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Abstract—Cloud computing offers services which promise to meet 

continuously increasing computing demands by using a large number of 

networked resources. However, data heterogeneity remains a major hurdle for 

data interoperability and data integration. In this context, a Knowledge as a 

Service (KaaS) approach has been proposed with the aim of generating 

knowledge from heterogeneous data and making it available as a service. In 

this paper, a Collaborative Knowledge as a Service (CKaaS) architecture is 

proposed, with the objective of satisfying consumer knowledge needs by 

integrating disparate cloud knowledge through collaboration among distributed 

KaaS entities. The NIST cloud computing reference architecture is extended by 

adding a KaaS layer that integrates diverse sources of data stored in a cloud 

environment. CKaaS implementation is domain-specific; therefore, this paper 

presents its application to the disaster management domain. A use case 

demonstrates collaboration of knowledge providers and shows how CKaaS 

operates with simulation models. 

Keywords: cloud computing; data interoperability; data integration; data 

heterogeneity; knowledge as a service (KaaS); NoSQL storage; disaster 

management 
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1 Introduction 

With the development of information and communication technologies (ICT), software 

and hardware capabilities have been evolving continuously, and therefore large quantities 

of heterogeneous data are being generated and stored. Due to the size, complexity, and 

diversity of these data, traditional computing systems are encountering challenges with 

handling, processing, storing, and analyzing them. Moreover, computing systems are 

facing ever-increasing and strict availability and scalability requirements. 

In the domain of distributed and networked information systems, cloud computing 

promises to meet this demand by using large numbers of networked resources. The cloud 

computing approach is well known for providing on-demand computing services 

(Almorsy et al., 2011). It aims to minimize user-perceived latency by providing advanced 

mechanisms for data storage, computation, and dynamic resource allocation according to 

real-time computation needs. Consequently, a large number of IT companies, including 

Amazon, Google, and Microsoft, are now providing cloud computing services. The 

National Institute of Standards and Technology (NIST) has defined a generic cloud 

computing reference architecture (Liu et al., 2011). From the service perspective, this 

reference model includes three layers: Infrastructure as a Service (IaaS), Platform as a 

Service (PaaS), and Software as a Service (SaaS). The IaaS layer contains the physical 

resources, such as servers, processors, and networks, on which the platforms will be 

deployed. The PaaS layer offers platforms for data storage, programming languages, and 

Web application servers. Finally, the SaaS layer handles software applications that 

directly access infrastructure resources or refer to the PaaS layer for their computing 

platform and for data access. Storing data in a cloud environment, more precisely in the 

PaaS layer, can provide the following benefits (Kossmann and Kraska, 2010): 

 High availability. Within the cloud environment, data are automatically replicated, 
often across large geographic distances. If a local data centre fails, the system 
remains available because it can switch to another data centre. 

 Scalability and elasticity. A cloud solution can adapt storage resources based on real-
time needs and priorities. Data can be automatically redistributed to take advantage 
of heterogeneous servers. 

 There is no need for a large initial investment. The system can start small and be 
expanded by adding heterogeneous nodes as needed. 

Recent advances in cloud computing (Erl et al., 2013), including big data (Gupta et al., 

2012), (Mohanty et al., 2013), (Wigan and Clarke, 2013) and NoSQL (Sadalage and 

http://www.nist.gov/


 

 

Fowler 2013), (Stonebraker et al., 2007), (Grolinger et al., 2013a), (Brewer, 2012), (Hu 

and Qu, 2013) approaches, have been changing how data are captured, stored, and 

analyzed. They have been especially popular in Web applications (Sakr et al., 2011), 

including Facebook, Twitter, and Google. NoSQL approaches (Hecht and Jablonski, 

2011) are characterized by flexible data models, horizontal scalability, and excellent 

performance with simple read/write operations. 
However, data heterogeneity remains a major hurdle for data integration, analysis, 

and decision-making. In this context, the Knowledge as a Service (KaaS) approach 

(Abdullah et al., 2011) was proposed. KaaS provides a collection of lessons learned, best 

practices, and case studies that can help systems leverage knowledge from anywhere in a 

distributed computing environment. The main objective of KaaS is to generate 

knowledge from heterogeneous data located in a cloud environment and make it available 

as a knowledge service. In KaaS, knowledge is considered as an understanding of 

information based on its relevance to a problem area and is perceived as a precious 

resource essential for decision-making. 

Consequently, this paper proposes Collaborative Knowledge as a Service (CKaaS), a 

generic architecture that integrates disparate cloud knowledge through collaboration 

among distributed KaaS entities with the goal of satisfying consumer knowledge needs. 

CKaaS has the following objectives: 

1) storing large amounts of data from diverse sources,  

2) supporting interoperability and integration, and  

3) offering a scalable reconfigurable cloud solution for efficient resource consumption.  

Based on the NIST reference architecture (Liu et al., 2011), CKaaS is a distributed cloud 

architecture that offers collaboration capabilities and dynamic provisioning of resources. 

CKaaS delivers knowledge as a service while relying on semantic integration to facilitate 

search and interoperability. Storage of large amounts of heterogeneous data is achieved 

by using relational databases and NoSQL data stores in the cloud environment.  

In this paper, the proposed CKaaS is applied to the disaster management domain. 

Disaster-related data are massive, heterogeneous and complex; they include response and 

mitigation plans, sensory information, simulation models exploring critical infrastructure 

behaviour, and disaster-related social media information. However, current data storage 

systems in disaster management are disparate and provide few if any integration 

capabilities. CKaaS represents a powerful collaborative system that enriches disaster 

knowledge management solutions by adding scalable storage and integration capabilities. 

Consequently, in the disaster management domain, CKaaS facilitates better decision-

making by integrating distributed disaster-related information and providing knowledge 

as a service. 

The remainder of the paper is organized as follows. In Section 2, the proposed 

CKaaS is portrayed, and its application in the disaster management domain is detailed in 

Section 3. A case study is described in Section 4, while Section 5 reviews work related to 

Knowledge as a Service and presents approaches to data and information management in 

the disaster management domain. Section 6 identifies CKaaS limitations, challenges, and 

opportunities, and conclusions and future work are presented in Section 7. 



 

 

2 CKaaS architecture 

This section proposes CKaaS, a generic architecture based on the NIST1 reference model 

for knowledge integration through collaboration among distributed KaaS entities. 

Cloud computing is well known for its ability to deliver highly scalable distributed 

computing platforms in which computational resources are offered as a service (Almorsy 

et al., 2011). The CKaaS architecture has been designed on the basis of the NIST cloud 

computing reference architecture, which represents a generic cloud computing model 

(Liu et al., 2011). Other reference architectures, such as those proposed by IBM2 and 

CISCO3, have enhanced the NIST model by proposing specializations in specific areas 

such as business and communication networks. 

The proposed CKaaS architecture is illustrated in Figure 1. It is based on the NIST 

reference model with the intention of providing a collaborative cloud-based knowledge 

management solution. CKaaS incorporates KaaS as a new sub-layer on top of the 

standard PaaS layer of each Cloud Provider and enriches the basic Cloud Broker by 

adding the KaaS Broker. It was decided to locate KaaS on top of the PaaS layer because 

it offers a knowledge integration service by taking full advantage of the available PaaS-

level resources and services. Likewise, by means of the PaaS, the KaaS layer is able to 

use virtual and physical network resources available in the IaaS layer to integrate 

distributed and collaborative knowledge sources. 

The main purpose of this distributed cloud architecture is to facilitate collaboration 

among various KaaS Cloud Providers and to address the knowledge-incompleteness 

limitation that can be encountered with isolated Cloud Providers. The architecture is 

domain-independent, although its implementation is intended to be domain-dependent 

because it relies on ontologies in a specific knowledge domain. A domain-specific 

implementation of CKaaS is an instantiation of this distributed cloud architecture in 

which several Cloud Providers contain complementary domain-dependent knowledge. 

Cloud Consumers will be able to retrieve this knowledge by accessing one specific Cloud 

Provider directly or several cloud providers indirectly through the Cloud Broker. 

The main advantages of this distributed cloud architecture in the CKaaS solution are:  

 First, by interconnecting several KaaS entities, the platform can facilitate 

collaboration and orchestrate disparate knowledge sources (from various KaaS 

providers) through the intermediation service deployed by the broker. 

 Second, KaaS services can be efficiently managed by the distributed cloud 

architecture to provide adequate QoS levels from two perspectives: intra-cloud and 

inter-cloud. Management strategies include continuous monitoring and dynamic 

configuration (provisioning/re-provisioning) of the resources and services offered by 

one or several Cloud Providers. 

The CKaaS architecture, as shown in Figure 1, defines three actors: Cloud Consumer, 

Cloud Broker, and Cloud Provider. 

 

 

                                                 
1 NIST: National Institute of Standards and Technology 
2 IBM Cloud Computing Reference Architecture 

https://www.opengroup.org/cloudcomputing/uploads/40/23840/CCRA.IBMSubmission.02282011.doc 
3 CISCO Cloud Reference Architecture Framework 

http://www.cisco.com/en/US/solutions/collateral/ns340/ns517/ns224/ns836/ns976/white_paper_c11-617239.html 



 

 

 

Figure 1. CKaaS architecture. 

2.1 Cloud Consumer 

In CKaaS, a Cloud Consumer is any entity that establishes and maintains a knowledge-

based business process and consumes services offered by the KaaS Cloud Provider under 

specific service level agreements (SLA). These entities may represent human actors, such 

as end users or administrators, or logical resources such as software applications. As 

presented in Figure 1, Cloud Consumers can consume knowledge services directly from 

one Cloud Provider or indirectly through the Cloud Broker. 

2.2 Cloud Broker 

In the CKaaS solution, the Cloud Broker represents a mediator between the Cloud 

Consumers and the KaaS services of various Cloud Providers. This mediation is achieved 

by the Cloud Broker based on its interpretation and adaptation of the Cloud Consumer’s 

requests to provide efficient access to the appropriate KaaS Cloud Providers. The KaaS 

Broker, which is part of the Cloud Broker, can also provide a knowledge-based cache that 

is built from previous requests/responses to improve the Cloud Consumer’s quality of 

experience. At the time of the first request, this cache is empty and cannot respond to 

users’ requests, but it dynamically learns from subsequent requests. Consequently, for 

new requests, the KaaS Broker refers to this cache to verify whether it can directly 

respond to these requests without forwarding the requests to the KaaS Cloud Providers. 

The KaaS Broker cache implements adequate maintenance strategies (i.e., well-known 

cache-design pattern strategies) to guarantee the temporal validity of the cached 

knowledge. 

Basically, the broker is implemented based on three fundamental services: service 

intermediation, service aggregation, and service arbitrage. These services implement 

advanced policies to integrate distributed knowledge by enabling collaboration between 

disparate KaaS Cloud Providers. Service intermediation facilitates communication 

between Cloud Consumers and KaaS Cloud Providers. It enhances the Cloud Broker 

with an advanced API that adapts requests according to the appropriate provider 

characteristics (communication protocol, message format, data model, etc.) by 



 

 

dynamically creating equivalent requests (e.g., SPARQL-based requests). If the 

requirement is not satisfied in the KaaS Broker, the service intermediation facility can 

replicate the adapted requests in parallel to all Cloud Providers to locate the appropriate 

KaaS source(s) which can provide the response. Two policies can be followed when 

implementing the service intermediation facility: 

 Once the service intermediation facility receives a response, it cancels the incoming 

responses from the other KaaS Cloud Providers.  

 The service intermediation facility waits for all responses and delegates them to the 

service aggregation facility, which combines the multiple responses into a final and 

integrated response. 

Within these two policies, the KaaS Broker is dynamically learning about Cloud Provider 

performance and knowledge services based on the returned responses. The learned 

knowledge is stored in the cache. 

The broker also implements the service arbitrage capability, which is the most 

advanced and intelligent service because it is based on learning strategies which enable 

the KaaS Broker to construct an overall view of the KaaS Cloud Providers and the 

performance of each. Based on this view, the KaaS Broker will be able to select the best 

KaaS Cloud Provider for future requests based on the Cloud Consumer’s requests and 

QoS requirements. 

2.3 Cloud Provider 

Each Cloud Provider offers adequate facilities to guarantee service provisioning in a 

secure way. As previously described, in CKaaS, the service layer of the Cloud Provider 

has been extended by adding a KaaS sub-layer on top of the PaaS layer. The KaaS layer 

will use the services provided by the PaaS to access the required virtual or physical 

resources such as servers, processors, or networks that are offered as services and 

allocated accordingly by the IaaS layer. The PaaS layer contains platform services related 

to data storage, programming language, and integration solutions. Based on this general 

platform service, the KaaS layer will be able to transform the data stored within the PaaS 

into knowledge and offer them as services. 
One important non-functional aspect that has been considered in the KaaS design is 

performance management when delivering knowledge services. This functionality is 

provided by the Cloud Service Management component as defined in the NIST 

architecture, which includes well-adapted components and strategies. In the proposed 

distributed cloud architecture, these components guarantee efficient delivery of 

knowledge services. Cloud Service Management provides three basic functionalities: 

 Monitoring. It supervises and observes execution of cloud services and their impacts 

on resource consumption (e.g., CPU and memory usage).  

 SLA management. This includes SLA and key performance indicator (KPI) 

monitoring and evaluation based on SLA contracts. 

 Configuration. Based on monitoring and SLA evaluation, adequate reconfiguration 

strategies will be enforced to improve service performance by adjusting resource 

allocation or dynamically deploying new resources to satisfy increasing demands.  

Security and privacy are outside the scope of this work; however, they are included in the 

CKaaS architecture presented in Figure 1 to underline their importance. 



 

 

Based on the generic CKaaS architecture presented in this section, the next section 

will describe how this solution has been adapted to the disaster management domain. 

More precisely, the KaaS Cloud Provider and KaaS Broker architecture will be 

described. 

3 CKaaS applied to the disaster management domain 

The key element of the proposed Collaborative KaaS architecture is the KaaS added to 

the NIST cloud provider’s service layer. Therefore, the Cloud Provider service layer as 

introduced in Figure 1 is further described in this section. Moreover, KaaS is detailed 

because it is the basis for providing knowledge to consumers and the core entity 

responsible for offering a collaborative cloud-based knowledge management solution.  

KaaS internals are application-dependent; in this section, a Collaborative KaaS 

application in the disaster management domain is presented. The choice of the disaster 

management domain is motivated by a number of reasons, including the importance of 

knowledge in disaster decision-making, the potential to reduce the impact of disasters on 

human lives and property, the distributed nature of disaster-related knowledge, and the 

authors’ previous experience with disaster data management. The heterogeneity of the 

data involved in disaster-related activities and its distributed nature are the main 

challenges in providing a comprehensive knowledge-management solution that could be 

used by various stakeholders in diverse disaster situations. 

Figure 2 illustrates a Cloud Provider service layer in the disaster management 

domain. The four layers, IaaS, PaaS, SaaS, and KaaS, are included, with the elements 

belonging to each layer. IaaS is unchanged from the NIST layer and includes physical 

computing resources such as computers, storage, and networks. The PaaS layer consists 

of the NIST PaaS layer and the added KaaS. The traditional NIST layer provides a 

platform and includes entities such as operating systems, programming languages, Web 

frameworks, and databases. In Figure 2, the database element is further detailed to show 

that in the disaster management domain, the cloud storage can include both relational 

databases and non-relational, so-called NoSQL data stores (Sakr, 2013), including 

document, column, and graph stores. The second part of the PaaS layer is the KaaS layer 

which was added within PaaS, but on top of the traditional PaaS components. The KaaS 

layer uses the disaster cloud data management (Disaster-CDM) approach proposed by 

Grolinger et al. (2013b). Finally, the SaaS layer provides access to software and 

databases, and in the disaster management domain, contains services such as simple data 

access, administration, analytics, and model checking. The SaaS layer can access both the 

PaaS and KaaS layers according to application requirements. 

The remainder of this section provides details of the KaaS service layer. The services 

provided by the KaaS can be classified as knowledge acquisition and knowledge delivery 

services, as shown in Figure 2. Knowledge acquisition is responsible for acquiring 

knowledge from diverse sources, processing it to add structure to unstructured or semi-

structured data, and storing it in databases. The second part, knowledge delivery services, 

is responsible for integrating information from different data stores and delivering 

knowledge to consumers. It was decided to extract and store the knowledge because the 

time required for queries and information integration would be incompatible with the 

requirements of emergency response. This would enable shorter response time to queries 

than performing processing “on the fly”.  

The following two subsections describe the two main parts of the KaaS Cloud 

Provider: knowledge acquisition and knowledge delivery.  



 

 

 

 
Figure 2: Cloud Provider Service Layer 

3.1 Knowledge acquisition 

The knowledge acquisition function obtains data from heterogeneous data sources, 

processes them to extract knowledge, and stores them in the cloud environment. 

3.1.1 Heterogeneous data sources 

A few examples of information related to disasters are disaster plans, incident reports, 

situation reports, social media, and simulation models, including infrastructure and 

health-care simulation. As for representation formats, examples include MS Word, PDF, 

XML, a variety of image formats (jpeg, png, tiff), and simulation package-specific model 

formats. Data representation is important because it determines the methods that can be 

used to add structure to unstructured or semi-structured data.  

From the authors’ experience working with local disaster-management agencies, the 

majority of information is stored in unformatted documents, primarily PDF and MS 

Word files. This agrees with the work of Hristidis et al. (2010), who reported that most 

information is in PDF and MS Word files. 

3.1.2 Knowledge extractor 

Because the input data are so diverse, the knowledge they contain cannot be extracted 

using a single approach. Therefore, processing is driven by the input data and by data 

processing rules, as illustrated in Figure 2. Data processing rules specify what processes 

are to be applied to which input data and in which order. For example, an incident report 



 

 

stored in a PDF file format must go through file metadata separation, text extraction, and 

pattern processing. 

The main processes with their associated outputs are included in Figure 2: 

 Text Extraction from Images recognizes and separates the text in an image 

(Sumathi et al., 2012). This step prepares images and PDF files for other processing 

steps such as tagging. Text extraction is especially important in the case of diagrams 

such as flowcharts or event-driven process chains because these documents contain 

large amounts of text that can be used for tagging.  

 File Metadata Separation makes use of file and directory attributes, including file 

name, creation date, last modified date, owner, and access permissions. For example, 

the creation date and last modified date can assist in distinguishing newer and 

potentially more relevant information from older and possibly outdated information.  

 Pattern Processing makes use of existing patterns within documents to extract the 

desired structure. Hristidis et al. (2010) observed that most of the available 

information is stored in unstructured documents, but that “typically the same 

organization follows a similar format for all its reports” (Hristidis et al., 2010). 

Therefore, it is feasible to use patterns for information extraction.  

 Simulation Model Transformation is the process of converting simulation models 

into a representation which enables model queries and integration with other 

disaster-related data. Simulation is considered especially important for this study 

because it involves various domains which are crucial to disaster management. To 

extract as much knowledge as possible from simulation model files, an ontology-

based representation of simulation models has been developed (Grolinger et al., 

2012). Unlike text-processing approaches, an ontology-based representation makes it 

possible to 1) address simulator-specific terminology, 2) remain schema-independent 

because ontologies do not have predefined schemata, and 3) focus on entities and 

their relations. 

 Tagging and semantic annotation. Tagging is the process of attaching keywords or 

terms to a piece of information with the objective of assisting in classification, 

identification, or search (Wang et al., 2012). Semantic annotations additionally 

specify how entities are related. In disaster-management data tagging, both manual 

and automated tagging are needed. Automated tagging applies various natural 

language processing (NLP) and soft computing techniques to add tags automatically 

to pieces of information.  

The processes presented above are common processes for addressing file-style data; 

nevertheless, CKaaS can be easily expanded to include new data processes. 

3.1.3 Storage in the cloud environment 

Relational databases (RDBs) are traditional data storage systems designed for structured 

data. They have been used for decades due to their reliability, consistency, and query 

capabilities through SQL. However, they do not gracefully meet mass data needs. In 

other words, RDBs exhibit horizontal scalability challenges, big data inefficiencies, and 

limited availability (Han et al., 2011).  

In this context, the next generation of databases, namely NoSQL data stores, have 

been designed for a distributed environment (Kossmann and Kraska, 2010). They are 



 

 

mainly dedicated to projects that are distributed, that involve large amounts of data, or 

that must scale. In the case of simple operations, NoSQL data stores improve 

performance relative to traditional RDBs. Consequently, as illustrated in Figure 2, the 

CKaaS storage solution incorporates NoSQL data stores. The work of Grolinger et al. 

(2013b) provides details of database use in the context of a Disaster-CDM approach, 

which is used in this study. 

3.2 Knowledge delivery 

The consumer and the KaaS Broker can access the KaaS Cloud Provider’s service 

directly through query endpoints or by means of the SaaS layer which offers the services 

to reply to knowledge requests. As presented in Figure 2, knowledge consumption is 

mainly achieved through:  

 Ontologies: These provide an overall view of the local ontologies representing each 
database independently of its category. Ontologies represent a mapping between 
heterogeneous sources, which is needed to unify query capabilities. A query endpoint 
is provided to access the KaaS Cloud Provider and enable direct querying of 
underlying data. This makes KaaS consumers unaware of the storage architecture and 
provides a unified view of the data. Specifically, the SPARQL endpoint is used here, 
but other kind of endpoints can be integrated as well. 

 Data interfaces: After querying the ontology, it is necessary to access the data. Data 
interfaces enable translation of the generic query into a specific language that 
corresponds to the underlying database system. Thus, data stored in heterogeneous 
sources can be accessed, analyzed, and administered. 

4 Case study 

This section presents the ability of CKaaS to manage heterogeneity and semantics in both 

inter-cloud and intra-cloud environments. Section 4.1 demonstrates the behaviour of the 

CKaaS in an inter-cloud environment and shows collaboration of the distributed KaaS 

Cloud Providers. Section 4.2 illustrates CKaaS in an intra-cloud environment; it shows 

how a KaaS Cloud Provider operates with domain-specific simulation models. 

4.1 CKaaS in inter-cloud management: CKaaS collaborative behaviour  

Collaboration of knowledge providers in the disaster management domain is essential for 

successful decision-making; without this collaboration, knowledge provided to 

consumers might be incomplete. In a classic cloud architecture, the Cloud Consumer is 

connected to a single Cloud Provider to benefit from the services offered. If that Cloud 

Provider cannot satisfy the request, no answer is delivered. As a result, the Cloud 

Consumer cannot make informed decisions. 

Collaboration between different KaaS Cloud Providers (inter-cloud management) 

remains necessary to satisfy Cloud Consumer requirements by integrating service 

providers’ knowledge. CKaaS enables this through the Cloud Broker. As presented in 

Figure 3, the Cloud Consumer sends its request to the KaaS Broker. The KaaS Broker 

refers first to the knowledge-based cache; if it can find the answer to the request there, it 

sends the response back to the consumer. However, if the knowledge is not found, or in 



 

 

other words, if the cache cannot satisfy the request, advanced services are activated 

which enforce collaboration between several KaaS Cloud Providers. 

The first service activated is service intermediation. In this example, it is assumed 

that the request is complex. Therefore, service intermediation interprets this request and 

decomposes it into a sequence of requests. For the requests that cannot be satisfied by the 

KaaS Broker, service intermediation adapts them accordingly to the Cloud Providers’ 

API characteristics and replicates them to the KaaS Cloud Providers to obtain all their 

responses. To provide a complete response, it waits for all Cloud Provider responses. 

After gathering all responses, service aggregation combines them and provides the KaaS 

Broker with the new response (knowledge service learning). Finally, the KaaS Broker 

provides the Cloud Consumer with the right response. 

CKaaS collaboration is illustrated with a simple scenario in the Emergency Response 

and Crisis Management System that contains two KaaS Cloud Providers and a Cloud 

Consumer. The first KaaS provider knows about critical infrastructures, including gas 

distribution; specifically, its knowledge is in simulation models which describe different 

infrastructures and have been used to explore the behaviours of real-life infrastructures. 

The second KaaS provider offers best practices and recommendations about gas-related 

disaster management decisions. The Cloud Consumer represents the supervisor who 

manages the gas infrastructure and makes decisions about the operation of the gas 

infrastructure. 

If a fire is threatening the lines supplying gas to a particular area, the supervisor 

(Cloud Consumer) sends a request to the Cloud Broker to make the right decision about 

turning off the gas. This decision will be based on collaboration between the two KaaS 

Cloud Providers as follows: the first KaaS provider will find, using the simulation 

models, the elements that are supplied with gas, while the second KaaS will recommend 

to the supervisor how to deal with this situation and what actions are required (e.g., 

turning off the gas in the region where the supplied elements are detected). 

The next section provides a detailed description of the KaaS Cloud Provider and 

illustrates how the KaaS Cloud Provider operates in an intra-cloud environment. 

Specifically, the example uses simulation models to determine which entities would be 

impacted by a gas shortage. 



 

 

 

Figure 3: CKaaS behaviour in an inter-cloud environment. 

 

4.2 CKaaS in intra-cloud management: KaaS disaster cloud provider 

Intra-cloud KaaS operations are illustrated here using a simulation model example. 

Because simulation models represent abstractions of real-world systems, they contain 

information about interconnections and dependencies among entities. In the described 

crisis scenario, the consumer needs to know which entities will be affected if the gas 

supply is turned off. The simulation models contain connections among entities and 

therefore can be used to provide the needed information.  



 

 

Specifically, the I2Sim (Rahman et al., 2008) model, which was developed for the 

investigation of infrastructure interdependencies, is used here. I2Sim is an 

interdependency simulator built upon MATLAB’s Simulink engine. Simulink provides 

block libraries which can be customized to conform to a specific simulation domain. 

Complex models are managed by dividing models into hierarchies of sub-models. 

Accordingly, I2Sim builds upon Simulink by customizing Simulink blocks and providing 

entities specific to infrastructure interdependency simulation. 

The I2Sim simulator model used in this case study was developed to investigate 

infrastructure interdependencies in an incident on the Western University campus. The 

model involves a number of infrastructures, including electricity, water, gas, and steam 

distribution. It is complex and consists of several levels of hierarchy. These hierarchy 

levels hide complexity and aid in model creation and management; however, they pose a 

challenge for model querying. Storing ontology-based representations of simulation 

models in a database provides querying abilities. The simulation models are first 

processed to convert them into ontology-based models; then they are saved in a database. 

4.2.1 Simulation knowledge extractor 

As described in Section 3.1.2, simulation models are processed by transforming each 

simulator-specific proprietary model to its corresponding ontology-based model. In the 

case of I2Sim, the simulator model is stored in a Simulink-style .mdl file. The 

transformation of this .mdl file to an ontology-based model has been described in the 

work of Grolinger et al. (2012). In this case study, OWL (W3C OWL, 2009) was used as 

ontology language because it is the W3C-recommended ontology language. The 

simulation model used in this case study was transformed to an ontology-based model 

with 679 instances and 6575 property assertions.  

4.2.2 Storing simulation knowledge 

The KaaS disaster Cloud Provider is designed to enable the choice of a storage solution 

that corresponds to data requirements in terms of data structure as well as access patterns.  

After the simulation models have been transformed into ontology-based models, they 

are represented in OWL, which is characterized by a formal semantic and an abstract 

ontology structure that can be perceived as a graph. Graph databases use graph structures 

with nodes, edges, and properties to represent and store data. They are optimized for 

efficient management and storage of graph-like data. Consequently, because ontologies 

can be perceived as graphs, it is apparent that graph databases are a good choice for 

storing ontologies as well as ontology-based simulation models. Another characteristic 

that makes a graph database a good choice is its query capabilities. Graph database 

implementations typically offer query capabilities using specialized graph query 

languages. Specifically, this case study uses the Neo4j graph database (Neo4j, 2013). 

Neo4j can be queried using Cypher, a proprietary graph query language developed by 

Neo4j; using Gremlin, a graph traversal language; or even using the RDF query language, 

SPARQL. 

The processing stage creates ontology-based representations of simulation models in 

the OWL language. Next, these ontologies are loaded into Neo4j. Because Neo4j is a 

graph database and OWL ontologies are forms of graphs, loading ontologies into the 

database proved to be straightforward. Loading the present use case model into a 

database resulted in a graph with 2533 vertices and 9724 edges. 



 

 

4.2.3 Knowledge delivery 

The KaaS disaster Cloud Provider makes knowledge available as a service and provides 

services responsible for querying the KaaS within the Cloud Provider. One of these 

services is responsible for finding specific named entities in simulation models together 

with any entities to which they are connected or related. Within CKaaS, this is achieved 

by database querying, which is possible because simulation models have been 

transformed to their corresponding ontology-based representations and stored in a 

database. In this use case, knowledge delivery is achieved through a SPARQL endpoint 

as recommended by the W3C. The implemented SPARQL query is: 

SELECT ?instanceName ?class ?subModelName ?connectedTo  

WHERE {?instance simmodel:Name "Gas". 

?instance a ?class. 

?instance simmodel:Name ?instanceName. 

?channel simupper:hasStartNode ?instance. 

?channel simupper:hasEndNode ?connectedToNode. 

?connectedToNode simmodel:Name ?connectedTo. 

OPTIONAL {?instance i2sim:parentSystem ?subModel. 

          ?subModel simmodel:Name ?subModelName.}.  

} 

ORDER BY ?class ?connectedTo 

This query looks for all ontology instances, or in graph terminology, nodes named 

“Gas” together with all entities to which they are connected. Entities in the I2Sim 

simulation model are connected by channels, which are also responsible for transporting 

items among other entities. Channels have hasStartNode and hasEndNode properties, 

which indicate which nodes/entities each channel connects. In the presented query, the 

two properties are used to identify all entities to which “Gas” connects.  

A few rows of the results of this query are displayed in Table I. The first column is 

the name of the entity that was searched for, the second column is the type of I2Sim 

element used to model the “Gas” entity, the third column is the sub-model to which the 

“Gas” entity belongs, and the last column is the entity to which it connects. The first row 

identifies an entity of type I2Sim_source. In I2Sim, source elements represent the origin 

of resources and are typically used to model resources external to the simulation model. 

Therefore, the first row of the table indicates that the simulation model under study is 

using an external gas supplier which is connected to Steam house. The next four rows 

indicate that within the Steam house sub-model, the “Gas” entity connects to the four 

boilers, and the final four rows indicate that within the four boilers’ sub-models, “Gas” 

connects to Combustion chamber. 

TABLE I.  QUERY OUTPUT 

instanceName class subModelName connectedTo 

Gas isSim:i2sim_source  Steam house 

Gas i2Sim:inport Steam house Boiler 1 

Gas i2Sim:inport Steam house Boiler 2 

Gas i2Sim:inport Steam house Boiler 3 

Gas i2Sim:inport Steam house Boiler 4 

Gas i2Sim:inport Boiler 1 Combustion chamber 

Gas i2Sim:inport Boiler 2 Combustion chamber 

Gas i2Sim:inport Boiler 3 Combustion chamber 

Gas i2Sim:inport Boiler 4 Combustion chamber 

 

Ultimately, this query identifies which entities within a specific simulation model are 

using gas as a supply. Consequently, these entities will be affected if the gas supply is 



 

 

turned off. To obtain the same information directly from the simulation model without 

querying, the user needs to open the simulation model, find all gas elements, and check to 

which entities each connects. The hierarchy of sub-models makes this task especially 

challenging because each sub-model needs to be checked as well.  

The same query could have been executed against an OWL ontology without storing 

the ontology in the database. However, disaster management deals with a large number of 

simulation models, making use of a database preferable to storing ontologies as OWL 

files.  

This case study has demonstrated how CKaaS behaves in an intra-cloud environment 

on an example involving a simulation model. Specifically, it has demonstrated Cloud 

Provider services on an example of simulation model querying. 

5 Related Work 

Knowledge management is crucial in a number of fields, including health science, 

environmental science, computer science, and a number of engineering disciplines. This 

paper focuses on the disaster management domain. Consequently, this section first 

reviews works related to KaaS and then disaster data management studies. 

5.1 Knowledge as a Service (KaaS) 

Nowadays, cloud computing offers computing capabilities as services and represents an 

environment suitable for collaboration and capable of delivering horizontal scalability 

and high availability (Almorsy et al., 2011). A number of research studies (Lai et al., 

2012), (Langenberg et al., 2011), (Ju and Shen, 2011) have pointed out the importance of 

providing a cloud knowledge system in different domains to facilitate sharing and 

accessing knowledge from different sources. A new concept, “Knowledge as a Service”, 

was defined by Xu et al. (2005) as the process by which a knowledge service provider 

answers queries presented by knowledge consumers through a knowledge server. 

Knowledge is typically extracted from large volumes of data coming from heterogeneous 

data owners according to knowledge models such as ontologies and is then delivered as a 

cloud computing service. Based on these knowledge models, the knowledge server is able 

to deliver the right answer to the right consumer at the right time (Abdullah et al., 2011). 
Several researchers have used the KaaS approach to build cloud-based knowledge 

solutions (Qirui, 2012), (Kannimuthu, 2012), (Lai et al., 2012), including disaster 

management solutions (Lino et al., 2012). Qirui (2012) brought new thinking to 

agricultural information-system development by using the KaaS approach. In this 

approach, KaaS provides services that offer recommendations about planting on the farm 

according to user specifications and environmental factors. The knowledge representation 

in this KaaS is based on ontologies, while the data are stored exclusively in a relational 

database (MySQL). Similarly to the approach proposed by Qirui (2012), CKaaS also 

relies on ontologies for data integration; however, in contrast to Qirui’s method which 

stores data exclusively in a relational database, the CKaaS approach takes advantage of 

NoSQL data stores. 

Kannimuthu et al. (2012) applied KaaS in the e-commerce domain, where they 

focussed mainly on how to extract knowledge from data using data mining techniques. 

After a user selects items, the utility mining service uses information about the selected 

items to extract knowledge from large quantities of data and subsequently to attract the 

user to other products of the same enterprise. Ultimately, this leads to financial benefit for 



 

 

the enterprise. In their approach, data are formatted according to XML and stored in an 

XML database. CKaaS, similarly to the work of Kannimuthu et al. (2012), provides a 

means to extract knowledge from data; however, while Kannimuthu et al. focussed 

specifically on mining for product recommendation, the scope of knowledge extraction in 

CKaaS is wider because it includes various kinds of disaster-related information. 

Moreover, in CKaaS, knowledge extraction capabilities are made available as services, 

which facilitates their reuse.  

In contrast to the work of Qirui (2012) and Kannimuthu et al. (2012), the CKaaS 

solution proposed in this work is not limited to structured data. Rather, it relies on 

ontologies to integrate both structured and unstructured data stored in NoSQL data stores. 

Another interesting approach was proposed by Lino et al. (2012), who used KaaS to 

facilitate emergency response in natural disasters like tsunamis and earthquakes using 

interactive digital TV. To support smart applications and to share knowledge and 

planning information, their solution integrates a semantic layer based on interactive 

digital TV (IDTV) middleware. Specifically, knowledge is shared by means of 

ontological descriptions. The work of Lino et al. focussed on implementing a planning 

algorithm for emergency response in the KaaS layer to support evacuation of unsafe 

areas. In contrast, the CKaaS approach proposed in this work targets a wider context by 

integrating heterogeneous knowledge sources for more generic decision-making. 

Moreover, despite its use of a KaaS approach, the solution provided by Lino et al. seems 

to be restricted to a specific client/server architecture as opposed to an accepted cloud 

computing architecture.  

Qirui (2012), Kannimuthu et al. (2012), and Lino et al. (2012) all proposed a KaaS 

based on a cloud architecture; however, they did not follow a well-accepted cloud 

computing reference model such as those proposed by NIST, CISCO, or IBM. In 

contrast, CKaaS benefits from the use of a standard cloud computing architecture, 

specifically the NIST architecture, to provide flexible and scalable KaaS solutions. It was 

decided to follow the NIST reference architecture in this research because it is a generic 

cloud computing model, while the others, including the CISCO and IBM solutions, are 

more specialized in specific areas such as business and communication networks. 

Similarly to the proposed CKaaS, Ju and Shen (2011) introduced a KaaS system as 

an extension of the NIST cloud computing model. They considered KaaS as a fourth 

layer on top of SaaS. Likewise, Abdullah et al. (2011) placed KaaS onto each layer of the 

standard cloud computing architecture, yielding four layers: Knowledge-Infrastructure as 

a Service (K-IaaS), Knowledge-Platform as a Service (K-PaaS), Knowledge-Data as a 

Service (K-DaaS), and Knowledge-Software as a Service (K-SaaS). In contrast to the 

works of Ju and Shen (2011) and Abdullah et al. (2011), the KaaS layer in CKaaS is 

considered as a sub-layer within the PaaS layer, but on top of other PaaS components. 

Therefore, KaaS can take full advantage of platform-level and infrastructure-level 

services to deliver adequate knowledge services built from distributed and collaborative 

sources. 

In contrast to the reviewed solutions which use XML or relational databases or do 

not address the storage aspect, CKaaS enables a choice of storage solution that best 

corresponds to data requirements in terms of data structure and access patterns. In the 

context of CKaaS, NoSQL solutions provide schema flexibility, horizontal scalability and 

high availability. As for the collaboration aspect, the reviewed solutions do not support 

collaboration of knowledge providers, while CKaaS enables such collaboration by means 

of the KaaS Broker. 

Finally, the reviewed solutions do not deal with integrating knowledge from different 

knowledge providers, whereas CKaaS aims to solve this problem through collaboration 



 

 

among multiple KaaS providers. Moreover, the reviewed solutions dealt only with inter-

cloud interaction, while CKaaS includes intra-cloud interaction of knowledge providers, 

thus enabling collaboration. 

5.2 Disaster management 

Crisis informatics (Palen et al., 2010), (Schram and Anderson, 2012), the area of research 

concerned with the role of information and technology in disaster management, has been 

attracting increased research attention recently. Data are the main factor in disaster 

management because they represent a description of the environment, disaster plans, and 

resources and consequently are the basis for analysis and decision-making.  

Hristidis et al. (2010) surveyed data management and analysis in the disaster 

management domain. The main focus of their survey was on data analysis techniques 

without the storage aspect. In contrast, in CKaaS, storage and analysis are considered as 

integral parts of the solution. Moreover, CKaaS provides advanced techniques that 

transform data into knowledge and deliver it as a service to provide a high quality of 

experience to users. Hristidis et al. (2010) identified the following data analysis 

technologies as relevant to disaster data management: information extraction, information 

retrieval, information filtering, data mining, and decision support. Similarly, CKaaS uses 

a number of information extraction and retrieval technologies to provide knowledge. 

Their survey revealed that most research has focussed on a very narrow area of disaster 

management, for example, a specific disaster event such as an earthquake or a flood, or 

on specific disaster-related activities such as communication among actors, estimating 

disaster damage, and use of mobile devices. Hristidis et al. (2010) recognized the need 

for flexible and customizable disaster management solutions that could be used in 

different disaster situations. CKaaS aims to provide such a solution using cloud 

computing extended by the KaaS approach, ontologies, and NoSQL approaches. 

Silva et al. (2011) aimed to integrate diverse, distributed information sources by 

bringing them into a standardized and exchangeable common data format. Their approach 

focussed on data available on public Web sites. Data were first extracted from various 

source Web sites and stored in a relational database. Next, the data were transformed into 

Linked Open Data (LOD) form and published. In contrast to their work, which addressed 

data available on public Web sites, the proposed CKaaS can accommodate various 

information sources.  

Palen et al. (2010) presented a vision of technology-supported public participation 

during disaster events. They focussed on the role of the public in disasters and how 

information and communication technology can transform that role. Similarly to Hristidis 

et al. (2010), they recognized information integration as a core concern in crisis 

informatics. While Palen et al. (2010) presented a vision, our work focuses on providing 

an architecture for cloud data management. 

Anderson and Schram (2011), like Palen et al. (2010), studied the role of public and 

social media in disaster events. They proposed a crisis-informatics data-analysis 

infrastructure for collection, analysis, and storage of information from Twitter. The main 

objective of their work was support of other crisis information research by extracting 

disaster-related tweets from Twitter and storing them in a database. In their initial study 

(Anderson and Schram, 2011), data were stored in a relational database, specifically 

MySQL. Later, after encountering scalability challenges, they transitioned to a hybrid 

architecture that incorporates a relational database and a NoSQL data store (Schram and 

Anderson, 2012). Similarly, CKaaS allows for use of relational databases and NoSQL 

data stores for data storage. However, in the CKaaS approach different NoSQL data 



 

 

stores can be used to address the storage requirements of diverse data. Specifically, 

CKaaS enables a choice of storage solutions to suit data structures and access patterns. 

The listed studies have focussed on data analysis for disaster management; however, 

to obtain the right decision/response in critical situations, data management must be 

enriched with knowledge management. Therefore, CKaaS addresses the need for 

knowledge integration and knowledge-sharing solutions through transforming and 

formalizing structured and unstructured data into knowledge. To overcome the problem 

of semantic heterogeneity when integrating various knowledge sources, the CKaaS 

approach uses ontologies. Moreover, publishing knowledge as a service (KaaS) provides 

scalable management and facilitates use of knowledge in practice. 

6 Limitations, challenges, and opportunities 

The CKaaS proposed in this work extends the NIST cloud computing reference 

architecture by adding a KaaS layer which is responsible for integrating diverse data 

sources. Because the CKaaS approach is based on cloud computing, it is exposed to a 

number of limitations and challenges similar to those encountered by cloud computing. 

The main limitations, challenges, and opportunities faced by the CKaaS approach include 

the following:  

 The CKaaS architecture, similarly to the NIST reference architecture, relies on a 

Cloud Broker, which acts as a mediator between the Cloud Consumers and the KaaS 

services of various Cloud Providers. If the system relies on a single Cloud Broker, a 

single point of failure is introduced. The use of multiple Cloud Brokers in the 

proposed architecture and their coordination and communication require further 

research. 

 The Cloud Broker is responsible for gathering and integrating knowledge from 

various service providers. Even though knowledge integration is not the focus of this 

work, it should be addressed to ensure successful provision of the comprehensive 

knowledge service. Because different KaaS Providers collaborate to answer 

consumers’ requests, there is a possibility that knowledge conflicts will occur. The 

Cloud Broker must first detect those conflicts and then resolve or manage them so 

that non-contradictory knowledge can be provided to consumers. Moreover, since 

Cloud Providers’ knowledge may evolve differently and at different pace, the Cloud 

Broker needs to coordinate knowledge across different providers. 

 The CKaaS architecture, similarly to the NIST reference architecture, includes 

security and privacy components as part of the Cloud Provider. However, security 

and privacy span all components of the proposed architecture and involve both 

service consumers and providers. In a public cloud, data are stored and processed on 

third-party premises and in a shared multi-tenant environment; therefore, security 

and privacy vulnerabilities are increased. Providing an adequate solution is difficult 

because it needs to be addressed in the context of the proposed architecture and it 

needs to include both the service provider and the service consumer.  

 Quality of service (QoS) is outside the scope of this work; nevertheless, QoS 

represents a major challenge in the CKaaS context because of the large number of 

components and actors involved in providing knowledge as a service. A vital 

component with respect to QoS is the Cloud Broker, which is responsible for 



 

 

integrating information from various providers. Moreover, the Cloud Broker is in 

charge of deciding the waiting response time from KaaS knowledge providers. 

 Customer lock-in. Due to lack of standardization within the cloud computing 

industry, it is challenging to move from one Cloud Provider to another. Moreover, 

customer lock-in makes Cloud Consumers vulnerable to price increases. 

7 Conclusions 

This paper has proposed a CKaaS architecture based on the NIST cloud architecture 

integrating a domain-independent KaaS layer. CKaaS stores large amounts of data while 

maintaining high availability using NoSQL and cloud solutions. Data search, 

interoperability, and integration are facilitated through knowledge acquisition and 

knowledge delivery. Knowledge acquisition uses language processing, information 

extraction, and retrieval techniques to add structure and metadata to largely unstructured 

disaster data. Knowledge is delivered as a service using the KaaS approach so that 

service performance can be managed by the cloud management services. CKaaS 

overcomes the limitation of knowledge integration by implementing the Cloud Broker 

with the aim of implementing collaborative distributed cloud knowledge system through 

enriched services. In this work, CKaaS has been applied to the disaster management 

domain because the quantity and heterogeneity of disaster-related data are large and 

managing them effectively remains crucial for minimizing the impact of disasters on 

society. 

The case study presented in this work provides evaluation of the proposed CKaaS 

architecture; nevertheless, further evaluation will be performed including complex and 

heterogeneous data sources. Critical aspects that need to be addressed are the integration 

of diverse knowledge provided by various service providers and the criteria for optimal 

data storage selection. 
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