Deep Learning: Edge-Cloud Data Analytics for IoT

Ananda M. Ghosh, Katarina Grolinger
Department of Electrical and Computer Engineering
Western University
London, ON, Canada N6A 5B9
{aghosh45, kgroling} @uwo.ca

Abstract—Sensors, wearables, mobile and other Internet of
Thing (IoT) devices are becoming increasingly integrated in
all aspects of our lives. They are capable of collecting massive
quantities of data that are typically transmitted to the cloud
for processing. However, this results in increased network
traffic and latencies. Edge computing has a potential to remedy
these challenges by moving computation physically closer to
the network edge where data are generated. However, edge
computing does not have sufficient resources for complex data
analytics tasks. Consequently, this paper investigates merging
cloud and edge computing for IoT data analytics and presents
a deep learning-based approach for data reduction on the edge
with the machine learning on the cloud. The encoder part of the
autoencoder is located on the edge to reduce data dimensions.
Reduced data are sent to the cloud where there are used directly
for machine learning or expanded to original features using the
decoder part of the autoencoder. The proposed approach has
been evaluated on the human activity recognition tasks. Results
show that 50% data reduction did not have a significant impact
on the classification accuracy and 77% reduction only caused
1% change.

Index Terms—Edge Computing, Deep Learning, IoT, Data
Analytics, Autoencoder

I. INTRODUCTION

In recent years, the explosion of sensors, wearables, mobile
and other Internet of Things (IoT) devices has been changing
how we live and work. Today, there are over six billion
connected devices, and Gartner estimates that this number
will grow to over 20 billion by 2020 [1]. According to the
McKinsey Global Institute, IoT could generate $11 trillion
dollars a year in economic value by year 2025 [2]. Connected
devices have created the foundation for smart systems such
as smart watches, buildings, cities, cars, appliances, and smart
grids. Each day, people are becoming more dependent on smart
and connected devices and, although only a small portion of
IoT data is presently used [2], new connected devices are
continuously emerging.

Commonly, IoT devices are equipped with sensors that
detect and measure changes in their environment. Recorded
data are exchanged over the network for storage, processing, or
control. To realize the benefits of intelligent/smart IoT systems
and extract value from collected data, data analytics is es-
sential. Traditional approaches to data analytics transfer these
data to the cloud for storage and processing, and subsequently
deliver results and/or data to software applications.

For example, data from a smart home are transferred to
a data centre, possibly thousands of miles away, for storage
and processing, and then back for display on devices within
the home. Attempting to transfer all IoT data to the cloud
for processing will put a strain on communication networks
and increase latencies caused by the data transfer over large
distances. On the other hand, those connected devices are
limited with respect to the analytic that they can perform
because of factors such as limited computation power, storage
capacity, memory and battery life.

Edge computing (EC) [3]-[5] has been proposed as a
way to address these challenges by physically pushing the
computation away from the centralized system and to the
edges of the network and sources of data. Performing part
of the computation on the device itself or on a node close
to the source of data can reduce data that need to be sent
to the cloud and consequently reduce latencies and improve
response time. Edge Servers [3], servers that reside on the
edge of a network, often act as a connection between a
private network and the Internet. They can be used for data
and computation offloading as well as for multimedia content
provision. Moreover, edge servers can act as intermediaries
between the cloud and IoT device by performing computation
on data and sending reduced data to the cloud for further
processing. Tang et al. [6] suggested that edge computing
could be used to extract features and reduce the number of
featured sent to the cloud.

Deep Learning (DL) has recently shown good results in a
variety of domains, especially when large data quantities are
available. It has great potential in the IoT context because it
can carry out representation learning by transforming data into
hierarchical abstract representations that enable learning good
features. Deep autoencoders, a type of deep neural networks,
can be used to learn efficient data encoding in an unsupervised
manner.

This study explores the use of deep learning, specifically
autoencoders, for data reduction in the edge-cloud IoT data
analytics context. Autoencoders are suitable for this task
because once an autoencoder is trained, the encoder part of
the network can be employed on the edge to reduce data that
are sent to the cloud. The decoder part of the trained network
can then be deployed on the edge to perform dimensionality re-
duction. Since training deep networks, including autoencoders,
is computationally expensive, it still needs to be done on the

Copyright: http://www.ieee.org/documents/ieeecopyrightform.pdf

Katarina
Typewritten Text
Copyright: http://www.ieee.org/documents/ieeecopyrightform.pdf

Katarina
Typewritten Text

Katarina
Typewritten Text

cloud.

In this work, different autoencoder architectures are com-
pared with respect to how much they reduce data and how they
affect data analytics tasks. Two main scenarios are considered:
in the first scenario, autoencoders are used for data reduction
and the cloud machine learning (ML) task is carried out
with the reduced data. In the second scenario, autoencoders
on the edge reduce data similar to the first scenario, but on
the cloud, the reduced data are first expanded (original data
restored) before performing the ML task. The experiments are
carried out on the task of human activity recognition with the
data from smart-phones. In both scenarios, autoencoders have
demonstrated the ability to reduce network traffic, without
significantly impacting machine learning task accuracy.

The remainder of the paper is organized as follows: Section
IT provides background concepts and Section III reviews
related work. The methodology is described in Section IV,
and the results are presented in Section V. Finally, Section VI
concludes the paper.

II. BACKGROUND

This section introduces deep learning and dimensionality
reduction.

A. Deep Learning

Deep learning (DL) is a class of machine learning algo-
rithms that use a cascade of multiple layers, with each one
performing a non-linear transformation [7]. In recent years,
DL has gained popularity because it demonstrated an ability
to learn complex models and perform representation learning
[8]. This type of learning uses data representations rather than
explicit data to perform learning: data are transformed into
hierarchical abstract representations that enable learning of
good features, which are consequently used for the ML tasks.

Figure 1 illustrates the deep learning process on the object
recognition task. Each layer learns a specific feature: edges,
corners and contours, and object parts. The final layer performs
the ML task using the learned features.

) Output
/ (object identity)

2nd hidden layer
(corners and -~
contours)

")

Y 1st hidden layer
ge)

| Visible layer
(nput pixels)

Fig. 1: Deep Learning [9]

Deep learning architectures are versatile, and a few popular
examples include autoencoders, convolutional and recurrent
neural networks. Because of the ability to extract global
relationships from data and reliance on high level abstractions,
deep learning can be used for both supervised and unsu-
pervised learning. The proposed approach uses unsupervised
learning, specifically autoencoders, to reduce data sent to the
cloud.

Autoencoders (AE) [10] are neural networks trained to
reproduce input vectors as output vectors. The input vector
T1,T3, ..., Ty, 1s compressed through the hidden layers which
have a fewer number of neurons than the input layer, into lower
dimensional subspace and then uncompressed to reproduce the
input as output. The objective is to learn a representation or
data encoding for a data set.

In experiments, in addition to using autoencoders for data
reduction, we use DL, particularly feedforward neural net-
works for human activity recognition.

B. Dimensionality Reduction

Machine learning problems commonly encounter a large
number of features, or attributes, which is common in a variety
of machine learning tasks, especially with large data sets.
However, as the dimensionality increases, it becomes more
difficult and time consuming to work with the data set and the
effectiveness of the ML algorithm decreases [8]. Therefore,
dimensionality reduction is used to reduce the number of
features or attributes under consideration.

Principal Component Analysis (PCA) [11] is a widely used
linear dimensionality reduction technique. It uses orthogonal
transformations to convert a set of possibly correlated features
into a set of linearly uncorrelated features, referred to as
principal components. The first principal component explains
the largest part of the data variation, and each following
component explains the next highest variance under constraint
that it is orthogonal to the preceding components. Dimension-
ality reduction is achieved by using only the first n principal
components.

Autoencoders can also be used for feature reduction; they
perform non-linear transformations whereas PCA carries out
linear transformations. The number of neurons in the hidden
layers controls the degree of dimensionality reduction, whereas
the number of the hidden layers impacts how encoded features
are computed. The experiments presented in our work com-
pared accuracy achieved with autoencoders and PCA.

III. RELATED WORK

In recent years, edge computing has been attracting sig-
nificant attention from both research and industry due to its
promise to reduce latencies and network traffic, improve user
experience, and reduce reliance on cloud [3], [5], [12], [13].
Edge computing shares many attributes with fog computing
which refers to processing data close to data sources. There-
fore, this section considers both, edge and fog.

Several studies have discussed edge computing concepts,
potentials, advantages, and disadvantages [6], [14] without

demonstrating edge performance with experiments. For ex-
ample, El-Sayed et al. [S] presented the big picture on the
integration of edge, 10T, and cloud in a distributed computing
environment. They discussed edge computing functional capa-
bilities and identified challenges such as device selection, auto-
mated task allocation, computation offloading, communication
overhead, mobility management, and security and privacy.
Additionally, they compare edge computing with cloud and
multi-could computing focusing on highlighting edge advan-
tages. Finally, El-Sayed ar al. conclude that edge computing
technologies can provide distributed data processing for IoT
applications overcoming drawbacks of traditional centralized
processing.

The second group of related works presents experiments
that demonstrate edge computing capabilities. Sinaeepourfard
et al. [13] proposed fog to cloud (F2C) data management
architecture incorporating the data preservation block with the
objective of providing faster data access than the cloud. To
illustrate possible benefits of the proposed architecture, they
calculated the potential reduction in the data transfer volume
and latency decrease taking the city of Barcelona as an exam-
ple. Sinaeepourfard et al. did not run real-world experiments.
Jararweh et al. [15] proposed a hierarchical model composed
of mobile edge computing servers and cloudlets, small clouds
located close to the edge of the network. Their experiments
consisted of simulation scenarios; varying numbers of requests
were generated with the objective of demonstrating how the
offloading impacts the power consumption and the incurred
delay.

Li et al. [16] proposed a manufacturing inspection system
based on deep learning and fog computing for defect detection
in large factories with big data. In their system, production im-
ages are captured by cameras and sent to convolutional neural
network (CNN) for defect detection. In contrast to traditional
CNN, where all layers are located on a single computing
node, in the architecture proposed by Li et al., lower-level
layers are located on fog nodes and higher-level layers on
the server. Performed experiments demonstrate high defect
detection accuracy, decreased load on the central servers,
and reduced overall computation time; however, latencies and
communication overhead were not analyzed.

Jia et al. [17] proposed a Smart Street Lamp (SSL) system
based on fog computing for smart cities with the objective
of reducing maintenance periods, decreasing energy consump-
tion, providing fine-grain control, and reducing theft. The
evaluation demonstrated that the SSL system is capable of
self-understanding various static, pre-defined states, and con-
sequently improving issue detection and maintenance. Their
experiments focused on the overall features of the system and
did not specifically consider and compare the advantage of fog
servers over cloud servers.

Study by He et al. [18] presented a multi-tier fog computing
model with large-scale data analytics services for smart city
applications. The multi-tier fog consists of ad-hock fogs and
dedicated fogs with opportunistic and dedicated computing
resources, respectively. Offloading, resource allocation, and

Quality of Service (QoS) aware job admission were designed
to support data analytics and maximize analytics service util-
ities. In their setup, ad-hock nodes are lower resource devices
such as Raspberry PIs and desktops, whereas higher resource
servers are used as dedicated nodes. Presented experiments
compare different architectures in respect to service utility and
blocking probability.

A fog-enabled real-time traffic management system inves-
tigated by Wang et al. [19] offloads computation to the fog
nodes with the aim of minimizing average response time for
events reported by vehicles. Their system consists of three
layers: the cloud, cloudlet, and fog layer. Vehicles act as fog
nodes, cloudlets are assigned to the city regions, and cloud
servers act as the integration system if needed. Conducted
simulation experiments are based on the real-world traces of
taxies and focus on exploring the effects of the number of fog
nodes and service requests.

The discussed studies either examine edge and fog possi-
bilities, advantages and challenges, [6], [14] or are concerned
with a very specific use case scenario without specifically
addressing data analytics or machine learning. In contrast, our
work explores employing machine learning approach for data
reduction on the edge nodes to decrease network traffic and
latencies caused by data transfer to cloud for machine learning.

IV. METHODOLOGY

This section first introduces the edge-cloud architecture for
data analytics. Next, data reduction with autoencoders and
edge-cloud computation models are discussed.

A. Edge-cloud Architecture for Data Analytics

The proposed edge-cloud architecture for data analytics is
depicted in Figure 2. Similar to any other edge-based system,
data from sensor-equipped devices such as smartphones, ac-
tivity monitors, and smart meters, are transferred to the edge
nodes for further processing. Pure edge computing systems
perform complete computation on the edge nodes, whereas
typical edge-cloud systems carry out task-specific computation
on edge and possibly connect to cloud for integration purposes
[19].

IOT Devices Edge Cloud
l @) - ~ =
1l \ - = o
D TA OO —— .
« i) ata —'— oom ©Em
Reduction [
[e
| ===

‘/
m/

Fig. 2: Edge-cloud Computing Architecture for Data Analytics

Sensors are capable of high-frequency sampling: for exam-
ple, voltage and frequency sensors can record thousands of
readings per second. Because of this, quantity of data that need
to be transferred is very large. Attempting to transfer all these
data to the cloud for processing will result in high latencies and
increased network traffic. Moreover, ML with such large data
sets is challenging, time consuming, and sometimes infeasible.
Therefore, the role of the edge nodes in the proposed edge-
cloud architecture for data analytics presented in Figure 2 is
to reduce quantity of data transferred to the cloud in a way
suitable for machine learning. While other edge computing
solutions also reduce data transfer, the solution proposed here
focuses on data reduction for ML tasks.

The two main categories of data reduction techniques in
ML are dimensionality reduction, which reduces the number
of variables under consideration, and instance selection, which
selects a data subset for ML [8]. This paper uses a dimension-
ality reduction-based technique. After the data are reduced on
the edge layer, they are sent to the cloud for ML tasks. Data
from different sensors may be sent to different edge nodes, as
illustrated in Figure 2, but all nodes forward the reduced data
to the centralized location. In this way, ML models residing on
the cloud can take advantage of the data coming from different
places and through different fog nodes. Specific tasks could
possibly be carried out on the edge nodes, but those would
only have access to data from a subset of sensors.

B. Data Reduction with Autoencoders

For data reduction on edge nodes, this study uses autoen-
coders. As already mentioned, autoencoders are capable of
dimensionality reduction by learning hierarchical data repre-
sentations. As illustrated in Figure 3, autoencoders take input
data and process them through a number of hidden layers.
A number of neurons in the hidden layers is smaller than
the number of neurons in the input layer, which forces an
autoencoder to learn an internal representation of data. An
autoencoder consists of two parts: the encoder part compresses
data by transforming it into abstract representation (encod-
ings), and the decoder part is responsible for reconstructing
the original data from the abstract representation. The inner
layers of the autoencoder can be used as features for ML tasks.

To use an autoencoder for data reduction in the edge-cloud
architecture, the encoder part of the network is located on
the edge, and the decoder part is on the cloud. This way,
when high-dimensional data arrive to the edge node, they
are reduced to a smaller number of dimensions according
to the encoder architecture. After these data are sent to
the cloud, they can be directly used for ML tasks or the
original signal can be reconstructed through the decoder part
of the autoencoder located on the cloud and then used for
ML tasks. Note that this is the processing layout used after
the autoencoder is trained. Because autoencoder training is
computationally expensive, it still needs to happen on the high-
resource nodes such as cloud or GPU-enabled devices.

1
1
-
1
1
1
1

I

\
-3
b |

1
I
] —
I
]

FFIFII

000000
$ S5 FH

000000
= = =
000000000 |

1 e L I

I =

IL—’ - Odex e il -._‘_-I 1
_____ ! TNl Coder o=
Input layer Output layer

Fig. 3: Autoencoder for Dimensionality Reduction in Edge-
cloud Architecture

C. Edge-cloud Computation Models

This work considers three computation models as illustrated
in Figure 4. Scenarios 1 and 2 employ edge-cloud data
analytics, whereas Scenario 3 is a traditional cloud-based
analytics scenario included solely for comparison purposes.

Scenario 1: Data from sensors are sent to edge nodes
where data reduction is performed using the encoder part
of the trained autoencoder. Reduced data are sent to the
cloud where machine learning is carried out directly with
the compressed data. In this scenario, the primary concern
is the accuracy of the machine learning task; for example,
in the case of classification, accuracy could be expressed
through measures such as precision, recall, and Fl-score.
Note that autoencoders are used because they perform non-
linear dimensionality reduction; nevertheless, other techniques
could be used such as PCA as will be demonstrated in the
experiments.

Scenario 2: As in Scenario 1, data from sensors are sent
to edge nodes where reduction is performed and the reduced
data are sent to the cloud. Instead of carrying out an ML
task directly on the reduced data, as it was done in Scenario

—_—— e ———— —_—— o — —

Edge Vo Cloud |
l || |
N X I |
£ 8 | Data ed Iced Data Machine | Results
= 5 * . .
- § |2 Reduction | Learning
2 2 2 | I
- I I
: i - |
B o 8 Réduckd Revroduc |
=]
= D Datal eprocucing ; Results
= . ata P Machine ~
£ 3 | Reduction . Original - Learning
4 =} I | Data
2 @ | Lo |
| |
I |
=2~ (g | |
g g é | N Machine | Results
=) s) .
2 5 2 | Learning
2 38 5 | |
O ©2 »n

Fig. 4: Edge-cloud Computation Models

1, original data are reconstructed using the decoder part of
the autoencoder and ML uses the reconstructed data. This
scenario transfers the same quantity of data from the edge
to the cloud as Scenario 1. ML is performed on a larger
quantity of data since original data are reconstructed; however,
data reconstructing can provide more flexibility with respect
to the features used for different ML tasks. As in Scenario 1,
the accuracy of the final ML task is important. Additionally,
in this scenario we are concerned with the accuracy of the
reconstructed signal. If the autoencoders inner layers have too
few neurons, in other words, an attempt was made to compress
data too much, accuracy of the reconstructed signal will be
affected. Examples of error measures for reconstruction accu-
racy include Mean Squared Error (MSE) and Mean Absolute
Error (MAE). If the reconstructed data are of low quality, the
accuracy of the final ML task will be reduced.

Scenario 3: This is a pure cloud computing scenario:
data are sent directly from sensors to the cloud and ML
is performed with these data. It is included here only as a
baseline for comparison with the other two scenarios.

Of course, with ML it is important to keep the accuracy of
the final machine learning task as high as possible. Because
the main objective of the proposed architecture is to reduce
network traffic and latencies, the amount of data that can be
reduced on the edge needs to be considered.

When autoencoders are used for feature selection, the num-
ber of selected features is determined by the hidden layer with
the fewest number of neurons. The number of hidden layers
affects how the encodings are calculated; it is not the same if
the input is reduced in a single step or by gradually decreasing
the number of neurons in the hidden layers. The experiments
presented in in this paper evaluated the impact of autoencoder
architecture on ML task accuracy and data reduction.

V. EVALUATION

This section first introduces the machine learning task
used for the evaluation and the data set, then describes the
experiments and discusses their results.

A. Machine Learning Task and Data Set

The proposed approach has been evaluated on the task of
human activity recognition from smartphone data. Because
smartphones are equipped with a variety of sensors such
as accelerometers, gyroscopes, and proximity sensors, and
support wireless communication protocols such as Wi-Fi and
Bluetooth, they are capable of collecting and transmitting large
quantities of data related to human activities. Pervasiveness
makes smartphones a convenient and affordable solution for
the unobtrusive monitoring of human activities [20].

This study uses publicly available human activity data
set [20], [21]. Anguita et al. created this data set from
accelerometer and gyroscope readings at a sampling rate of
50Hz [20]. Raw data were preprocessed, and the time signals
were sampled in a fixed-length sliding window, resulting in
the final data set with 561 features describing human activities.
Additionally, each sample in the data set is labelled as walking,

walking down, walking up, sitting, standing, or laying. Thus,
this is a classification problem. As this data set contains a
relatively large number of features (561), it is suitable for data
reduction on the edge nodes using deep learning.

The data set has 10301 observations; 70% of the data
were used for training, and 30% for testing. All values were
normalized by scaling to the range [0,1]. Note that in the
proposed approach, the training is carried out on a single
centralized system, and then the encoder part is deployed onto
an edge node and the decoder part on the cloud.

B. Experiments

Three types of experiments were performed corresponding
to the three scenarios from Figure 4:

o Classification with encoded data: Data are reduced (en-
coded) and the encoded data are used for the classifica-
tion.

o Classification with decoded data: Data are first reduced
(encoded), then restored (decoded), and the decoded data
are used for the classification.

o Classification with original data: Data are used un-
changed for the classification. This scenario is included
for the comparison purposes.

Autoencoder’s hidden layer with the fewest neurons deter-
mines how much data are reduced. To explore different degrees
of reduction, the following architectures were considered:

e 561-265-561
e 561-265-128-265-561
o 561-265-128-64-128-265-561.

Here each number represents a number of neurons in a layer
starting from the input layer to the output layer. All architec-
tures are symmetrical: encoder parts reduce the number of
features (e.g. 561-256-128) and the corresponding decoders
restore original data (e.g. 128-256-561). Consequently, the
three architectures reduce data to 265, 128, and 64 features,
respectively. In the case of a larger dimensionality reduction
(e.g. 128 or 64), additional layers are introduced. Experiments
with a large direct reduction were also performed, but gradual
reduction achieved better accuracy.

To evaluate the classification, accuracy, Mean Squared
Error (MSE) and Mean Absolute Error (MAE) were used.
Accuracy represents the ratio of correctly classified samples
to the total number of samples, whereas MSE and MAE are
calculated as follows:

N
MSE =1/N'Y (y; — ii)?

i=1

N
MAE=1/N |y — §il

i=1

where y; and ¢; are actual and predicted values, and N is
the number of observations.

C. Results and Discussion

Two aspects of the system were evaluated: the impact of
data reduction on the ML task accuracy and the degree of
data reduction. With Big Data, a small drop in accuracy can
be warranted if it is accompanied by gains such as reduction
of network traffic and latencies.

As a benchmark for data reduction, a classification with
a complete data set was carried out first (Scenario 3 from
Section IV-C); results are presented in Table I. The achieved
accuracy is high: over 95% of samples are classified correctly.
Moreover, MSE and MAE are also low.

Next, Scenario 1 and 2 experiments were conducted with the
three autoencoder (AE) architectures presented in subsection
V-B: Figure 5 shows the results. Values on the horizontal
axis 256, 128, and 64 show number of features after data
reduction. Scenario 2 is indicated as encoded and Scenario 3
as decoded. In the figure, ’original’ refers to the classification
with original data (Scenario 1) and, therefore, has the same
values regardless of the horizontal axis reduction group. It
can be observed that accuracy decreases as the number of
features is reduced. Nevertheless, for 256 features, although
the number of features is reduced from 561 to 256, there is
hardly any change in accuracy as it just changes from 95.45%
to 95.31%. Similarly, reduction to 128 features only reduces
accuracy to 94.46%.

However, there is a more significant change in accuracy
when going to 64 features: accuracy was 90% and 87% for
encoded and decoded data, respectively. However, note that
this is 88% reduction in data size. With 128 features and with
64 features, classification with encoded data achieves better
accuracy than classification with decoded data; the difference
is especially large in the case of 64 features.

Figure 6 shows the results for the same experiments but
using PCA in place of an autoencoder. Still, data reduction
to 256, 128, and 64 is considered. As it is the case with
autoencoders, accuracy decreases as features are reduced. For
encoded data and 256 features, accuracy is better than the
accuracy with all features. This can be explained by curse

TABLE I Classification Accuracy

MSE
0.01311

MAE
0.01752

Accuracy

0.9545

Classification Accuracy - AE Reduction

W Original
m Encoded
0.95 Decoded
> 09
Q
&
= 0.85
(@]
(3]
< 08
0.75
0.7
256 128 64
Data Reduction

Fig. 5: Classification accuracy with autoencoder data reduction

of dimensionality, the negative effect of a large number of
features on accuracy of ML algorithms [8].

Reduction using an autoencoder and PCA is compared in
Figure 7; an autoencoder (AE) with encoded and decoded
data and PCA with encoded and decoded data are considered.
When data are reduced to 256 features, all four approaches
achieve similar accuracy, with PCA encoded data achieving
slightly better accuracy. When data are reduced to 128 fea-
tures, autoencoders outperform PCA with the encoded version
performing somewhat better then decoded. Reducing features
to 64 results in a more significant drop in accuracy with both,
PCA and AE. Nevertheless, even with aggressive reduction to
64 features, which is only around 13% of the original 561
features, the accuracy of AE with encoded data is still around
87%.

Because the main objective of edge-cloud IoT data analytics
is to reduce network traffic and latencies, it is important
to examine how much the proposed approach reduces data
size. Figure 8 shows the size of original data compared to
reduction to 256, 128 and 64 features. It can be seen that data
reduce from 11.2MB for original data to 5.754MB for 256
features, 2.877MB for 128, and 1.4386MB for 64 features.
Consequently, the data sent to the cloud are significantly
reduced, which is especially important in the case of large
data quantities such as those in IoT.

The experiments presented here show that by using au-
toencoders we were able to reduce the number of features
from 561 to 256, which represents a reduction of over 50%,
without significantly impacting the accuracy of human activity
recognition task. Although PCA is a linear feature reduction
technique, it achieved similar results to the autoencoder which
is non-linear. Consequently, we cannot conclude that autoen-
coders always outperform PCA. Nevertheless, both autoen-
coders and PCA were successful in reducing data without
significantly impacting the ML task accuracy and thus can
both be used for edge-cloud analytics.

VI. CONCLUSION AND FUTURE WORK

Proliferation of sensors, wearables, mobile, and other IoT
devices has resulted in massive quantities of data, and this
trend is expected to continue. Attempting to transfer all these
data to the cloud for storage and processing will result in
increased network traffic and latencies.

Classification Accuracy - PCA Reduction

® Original
® Encoded
0.95 Decoded
> 09
Q
S
= 0.85
Q
[#3
< 08
0.75

o
~

256 128 64
Data Reduction

Fig. 6: Classification accuracy with PCA data reduction

Classification Accuracy Comparison maEg Encoded
8 AE Decoded

BPCA_Encoded

I I I I I I |
256 128 6

o
&)

Accuracy
[=]
oo
w

0.8

0.75

0.7

4
Data Reduction
Fig. 7: Autoencoder and PCA comparison
Data Reduction Ratio

14
3
£ 12
Kal
& 10
L]
= 8
g
v 6
N
w 4
&

o [
Original(561) 256 128 64

Data Reduction

Fig. 8: Data size for different feature reduction

To address these challenges, this paper proposes to combine
edge and cloud for IoT data analytics. To reduce quantity
of data sent to the cloud, the study uses deep learning,
specifically autoencoders. The encoder part of the autoencoder
is deployed on the edge to reduce the number of features and
data size. Data are then sent to the cloud for further processing.
Reduced data can be used directly for the ML task, such
as classification, or original data can be restored using the
decoder part of the autoencoder. The proposed approach was
evaluated on human activity recognition from smartphone data.
Results show that autoencoders are capable of significantly
reducing the quantity of data without significantly impacting
ML task accuracy.

Future work will explore the application of the proposed
approach for different ML tasks and with different data sets
focusing on high dimensional data. Moreover, kernel PCA and
incorporating time-dependencies typical of IoT data will be
explored.

REFERENCES

[1] P. Middleton, J. F. Hines, B. Tratz-Ryan, E. Goodness, D. Freeman,
M. Yamaji, A. Mclntyre, A. Gupta, D. Rueb, and T. Tsai. Forecast:
Internet of things endpoints and associated services. Gartner, 2016.

[2] M. James, M. Chui, P. Bisson, J. Woetzel, R. Dobbs, J. Bughin, and
D. Aharon. The internet of things: Mapping the value beyond the hype.
McKinsey Global Institute, 2015.

[3] X. Sun and N. Ansari. EdgeloT: Mobile edge computing for the internet
of things. IEEE Communications Magazine, 54(12):22-29, 2016.

[4] T. Taleb, S. Dutta, A. Ksentini, M. Igbal, and H. Flinck. Mobile edge
computing potential in making cities smarter. IEEE Communications
Magazine, 55(3):38-43, 2017.

[5]

[6]

[7]

[8]

[9]
[10]
(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

(20]

[21]

H. El-Sayed, S. Sankar, M. Prasad, D. Puthal, A. Gupta, M. Mohanty,
and C. T. Lin. Edge of things: The big picture on the integration of
edge, IoT and the cloud in a distributed computing environment. /EEE
Access, 6:1706-1717, 2018.

B. Tang, Z. Chen, G. Hefferman, S. Pei, T. Wei, H. He, and Q. Yang.
Incorporating intelligence in fog computing for big data analysis in smart
cities. IEEE Transactions on Industrial Informatics, 13(5):2140-2150,
2017.

Y. LeCun, Y. Bengio, and G. Hinton.
521(7553):436-444, 2015.

A. Lheureux, K. Grolinger, H. F. Elyamany, and M. A. M. Capretz.
Machine learning with Big Data: Challenges and approaches. IEEE
Access, 5(5):777-797, 2017.

I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio. Deep learning,
volume 1. MIT press Cambridge, 2016.

P. Baldi. Autoencoders, unsupervised learning, and deep architectures.
In Proc. of International Conference of Machine Learning, 2012.

N. Kambhatla and T. K. Leen. Dimension reduction by local principal
component analysis. Neural computation, 9(7):1493-1516, 1997.

M. T. Beck, M. Werner, S. Feld, and S. Schimper. Mobile edge
computing: A taxonomy. In Proc. of the 6th International Conference
on Advances in Future Internet, 2014.

A. Sinaeepourfard, J. Garcia, X. Masip-Bruin, and E. Marin-Tordera.
Data preservation through fog-to-cloud (f2c) data management in smart
cities. In Proc. of IEEE 2nd International Conference on Fog and Edge
Computing, 2018.

Z. Hao, E. Novak, S. Yi, and Q. Li. Challenges and software architecture
for fog computing. [EEE Internet Computing, 21(2):44-53, 2017.

Y. Jararweh, A. Doulat, O. AlQudah, E. Ahmed, M. Al-Ayyoub, and
E. Benkhelifa. The future of mobile cloud computing: integrating
cloudlets and mobile edge computing. In Proc. of 23rd International
Conference on Telecommunications, 2016.

L. Li, K. Ota, and M. Dong. Deep learning for smart industry: Efficient
manufacture inspection system with fog computing. IEEE Transactions
on Industrial Informatics, 14(10):4665-4673, 2018.

G. G. Jia, G. G. Han, A. Li, and J. Du. Ssl: Smart street lamp based
on fog computing for smarter cities. IEEE Transactions on Industrial
Informatics, 14(11):4995-5004, 2018.

J. He, J. Wei, K. Chen, Z. Tang, Y. Zhou, and Y. Zhang. Multi-tier fog
computing with large-scale IoT data analytics for smart cities. [EEE
Internet Things Journal, 5(5):677-686, 2017.

X. Wang, Z. Ning, and L. Wang. Offloading in internet of vehicles: A
fog-enabled real-time traffic management system. /EEE Transactions on
Industrial Informatics, 14(10):4568-4578, 2018.

D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. Reyes-Ortiz. A public
domain dataset for human activity recognition using smartphones. In
Proc. of European Symposium on Artificial Neural Networks, Computa-
tional Intelligence and Machine Learning, 2013.

D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. Reyes-Ortiz. Human
activity recognition on smartphones using a multiclass hardware-friendly
support vector machine. In Proc. of International Workshop on Ambient
Assisted Living, 2012.

Deep learning. Nature,

