the supervisor how to deal with this situation and what actions are required (e.g.,

turning off the gas in the region where the supplied elements are detected).

The next section provides a detailed description of the KaaS Cloud Provider and

illustrates how the KaaS Cloud Provider operates in an intra-cloud environment.

Specifically, the example uses simulation models to determine which entities would be

impacted by a gas shortage.

Figure 3: CKaaS behaviour in an inter-cloud environment.

4.2 CKaaS in intra-cloud management: KaaS disaster cloud provider

Intra-cloud KaaS operations are illustrated here using a simulation model example.

Because simulation models represent abstractions of real-world systems, they contain

information about interconnections and dependencies among entities. In the described

crisis scenario, the consumer needs to know which entities will be affected if the gas

supply is turned off. The simulation models contain connections among entities and

therefore can be used to provide the needed information.

Specifically, the I2Sim (Rahman et al., 2008) model, which was developed for the

investigation of infrastructure interdependencies, is used here. I2Sim is an

interdependency simulator built upon MATLAB’s Simulink engine. Simulink provides

block libraries which can be customized to conform to a specific simulation domain.

Complex models are managed by dividing models into hierarchies of sub-models.

Accordingly, I2Sim builds upon Simulink by customizing Simulink blocks and providing

entities specific to infrastructure interdependency simulation.

The I2Sim simulator model used in this case study was developed to investigate

infrastructure interdependencies in an incident on the Western University campus. The

model involves a number of infrastructures, including electricity, water, gas, and steam

distribution. It is complex and consists of several levels of hierarchy. These hierarchy

levels hide complexity and aid in model creation and management; however, they pose a

challenge for model querying. Storing ontology-based representations of simulation

models in a database provides querying abilities. The simulation models are first

processed to convert them into ontology-based models; then they are saved in a database.

4.2.1 Simulation knowledge extractor

As described in Section 3.1.2, simulation models are processed by transforming each

simulator-specific proprietary model to its corresponding ontology-based model. In the

case of I2Sim, the simulator model is stored in a Simulink-style .mdl file. The

transformation of this .mdl file to an ontology-based model has been described in the

work of Grolinger et al. (2012). In this case study, OWL (W3C OWL, 2009) was used as

ontology language because it is the W3C-recommended ontology language. The

simulation model used in this case study was transformed to an ontology-based model

with 679 instances and 6575 property assertions.

4.2.2 Storing simulation knowledge

The KaaS disaster Cloud Provider is designed to enable the choice of a storage solution

that corresponds to data requirements in terms of data structure as well as access patterns.

After the simulation models have been transformed into ontology-based models, they

are represented in OWL, which is characterized by a formal semantic and an abstract

ontology structure that can be perceived as a graph. Graph databases use graph structures

with nodes, edges, and properties to represent and store data. They are optimized for

efficient management and storage of graph-like data. Consequently, because ontologies

can be perceived as graphs, it is apparent that graph databases are a good choice for

storing ontologies as well as ontology-based simulation models. Another characteristic

that makes a graph database a good choice is its query capabilities. Graph database

implementations typically offer query capabilities using specialized graph query

languages. Specifically, this case study uses the Neo4j graph database (Neo4j, 2013).

Neo4j can be queried using Cypher, a proprietary graph query language developed by

Neo4j; using Gremlin, a graph traversal language; or even using the RDF query language,

SPARQL.

The processing stage creates ontology-based representations of simulation models in

the OWL language. Next, these ontologies are loaded into Neo4j. Because Neo4j is a

graph database and OWL ontologies are forms of graphs, loading ontologies into the

database proved to be straightforward. Loading the present use case model into a

database resulted in a graph with 2533 vertices and 9724 edges.

4.2.3 Knowledge delivery

The KaaS disaster Cloud Provider makes knowledge available as a service and provides

services responsible for querying the KaaS within the Cloud Provider. One of these

services is responsible for finding specific named entities in simulation models together

with any entities to which they are connected or related. Within CKaaS, this is achieved

by database querying, which is possible because simulation models have been

transformed to their corresponding ontology-based representations and stored in a

database. In this use case, knowledge delivery is achieved through a SPARQL endpoint

as recommended by the W3C. The implemented SPARQL query is:

SELECT ?instanceName ?class ?subModelName ?connectedTo

WHERE {?instance simmodel:Name "Gas".

?instance a ?class.

?instance simmodel:Name ?instanceName.

?channel simupper:hasStartNode ?instance.

?channel simupper:hasEndNode ?connectedToNode.

?connectedToNode simmodel:Name ?connectedTo.

OPTIONAL {?instance i2sim:parentSystem ?subModel.

 ?subModel simmodel:Name ?subModelName.}.

}

ORDER BY ?class ?connectedTo

This query looks for all ontology instances, or in graph terminology, nodes named

“Gas” together with all entities to which they are connected. Entities in the I2Sim

simulation model are connected by channels, which are also responsible for transporting

items among other entities. Channels have hasStartNode and hasEndNode properties,

which indicate which nodes/entities each channel connects. In the presented query, the

two properties are used to identify all entities to which “Gas” connects.

A few rows of the results of this query are displayed in Table I. The first column is

the name of the entity that was searched for, the second column is the type of I2Sim

element used to model the “Gas” entity, the third column is the sub-model to which the

“Gas” entity belongs, and the last column is the entity to which it connects. The first row

identifies an entity of type I2Sim_source. In I2Sim, source elements represent the origin

of resources and are typically used to model resources external to the simulation model.

Therefore, the first row of the table indicates that the simulation model under study is

using an external gas supplier which is connected to Steam house. The next four rows

indicate that within the Steam house sub-model, the “Gas” entity connects to the four

boilers, and the final four rows indicate that within the four boilers’ sub-models, “Gas”

connects to Combustion chamber.

TABLE I. QUERY OUTPUT

instanceName class subModelName connectedTo

Gas isSim:i2sim_source Steam house

Gas i2Sim:inport Steam house Boiler 1

Gas i2Sim:inport Steam house Boiler 2

Gas i2Sim:inport Steam house Boiler 3

Gas i2Sim:inport Steam house Boiler 4

Gas i2Sim:inport Boiler 1 Combustion chamber

Gas i2Sim:inport Boiler 2 Combustion chamber

Gas i2Sim:inport Boiler 3 Combustion chamber

Gas i2Sim:inport Boiler 4 Combustion chamber

Ultimately, this query identifies which entities within a specific simulation model are

using gas as a supply. Consequently, these entities will be affected if the gas supply is

turned off. To obtain the same information directly from the simulation model without

querying, the user needs to open the simulation model, find all gas elements, and check to

which entities each connects. The hierarchy of sub-models makes this task especially

challenging because each sub-model needs to be checked as well.

The same query could have been executed against an OWL ontology without storing

the ontology in the database. However, disaster management deals with a large number of

simulation models, making use of a database preferable to storing ontologies as OWL

files.

This case study has demonstrated how CKaaS behaves in an intra-cloud environment

on an example involving a simulation model. Specifically, it has demonstrated Cloud

Provider services on an example of simulation model querying.

5 Related Work

Knowledge management is crucial in a number of fields, including health science,

environmental science, computer science, and a number of engineering disciplines. This

paper focuses on the disaster management domain. Consequently, this section first

reviews works related to KaaS and then disaster data management studies.

5.1 Knowledge as a Service (KaaS)

Nowadays, cloud computing offers computing capabilities as services and represents an

environment suitable for collaboration and capable of delivering horizontal scalability

and high availability (Almorsy et al., 2011). A number of research studies (Lai et al.,

2012), (Langenberg et al., 2011), (Ju and Shen, 2011) have pointed out the importance of

providing a cloud knowledge system in different domains to facilitate sharing and

accessing knowledge from different sources. A new concept, “Knowledge as a Service”,

was defined by Xu et al. (2005) as the process by which a knowledge service provider

answers queries presented by knowledge consumers through a knowledge server.

Knowledge is typically extracted from large volumes of data coming from heterogeneous

data owners according to knowledge models such as ontologies and is then delivered as a

cloud computing service. Based on these knowledge models, the knowledge server is able

to deliver the right answer to the right consumer at the right time (Abdullah et al., 2011).
Several researchers have used the KaaS approach to build cloud-based knowledge

solutions (Qirui, 2012), (Kannimuthu, 2012), (Lai et al., 2012), including disaster

management solutions (Lino et al., 2012). Qirui (2012) brought new thinking to

agricultural information-system development by using the KaaS approach. In this

approach, KaaS provides services that offer recommendations about planting on the farm

according to user specifications and environmental factors. The knowledge representation

in this KaaS is based on ontologies, while the data are stored exclusively in a relational

database (MySQL). Similarly to the approach proposed by Qirui (2012), CKaaS also

relies on ontologies for data integration; however, in contrast to Qirui’s method which

stores data exclusively in a relational database, the CKaaS approach takes advantage of

NoSQL data stores.

Kannimuthu et al. (2012) applied KaaS in the e-commerce domain, where they

focussed mainly on how to extract knowledge from data using data mining techniques.

After a user selects items, the utility mining service uses information about the selected

items to extract knowledge from large quantities of data and subsequently to attract the

user to other products of the same enterprise. Ultimately, this leads to financial benefit for

the enterprise. In their approach, data are formatted according to XML and stored in an

XML database. CKaaS, similarly to the work of Kannimuthu et al. (2012), provides a

means to extract knowledge from data; however, while Kannimuthu et al. focussed

specifically on mining for product recommendation, the scope of knowledge extraction in

CKaaS is wider because it includes various kinds of disaster-related information.

Moreover, in CKaaS, knowledge extraction capabilities are made available as services,

which facilitates their reuse.

In contrast to the work of Qirui (2012) and Kannimuthu et al. (2012), the CKaaS

solution proposed in this work is not limited to structured data. Rather, it relies on

ontologies to integrate both structured and unstructured data stored in NoSQL data stores.

Another interesting approach was proposed by Lino et al. (2012), who used KaaS to

facilitate emergency response in natural disasters like tsunamis and earthquakes using

interactive digital TV. To support smart applications and to share knowledge and

planning information, their solution integrates a semantic layer based on interactive

digital TV (IDTV) middleware. Specifically, knowledge is shared by means of

ontological descriptions. The work of Lino et al. focussed on implementing a planning

algorithm for emergency response in the KaaS layer to support evacuation of unsafe

areas. In contrast, the CKaaS approach proposed in this work targets a wider context by

integrating heterogeneous knowledge sources for more generic decision-making.

Moreover, despite its use of a KaaS approach, the solution provided by Lino et al. seems

to be restricted to a specific client/server architecture as opposed to an accepted cloud

computing architecture.

Qirui (2012), Kannimuthu et al. (2012), and Lino et al. (2012) all proposed a KaaS

based on a cloud architecture; however, they did not follow a well-accepted cloud

computing reference model such as those proposed by NIST, CISCO, or IBM. In

contrast, CKaaS benefits from the use of a standard cloud computing architecture,

specifically the NIST architecture, to provide flexible and scalable KaaS solutions. It was

decided to follow the NIST reference architecture in this research because it is a generic

cloud computing model, while the others, including the CISCO and IBM solutions, are

more specialized in specific areas such as business and communication networks.

Similarly to the proposed CKaaS, Ju and Shen (2011) introduced a KaaS system as

an extension of the NIST cloud computing model. They considered KaaS as a fourth

layer on top of SaaS. Likewise, Abdullah et al. (2011) placed KaaS onto each layer of the

standard cloud computing architecture, yielding four layers: Knowledge-Infrastructure as

a Service (K-IaaS), Knowledge-Platform as a Service (K-PaaS), Knowledge-Data as a

Service (K-DaaS), and Knowledge-Software as a Service (K-SaaS). In contrast to the

works of Ju and Shen (2011) and Abdullah et al. (2011), the KaaS layer in CKaaS is

considered as a sub-layer within the PaaS layer, but on top of other PaaS components.

Therefore, KaaS can take full advantage of platform-level and infrastructure-level

services to deliver adequate knowledge services built from distributed and collaborative

sources.

In contrast to the reviewed solutions which use XML or relational databases or do

not address the storage aspect, CKaaS enables a choice of storage solution that best

corresponds to data requirements in terms of data structure and access patterns. In the

context of CKaaS, NoSQL solutions provide schema flexibility, horizontal scalability and

high availability. As for the collaboration aspect, the reviewed solutions do not support

collaboration of knowledge providers, while CKaaS enables such collaboration by means

of the KaaS Broker.

Finally, the reviewed solutions do not deal with integrating knowledge from different

knowledge providers, whereas CKaaS aims to solve this problem through collaboration

among multiple KaaS providers. Moreover, the reviewed solutions dealt only with inter-

cloud interaction, while CKaaS includes intra-cloud interaction of knowledge providers,

thus enabling collaboration.

5.2 Disaster management

Crisis informatics (Palen et al., 2010), (Schram and Anderson, 2012), the area of research

concerned with the role of information and technology in disaster management, has been

attracting increased research attention recently. Data are the main factor in disaster

management because they represent a description of the environment, disaster plans, and

resources and consequently are the basis for analysis and decision-making.

Hristidis et al. (2010) surveyed data management and analysis in the disaster

management domain. The main focus of their survey was on data analysis techniques

without the storage aspect. In contrast, in CKaaS, storage and analysis are considered as

integral parts of the solution. Moreover, CKaaS provides advanced techniques that

transform data into knowledge and deliver it as a service to provide a high quality of

experience to users. Hristidis et al. (2010) identified the following data analysis

technologies as relevant to disaster data management: information extraction, information

retrieval, information filtering, data mining, and decision support. Similarly, CKaaS uses

a number of information extraction and retrieval technologies to provide knowledge.

Their survey revealed that most research has focussed on a very narrow area of disaster

management, for example, a specific disaster event such as an earthquake or a flood, or

on specific disaster-related activities such as communication among actors, estimating

disaster damage, and use of mobile devices. Hristidis et al. (2010) recognized the need

for flexible and customizable disaster management solutions that could be used in

different disaster situations. CKaaS aims to provide such a solution using cloud

computing extended by the KaaS approach, ontologies, and NoSQL approaches.

Silva et al. (2011) aimed to integrate diverse, distributed information sources by

bringing them into a standardized and exchangeable common data format. Their approach

focussed on data available on public Web sites. Data were first extracted from various

source Web sites and stored in a relational database. Next, the data were transformed into

Linked Open Data (LOD) form and published. In contrast to their work, which addressed

data available on public Web sites, the proposed CKaaS can accommodate various

information sources.

Palen et al. (2010) presented a vision of technology-supported public participation

during disaster events. They focussed on the role of the public in disasters and how

information and communication technology can transform that role. Similarly to Hristidis

et al. (2010), they recognized information integration as a core concern in crisis

informatics. While Palen et al. (2010) presented a vision, our work focuses on providing

an architecture for cloud data management.

Anderson and Schram (2011), like Palen et al. (2010), studied the role of public and

social media in disaster events. They proposed a crisis-informatics data-analysis

infrastructure for collection, analysis, and storage of information from Twitter. The main

objective of their work was support of other crisis information research by extracting

disaster-related tweets from Twitter and storing them in a database. In their initial study

(Anderson and Schram, 2011), data were stored in a relational database, specifically

MySQL. Later, after encountering scalability challenges, they transitioned to a hybrid

architecture that incorporates a relational database and a NoSQL data store (Schram and

Anderson, 2012). Similarly, CKaaS allows for use of relational databases and NoSQL

data stores for data storage. However, in the CKaaS approach different NoSQL data

stores can be used to address the storage requirements of diverse data. Specifically,

CKaaS enables a choice of storage solutions to suit data structures and access patterns.

The listed studies have focussed on data analysis for disaster management; however,

to obtain the right decision/response in critical situations, data management must be

enriched with knowledge management. Therefore, CKaaS addresses the need for

knowledge integration and knowledge-sharing solutions through transforming and

formalizing structured and unstructured data into knowledge. To overcome the problem

of semantic heterogeneity when integrating various knowledge sources, the CKaaS

approach uses ontologies. Moreover, publishing knowledge as a service (KaaS) provides

scalable management and facilitates use of knowledge in practice.

6 Limitations, challenges, and opportunities

The CKaaS proposed in this work extends the NIST cloud computing reference

architecture by adding a KaaS layer which is responsible for integrating diverse data

sources. Because the CKaaS approach is based on cloud computing, it is exposed to a

number of limitations and challenges similar to those encountered by cloud computing.

The main limitations, challenges, and opportunities faced by the CKaaS approach include

the following:

 The CKaaS architecture, similarly to the NIST reference architecture, relies on a

Cloud Broker, which acts as a mediator between the Cloud Consumers and the KaaS

services of various Cloud Providers. If the system relies on a single Cloud Broker, a

single point of failure is introduced. The use of multiple Cloud Brokers in the

proposed architecture and their coordination and communication require further

research.

 The Cloud Broker is responsible for gathering and integrating knowledge from

various service providers. Even though knowledge integration is not the focus of this

work, it should be addressed to ensure successful provision of the comprehensive

knowledge service. Because different KaaS Providers collaborate to answer

consumers’ requests, there is a possibility that knowledge conflicts will occur. The

Cloud Broker must first detect those conflicts and then resolve or manage them so

that non-contradictory knowledge can be provided to consumers. Moreover, since

Cloud Providers’ knowledge may evolve differently and at different pace, the Cloud

Broker needs to coordinate knowledge across different providers.

 The CKaaS architecture, similarly to the NIST reference architecture, includes

security and privacy components as part of the Cloud Provider. However, security

and privacy span all components of the proposed architecture and involve both

service consumers and providers. In a public cloud, data are stored and processed on

third-party premises and in a shared multi-tenant environment; therefore, security

and privacy vulnerabilities are increased. Providing an adequate solution is difficult

because it needs to be addressed in the context of the proposed architecture and it

needs to include both the service provider and the service consumer.

 Quality of service (QoS) is outside the scope of this work; nevertheless, QoS

represents a major challenge in the CKaaS context because of the large number of

components and actors involved in providing knowledge as a service. A vital

component with respect to QoS is the Cloud Broker, which is responsible for

integrating information from various providers. Moreover, the Cloud Broker is in

charge of deciding the waiting response time from KaaS knowledge providers.

 Customer lock-in. Due to lack of standardization within the cloud computing

industry, it is challenging to move from one Cloud Provider to another. Moreover,

customer lock-in makes Cloud Consumers vulnerable to price increases.

7 Conclusions

This paper has proposed a CKaaS architecture based on the NIST cloud architecture

integrating a domain-independent KaaS layer. CKaaS stores large amounts of data while

maintaining high availability using NoSQL and cloud solutions. Data search,

interoperability, and integration are facilitated through knowledge acquisition and

knowledge delivery. Knowledge acquisition uses language processing, information

extraction, and retrieval techniques to add structure and metadata to largely unstructured

disaster data. Knowledge is delivered as a service using the KaaS approach so that

service performance can be managed by the cloud management services. CKaaS

overcomes the limitation of knowledge integration by implementing the Cloud Broker

with the aim of implementing collaborative distributed cloud knowledge system through

enriched services. In this work, CKaaS has been applied to the disaster management

domain because the quantity and heterogeneity of disaster-related data are large and

managing them effectively remains crucial for minimizing the impact of disasters on

society.

The case study presented in this work provides evaluation of the proposed CKaaS

architecture; nevertheless, further evaluation will be performed including complex and

heterogeneous data sources. Critical aspects that need to be addressed are the integration

of diverse knowledge provided by various service providers and the criteria for optimal

data storage selection.

References
Abdullah, R., Eri, Z.D., Talib, A.M. (2011) ‘A Model of Knowledge Management System for Facilitating

Knowledge as a Service (KaaS) in a Cloud Computing Environment’. Proceedings of the International
Conference on Research and Innovation in Information Systems (ICRIIS), pp. 1–4.

Almorsy, M., Grundy, J., Ibrahim, A.S. (2011) ‘Collaboration-Based Cloud Computing Security Management
Framework’, Proceeding of the IEEE International Conference on Cloud Computing (CLOUD), pp. 364–
371.

Anderson, K.M., Schram, A. (2011) ‘Design and Implementation of a Data Analytics Infrastructure in Support
of Crisis Informatics Research: NIER Track’. Proceedings of the 33rd International Conference on
Software Engineering, pp. 844–847.

Brewer, E. (2012) ‘CAP Twelve Years Later: How the "Rules" have Changed’, Computer, Vol. 45, No. 2, pp.

23–29.

Erl, T., Mahmood, Z., and Puttini, R. (2013) Cloud Computing: Concepts, Technology, & Architecture, Prentice
Hall, Upper Saddle River, NJ.

Grolinger, K., Higashino, W.A., Tiwari, A., Capretz, M.A.M. (2013a) Data Management in Cloud
Environments: NoSQL and NewSQL Data Stores, Journal of Cloud Computing: Advances, Systems and
Application, Springer Open, Vol. 2, doi:10.1186/2192-113X-2-22.

Grolinger, K., Capretz, M.A.M., Mezghani, E., Exposito, E. (2013b) ‘Knowledge as a Service Framework for
Disaster Data Management’, Proceedings of the 22nd IEEE International Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises (WETICE), pp. 313–318.

Grolinger, K., Capretz, M.A.M., Marti, J.R., Srivastava, K.D. (2012) ‘Ontology-Based Representation of
Simulation Models’. Proceedings of the 24th International Conference on Software Engineering and
Knowledge Engineering, pp. 432-437.

Gupta, R., Gupta, H., Mohania, M. (2012) ‘Cloud Computing and Big Data Analytics: What Is New from
Databases Perspective?’, Big Data Analytics Lecture Notes, in Computer Science, Vol. 7678, pp. 42–61.

Han, J., Song, M., Song, J. (2011) ‘A Novel Solution of Distributed Memory NoSQL Database for Cloud
Computing’, Proceedings of the 10th IEEE/ACIS International Conference on Computer and Information
Science, pp. 351–355.

Hecht, R., Jablonski, S. (2011) ‘NoSQL Evaluation: A Use Case Oriented Survey’, Proceedings of the
Conference on Cloud and Service Computing, pp. 336–341.

Hristidis, V., Chen, S., Li, T., Luis, S., Deng, Y. (2010) ‘Survey of Data Management and Analysis in Disaster
Situations’, Journal of Systems and Software, Vol. 83, No. 10, pp. 1701–1714.

Hu, Y., Qu, W. (2013) ‘Efficiently Extracting Change Data from Column Oriented NoSQL Databases’,
Advances in Intelligent Systems and Applications – Volume 2, Smart Innovation, Systems and
Technologies, Vol. 21, pp. 587–598.

Ju, D., Shen, B. (2011) ‘On Building the Knowledge Cloud’. Proceedings of the International Conference on
Computer Science and Service Systems (CSSS), pp. 2351–2353.

Kannimuthu, S., Premalatha, K., Shankar, S. (2012) ‘Investigation of High-Utility Itemset Mining in Service-
Oriented Computing: Deployment of Knowledge as a Service in E-Commerce’, Proceedings of the Fourth
International Conference on Advanced Computing (ICoAC), pp. 1–8.

Kossmann, D., Kraska, T. (2010) ‘Data Management in the Cloud: Promises, State-of-the-Art, and Open
Questions’, Datenbank-Spektrum, Vol. 10, No. 3, pp. 121–129.

Lai, I., Tam, S., Chan, M. (2012) ‘Knowledge Cloud System for Network Collaboration: A Case Study in
Medical Service Industry in China’, Expert Systems with Applications, Vol. 39, No. 15, pp. 12205–12212.

Langenberg, D., Kind, C., Dames, M. (2011) ‘Knowledge Management in Cloud Environments’. I-KNOW,
Lindstaedt, S.N., Granitzer, M. (eds.), ACM, Vol. 36.

Lino, N.C.Q., Siebra, C.A., Amaro Tate, M.A. (2012) ‘EmergencyGrid – Planning in Convergence
Environments’, 22nd Int. Conf. on Automated Planning and Scheduling, SPARK Workshop.

Liu, F., Tong, J., Mao, J., Bohn, R., Messina, J., Badger, L., Leaf, D. (2011) ‘NIST Cloud Computing Reference
Architecture’, NIST Special Publication 500-292,
http://www.nist.gov/customcf/get_pdf.cfm?pub_id=909505. (Accessed 22 November 2013)

Mohanty, S., Jagadeesh, M., Srivatsa, H. (2013) Big Data Imperatives: Enterprise Big Data Warehouse, BI
Implementations and Analytics, Apress, Berkeley, CA.

Neo4j, http://www.neo4j.org/, 2013. (Accessed 22 November 2013)

Palen, L., Anderson, M.G., Martin, J., Sicker, D., Palmer, M., Grunwald, D. (2010) ‘A Vision for Technology-
Mediated Support for Public Participation and Assistance in Mass Emergencies and Disasters’,
Proceedings of the Conference on Visions of Computer Science, pp. 1–12.

Qirui, Y. (2012) ‘KaaS-Based Intelligent Service Model in Agricultural Expert System’, Proceedings of the 2nd
International Conference on Consumer Electronics, Communications, and Networks, pp. 2678–2680.

Rahman, H.A., Armstrong, M., Mao, D., Marti, J.R. (2008) ‘I2Sim: A Matrix-Partition Based Framework for
Critical Infrastructure Interdependencies Simulation’, Proceedings of the Electric Power Conference, pp.
1–8.

Sakr, S., Liu, A., Batista, D.M., Alomari, M. (2011) ‘A Survey of Large-Scale Data Management Approaches in
Cloud Environments’, IEEE Communication Surveys & Tutorials, Vol. 13, No. 3, pp. 311–336.

Sakr, S. (2013) ‘Cloud-Hosted Databases: Technologies, Challenges and Opportunities’, Cluster Computing,
Springer, pp. 1–16.

Sadalage, P.J., Fowler, M. (2013) NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot
Persistence, Addison-Wesley, Upper Saddle River, NJ.

Schram, A., Anderson, K.M. (2012) ‘MySQL to NoSQL: Data Modeling Challenges in Supporting Scalability’.
Proceedings of the Third Conference on Systems, Programming, and Applications: Software for
Humanity, pp. 191–202.

Silva, T., Wuwongse, V., Sharma, H.N. (2011) ‘Linked Data in Disaster Mitigation and Preparedness’,
Proceedings of the Third International Conference on Intelligent Networking and Collaborative Systems,
pp. 746–751.

Sumathi, C.P., Gayathri Devi, G., Santhanam, T. (2012) ‘A Survey on Various Approaches to Text Extraction
in Images’, International Journal of Computer Science and Engineering Survey, Vol. 3, No. 4, pp. 27–42.

Stonebraker, M., Madden, S., Badi, D.J., Harizopoulos, S., Hachem, N., and Helland, P. (2007) ‘The End of an
Architectural Era: (it’s Time for a Complete Rewrite),’ Proceedings of the 33rd International Conference
on Very Large Data Bases, pp. 1150–1160.

http://www.bibsonomy.org/bibtex/2390d6a44acaaf37f16e59b0acb8c7b5c/dblp
http://www.nist.gov/customcf/get_pdf.cfm?pub_id=909505
http://www.nist.gov/customcf/get_pdf.cfm?pub_id=909505
http://www.neo4j.org/

W3C OWL Working Group (2009) ‘OWL 2 Web Ontology Language’. http://www.w3.org/TR/owl2-overview/.
(Accessed 22 November 2013)

Wang, M., Ni, B., Hua, X., Chua, T. (2012) ‘Assistive Tagging: A Survey of Multimedia Tagging with Human-
Computer Joint Exploration’, ACM Computing Surveys, Vol. 44, No. 4, pp. 1–24.

Wigan, M.R., Clarke, R. (2013) ‘Big Data’s Big Unintended Consequences,’ Computer, Vol. 46, No. 6, pp. 46–
53.

Xu, S., Zhang, W. (2005) ‘Knowledge as a Service and Knowledge Breaching’, Proceedings of the IEEE
International Conference on Services Computing, pp. 87–94.

http://www.w3.org/TR/owl2-overview/

