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Abstract—In recent years, electric vehicles (EVs) have been
widely adopted because of their environmental benefits. However,
the increasing volume of EVs poses capacity issues for grid
operators as simultaneously charging many EVs may result in
grid instabilities. Scheduling EV charging for grid load balancing
has a potential to prevent load peaks caused by simultaneous EV
charging and contribute to balance of supply and demand. This
paper proposes a user-preference-based scheduling approach to
minimize costs for the user while balancing grid loads. The EV
owners benefit by charging when the electricity cost is lower,
but still within the user-defined preferred charging periods.
On the other hand, the approach reduces the pressure on the
grid by balancing the grid load. Two methods, the greedy
algorithm and nonlinear programming, are considered along
with users’ charging preferences and durations. For scheduling
small numbers of charging activities, the nonlinear programming
model achieves better load balancing than the greedy algorithm;
however, for scheduling medium to large numbers of charging
activities, the greedy algorithm has a clear advantage in terms
of time complexity.

Index Terms—Electric Vehicle, EV Charging, Optimization,
Load Balancing.

I. INTRODUCTION

Electric vehicles (EVs) have become increasingly important
to society because of their environmentally friendly nature and
because electricity is often more economical than gasoline. In
2011, more than sixteen thousand electric and plug-in hybrid
vehicles were sold in the United States. By December 2020,
that number had tripled to nearly 1.7 million [1]. By mid-2021,
total sales of plug-in electric vehicles had exceeded 2 million.
In 2020, there were over 200 million cars registered in the
U.S. The U.S. grid has 1117.5 TW of utility power capacity
[2]. If all these electric cars were charged at 7kw, they would
require 2,000 TW or almost twice the grid’s capacity.

As the number of EVs grows, the total grid electricity
demand will substantially increase, and there is a possibility
of grid overload becoming a common problem with critical
consequences. Charging many EVs at the same time will result
in high energy demand peaks, and if the peak is overly high,
this may result in grid stability issues such as outages and even
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blackouts. Therefore, scheduling EV charging is the focal issue
of this paper.

Load balancing aims to achieve a balance between demand
and supply. With respect to EV charging, there are three main
approaches to load balancing. The first approach is dynamic
pricing, which impacts the number of EVs charging at certain
hours by regulating the price so that EVs charging at peak
times will be more costly. Therefore, fewer owners would be
interested in charging their EVs during these peak hours. The
second approach is vehicle-to-grid (V2G); in this model, EVs
can sell energy back to the grid in peak hours to remedy the
grid overload problem. The third approach is scheduling EV
charging; the grid load would be balanced by arranging charge
periods ahead of time.

Scheduling EV is a promising approach for grid balancing
and it appears to be a more stable method than the other
two [19]. Many studies [9] [11] [13] have provided ways
to perform scheduling and good results have been achieved.
However, these studies mainly take a single perspective, either
that of the EV users or the grid owner/operator, and aim to
minimize charging costs or reduce load peaks. The principal
scheduling approaches are the deep learning model, multi-
linear programming, and the greedy algorithm.

Nevertheless, a different scheduling approach is needed to
benefit both perspectives, i.e., minimizing cost for the end
electricity consumer and grid load balancing for the grid
operator. This approach would give EV users a lower charging
price within the user’s preferred charging period and put less
pressure on the grid by balancing the grid load. Consequently,
this paper presents an approach that uses a greedy algorithm
and nonlinear programming (NLP) for scheduling EV charging
so that each user’s preferences and lowest charging cost
are satisfied with the grid load more evenly distributed. In
this way, the proposed approach satisfies both perspectives:
charging cost minimization for the end consumer and grid
load balancing for the grid operator.

This paper is organized as follows: Section II describes
related work for balancing grid load. Section III presents the
simulator representing the real-life EV charging demands and
the methods that balance the grid load. Section IV presents
the evaluation with corresponding results. Finally, Section V
concludes the paper.
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II. RELATED WORK

The three standard techniques for grid load balancing
with EVs are dynamic pricing, vehicle-to-grid (V2G), and
scheduling [16]—this section first reviews related work in
dynamic pricing and V2G. Then, the scheduling approaches
are discussed.

A. Dynamic Pricing and V2G

Literature has studied various aspects of grid load balancing
for EV charging: the focus here is on dynamic pricing and
V2G.

The studies discussed here addressed the problems of defin-
ing methodologies for dynamic pricing. Grid load prediction-
based dynamic pricing models have been proposed [3] [4].
They use the energy consumption, time duration, start time,
and end time of each EV to predict energy consumption
patterns throughout the day and change the price accordingly
based on an equation. The drawback is that EV owners have
individual price preferences, and their behaviors are unpre-
dictable and unknown to the grid owner. Two-stage models
have also been explored [5]: the first stage minimizes the total
cost of satisfying demands while the second stage considers
dynamic prices for the current hour and the day ahead as
estimates for future hours.

The following group of studies investigated the challenges
of V2G technologies. Several studies [6]–[8] designed frame-
works that effectively integrate aggregated EV batteries into
the grid as distributed energy resources so that EVs can
act as controllable loads and energy suppliers. Then, these
controllable system can respond to demand during peak hours,
thereby mitigating peak conditions in the grid. Also, in V2G,
an EV can act like an electricity buyer or a seller and buy/sell
electricity from/to the grid operator. A software-defined net-
working paradigm is included in the V2G model [8] to enable
faster communication between vehicles and the grid.

Discussed studies [3]–[8] dealt with dynamic pricing and
V2G models, whereas this work uses scheduling to do load
balancing.

B. Scheduling EV Charging

There have been major advances in the area of EV schedul-
ing in two directions: the first one include scheduling EV
charging and the second one is planning EV routing and
charging.

For the first direction, scheduling EV charging, several
studies proposed different methodologies [9] [11] [13]. These
works mainly discuss optimization problems concerning EV
charging and scheduling. All EVs get their exact charging
slots early in the day by allocating EV charging tasks with a
schedule, and this advanced planning makes possible a well-
balanced distribution of charging loads.

Similarities can be found in the work of Mallette et al. [9];
for those who intend to purchase an electric vehicle, the two
incentive strategies should be considered to make them accept
the scheduling method. EV sellers would either consider an
upfront rebate for any individual who purchases an EV or

a reduction in electricity prices per kWh when charging the
EV. In their methodology [9], the authors provided incentives
directly to the users and made them accept manually scheduled
plans.

Several deep learning models [11] [13] have been proposed
to address the optimization problem. EV charging/discharging
scheduling problems have been formulated as a Constrained
Markov Decision Process (CMDP) so that a scheduling strat-
egy that minimizes charging cost and guarantees that the EVs
can be fully charged can be achieved. To solve the CMDP
problem, these researchers proposed a model-free approach
based on safe deep reinforcement learning (SDRL). The
SDRL approach generates the optimal charging/discharging
scheduling through a deep neural network. Unlike existing
reinforcement learning, it does not require manual design and
adjustment of the penalty coefficients.

Wang et al. [12] proposed a new charging methodology
based on joint admission and pricing (JoAP), scheduling, and
admission control. This work minimizes the average waiting
time for all EVs by scheduling, leading to lower costs and
higher profit. They specifically used a tandem queueing net-
work (TQN) model and characterized the best JoAP algorithm
based on TQN.

For the second major direction, scheduling EVs for routing
and charging, several studies proposed optimization methods.
Organizing EVs to drive to the most convenient charging
station results in less extra driving and lower costs.

Rigas et al. [14] proposed a solution for an EV hiring
problem; their work dealt with EVs hired to drive from pickup
points to drop-off points, using a mobility-on-demand frame-
work to optimize the number of customers served or the total
EV utilization. They used multi-linear programming (MLP)
and greedy heuristic algorithms to solve the optimization
problem. MLP was used for medium to significant demand
problems, and the greedy heuristic algorithm was used for
substantial-size problems.

Similarities can also be found in the public transporta-
tion scheduling. Sassi et al. [15] worked on scheduling and
charging problems for electric vehicle transportation. In their
paper, they proved that this problem is NP-hard. A mixed-
integer linear program was formulated to solve small and
medium instances. For large instances, sequential heuristics
and a global heuristics methodology were proposed.

In two discussed papers [14] [15], the routing and charging
problems were defined as NP-hard, and the authors split
the cases according to their size. MLP was used for minor
cases, and the greedy heuristics algorithm was used for more
significant-sized cases. These papers laid the groundwork to
support the greedy algorithm and multi-linear programming
models to solve EV scheduling problems.

For the two directions mentioned above, many studies [9]
[11] [13] have dealt with load balancing from the aspect of
scheduling, mainly from the producer’s point of view, by
scheduling charging to make the final cost of electricity lower.
They primarily used deep learning models [11] [13], linear
programming models [14] [15], or greedy algorithms [14] [15]



to solve the problem. These methods play an essential role in
reducing the cost of charging for the user.

In contrast, we mainly used the greedy algorithm and the
NLP model in this study to achieve grid load balancing.
A specific penalty factor sensitive to the peak values was
introduced to measure how much the grid load is balanced
and to achieve the good grid balancing result by achieving the
lowest value of the penalty factor. Moreover, we also consider
the user’s preference by considering the period when the user
commonly charges; by arranging the charging activity within
the preferred charging period.

III. METHODOLOGY

This section describes the methods to obtain an EV charging
schedule. Two main methods are examined; the first one is
based on the greedy algorithm, whereas the second takes
advantage of nonlinear programming.

The greedy algorithm makes the best choice available at the
current moment [17]. It does not consider if the decision in the
current moment will lead to the overall global optimum and it
does not revisit previous decisions; it only considers the local
best choice. In some cases, even if the greedy algorithm does
not obtain the overall optimal solution, the final result is a good
approximation of the optimal solution. The time complexity
of the greedy algorithm is low, requiring only O(N) for the
problem of EV charging schedules where the N refers to the
number of charging activities.

Nonlinear programming is another effective method for
determining the best solution [18]. When the optimization
objective or constraint cannot be described as a linear function
without giving up some fundamental nonlinear characteristics
of the real-world system, nonlinear programming arises as
a possible solution. The nonlinear programming algorithm
typically creates a series of estimates for the decision variable
vector x to determine the best value of x. In the case of EV
charging optimization, the algorithm assigns a predetermined
period to each user based on the user’s available charging
period and the required charging duration; as a result, this
model produces a better grid load balancing outcome.

Both described approaches, greedy algorithm and nonlinear
programming, were used with the dataset that simulates real-
life charging demand behavior. A flowchart of the methodol-
ogy is shown in Fig. 1, while the details are described in the
following subsections.

A. Simulation

The state of the EV grid load per hour was determined
based on the dataset collected from real-life charging activities.
Two datasets were generated based on the collected charging
activities. Dataset 1 simulated a scenario in which an electric
vehicle always has the same charging duration of 1 hour while
Dataset 2 simulated a scenario with varied charging durations
within 24 hour period. Two terms are introduced here: the
timeslot refers to the duration of each charging activity and
the preferred− time− range refers to the user’s preferred
charging period. Dataset 1 contains three features: EV/ID

as an EV identifier, period start and end. In addition to
those three features, Dataset 2 contains an additional feature,
charging duration.

1) Dataset 1 Generation: Dataset 1 assumptions are:
• Customers can only have one preferred−time−range

throughout the day.
• Each timeslot can only be one hour.
Data collected in real life were the bases for the dataset

generation. Usually, the load distribution varies throughout the
day; the average hourly grid load distribution for collected EV
charging activities occurring on Mondays is shown in Fig. 2.

After the distribution is obtained for each day in the week,
it is transformed into the percentage of EVs charged each
hour throughout the day, as shown in Table I. Based on
these percentages, a large number of charging activities were
simulated.

To better simulate the user’s preferred charging period, the
24-hour period was divided into seven ranges, which were
taken as the seven options for the preferred− time− range
as shown in Table II. The seven ranges represent each user’s
work, school, and home schedules. As the actual schedule is
not known, the preference is created based on historical data.
For example 15% of users charged between 0 AM and 6 AM,
therefore, as seen from Table II, in simulations, 15% of users
are assumed to prefer this time period.

Based on the percentages of the preferred−time−range
in Table II, preferred charging start and end times were
simulated. For instance, 15% of EVs had the preferred −
time − range from 0 AM to 6 AM; therefore, if 1000
charging activities are simulated, 150 charging activities will
be assigned to the preferred− time−range of ”0-6”. These
simulated preferred − time − range values then served as
start and end features for each vehicle in Dataset 1.

2) Dataset 2 Generation: Dataset 2 assumptions are:
• Customers can only select one preferred−time−range

throughout the day.
• The timeslot identifies the duration of charging in mul-

tiples of 15 minutes, with the shortest timeslot being 15
minutes and the longest timeslot being 12 hours.

For the Dataset 2 generation, the EV/ID, start, and end
features were the same as for Dataset 1 and the duration
feature was added. Again, the collected real-world data was
used to determine the data generation. In the collected data,
each row represented an independent charging activity. The

TABLE I
PERCENTAGE OF EVS CHARGED EACH HOUR

Percentage Start End
5.2% 0 1

4.6% 1 2

3.7% 2 3

... ... ...

8% 21 24



Fig. 1. Methodology flow chart

Fig. 2. Average load distribution for Monday

TABLE II
PERCENTAGE OF preferred− time− range

Percentage Start End
15% 0 6

9.5% 7 9

10% 9 12

6% 12 17

5.2% 17 19

10% 19 21

10% 21 24

consecutive charging activities of each EV were combined.
For example, suppose an EV performs continuous charging in
adjacent periods. First, the consecutive charging records for
that vehicle were combined into one record with the start
as the earliest charging start point, end as the latest charging
point, and duration as the sum of the combined durations.
This way, the distribution of charging throughout the day
matching the collected data was maintained. Once the number
of charging activities with their exact durations was known,
the proportion of EVs charging for each possible charging
duration (15 min to 24 hours, in increments of 15 min) was

calculated.

EVs charging events of 15 minutes represented 25.5% of
total cases, whereas EVs charging events of less than or equal
to 12 hours represented 97% of total cases. Therefore, only
cases with less than or equal to 12 hours of charging time were
considered in the simulations. Because all times within 12
hours were included, each hour contained four cases of 15, 30,
45, and 60 minutes; therefore, there were 48 cases, indicating
all the time lengths available. Finally, the percentages of events
were found for the corresponding 48 duration cases.

Table III shows a segment of the obtained cumulative
charging distribution. This list, in the pseudo-code referred
to as CP , is then used for the generation of charging duration
as described in Algorithm 1. The process first generates
a random number between 0 and 1. Then, the algorithm
iterates (Line 3) over the list of charging durations from Table
III. When the generated random number is greater than the
cumulative percentage CP for the considered timeslot (Line
4), the current timeslot is returned. The process indicated by
Algorithm 1 is repeated for each of the generated charging
activities. This way, the distribution of charging durations in
the generated data remains the same as the distribution in the
collected real-world data. Finally, the generated data in Dataset
2 contain EV/ID, start and end of the preferred charging
time, and duration feature specifying the needed charging
duration.

TABLE III
PERCENTAGE FOR CHARGING DURATION

Time Range Cumulative Percentage (CP)
15 minutes 0.255

30 minutes 0.45

45 minutes 0.52

1 hour 0.59

1 hour 15 minutes 0.611

... ...

12 hours 1



Algorithm 1 Timeslot Generation Process
1: procedure GETTIMESLOT
2: m ← rand[0 − 1] //m is the random variable that

ranges from 0 to 1.
3: for i← 1, n do //Iterate through durations in Table III
4: if m ≥ CP [i] then

//If m is greater than the cumulative percentage
//at index i, return that index.
return i

5: end if
6: end for
7: end procedure

B. Cost Minimization Process

The scheduling algorithm must take into consideration local
energy prices; for example, with the time-of-use pricing, the
cost of energy changes for different times of the day, and the
algorithm must select charging time slots that will result in
the lowest cost for the EV owner. The greedy approach is
used for each charging activity to find the time slots with the
lowest cost based on the price plan, which in our experiments
is the Ontario Energy Board time-of-use pricing at the time
when experiments were conducted. Next, two approaches for
scheduling were engaged: with fixed and with varied durations.

C. Scheduling with Fixed Duration

Scheduling with fixed duration uses Dataset 1 to generate
the charging schedule. Two models are considered, the greedy
algorithm and the nonlinear programming.

For the greedy algorithm model, the EVs are first sorted in
ascending order according to the length of the preferred −
time − range and then assigned to the time slot with the
lowest total load within the preferred charging time. In each
iteration, for each EV from the sorted list, the greedy algorithm
chooses the hour that has the minimum currently assigned
load. As charging activities are sorted from shortest to longest
preferred − time − range, EVs with less flexibility in
charging times are assigned first, followed by those with more
time flexibility.

Using a nonlinear programming approach to solve this
problem, an objective function and appropriate constraints
must be defined. The objective function establishes a penalty
term for each hourly load. Then, the hourly penalty terms are
summed up and the objective is to minimize this sum. Consider
a binary variable Gij representing whether EV i is charged at
timeslot j. With respect to the grid, the objective is to have
small variations of the concurrently charging EVs. Therefore,
two penalty terms, square and cubic penalty, are considered
for the scheduling. The objective functions can be written as
follows:

minimize
n∑

j=0

(

m∑
i=1

Gij)
2 or minimize

n∑
j=0

(

m∑
i=1

Gij)
3 (1)

where n is the number of time slots and m is the number of
records in the generated dataset.

Finally, the start times resulting in a minimum penalty sum
under constraints are chosen for each charging activity. In the
case of fixed charging time, the assumption is that all EV
charging activities have timeslots of one hour. With Eistart as
the start time and Eiend as the end time of the preferred−
time− range for the EV i, this constraint can be written as:

for every i:
Eiend∑

j=Eistart

Gij = 1 (2)

In our implementation, the optimization problem defined with
objective function from Equation 1 under constraints defined
with Equation 2 was solved using nonlinear programming,
specifically the Python Pyomo library.

D. Scheduling with Varied Durations

Scheduling with varied durations uses Dataset 2. Again, two
models are considered, the greedy algorithm and the nonlinear
programming.

For the greedy algorithm model, the EVs are sorted by
duration and length of preferred−time−range in ascending
order. Before scheduling, the greedy algorithm needs a list of
24 to record the current hourly grid load. The objective is to
find the timeslot that will cause the minimum value of the
penalty term expressed as follows:

minimize
23∑
j=0

H2
j (3)

where Hj is the current grid load for hour j. Iterating over the
sorted list of vehicles, the start time that gives the minimum
penalty is selected. As only local decisions are considered, this
can lead to a sub-optimal solution.

When non-linear programming method is used to solve
this problem, the objective functions remain the same as for
scheduling with fixed duration as defined in Equation 1.

The start time for each charging activity is selected to
achieve the minimum penalty sum. For scheduling with varied
durations, Eistart is the start time and Eiend is the end
time of the preferred − time − range, and Eiduration is
the duration of the timeslot for the EV i. For each EV,
only a timeslot from the preferred− time− range can be
selected, with the timeslot being represented by Eiduration.
For example, if the timeslot is 45 minutes, then Eiduration
is three units. Because the minimum charging length is 15
minutes, three units of Eiduration represent 45 minutes. The
constraint that ensures that the three units are selected can be
written as follows:

for every i:
Eiend∑

j=Eistart

Gij = Eiduration (4)



As in scheduling with fiexed duration, the optimization
problem is solved with nonlinear programming, specifically
the Python Pyomo library.

IV. EVALUATION

This section first introduces the dataset and provides im-
plementation specifics for cost minimization and simulation
process. Next, evaluation metrics are introduced and schedul-
ing results presented.

A. Dataset

Real-world EV charging data was used for the evaluation
of the presented scheduling approaches. Data collected by the
London Hydro research group tracked the EV charging be-
havior from 2020/01/29 to 2021/02/23. The data set contained
400,192 rows and four columns representing features: the EV
ID represents the distinct EV identity, the start represents
the start time of the charging activity, the end represents the
end time of the charging activity, and the consumption feature
represents energy consumption during the charging activity.
There is one entry for each 15 min interval; therefore, when
the charging time is several hours, it is recorded as several
consecutive rows.

B. Cost minimization Process

As the evaluation is conducted using data from London,
Ontario, Canada, the time-of-use pricing from the Ontario
Energy Board shown in Table IV is considered. According
to this pricing scheme, three phases are considered: off-peak,
mid-peak, and on-peak.

Both datasets, Dataset 1 and Dataset 2, go through the
greedy algorithm that finds the lowest cost intersection be-
tween the preferred charging activity and the Ontario Energy
Board prices. Specifically, each charging activity is processed
by the charging algorithm following the order: off-peak, med-
peak, and on-peak. After this, the charging time will be
narrowed down to the minimum-cost time slots.

C. Simulation Process

As very limited data were available, the 1000 charging
activities were simulated for Dataset 1 and Dataset 2 as
described in Subsection III-A. Each of the simulated activities
contained the charging start time, the charging end time, and in
Dataset 2, the time needed for charging. For both datasets, the
collected data from actual EV owners were used to simulate
the charging behavior of additional EV owners as realistically

TABLE IV
ONTARIO ENERGY BOARD TIME-OF-USE PRICES AT THE TIME

EXPERIMENTS WERE CONDUCTED

Time Range Price
Off-peak 0am-7am 7pm-12am 8.2 cent/kWh

Mid-peak 11 am-5pm 11.3 cent/kWh

On-peak 7am-11am 5pm-7pm 17 cent/kWh

as possible by following the same daily distributions and
charging duration distributions.

D. Evaluation Metrics

To evaluate the results produced by these methods, two
evaluation metrics were used:

E1 =

n∑
i=0

H2
i (5)

E2 =

n∑
i=0

H3
i (6)

The interpretation of both E1 and E2 is similar: the larger
their value, the more imbalanced the grid load, and the smaller
their values, the more balanced the grid load. The difference
between these metrics is that E1 is more accommodating to
peaks, whereas E2 penalizes the peaks more.

E. Scheduling Results

As the goal is to carry out the load balancing while consider-
ing charging preferences and providing minimum cost for EV
owners, this section compares the two presented approaches,
greedy algorithm and nonlinear programming, in terms of grid
balancing with the two described datasets.

1) Scheduling with Fixed Durations: Example results of the
scheduling with fixed duration for the greedy algorithm are
shown in Fig. 3. Comparing this figure with Fig. 1 showing
the load distribution before scheduling, it can be observed
that before the scheduling, there was a large peak around 8
pm (Fig. 1) while after scheduling, a much more balanced
load is achieved (Fig. 3) as the consecutive hourly grid loads
are very similar. From the perspective of the two models, the
performance of both algorithms is fairly similar.

Table V compares the greedy algorithm and nonlinear
programming in terms of the two described metrics, E1 and

Fig. 3. An example of scheduling with fixed durations: grid load distribution

TABLE V
RESULTS FOR SCHEDULING WITH FIXED DURATIONS

Greedy Algorithm NLP
E1 47,786 47,660

E2 2,570,578 2,553,834



E2. In terms of both metrics, the nonlinear programming
approach achieved better balance. Furthermore, when comput-
ing the nonlinear programming algorithm, the cubic objective
function achieved slightly lower E1 and E2 than the square
optimization function while also converging faster.

2) Scheduling with Varied Durations: The charging activi-
ties were scheduled to entail the lowest charging cost and to
balance the grid load while considering EV owner preferences.
The example results of greedy algorithm scheduling with
varied durations are shown in Fig. 4. It can be observed that
they follow a fairly similar pattern to that achieved with fixed
durations shown in Fig. 3.

The greedy algorithm completed the computational proce-
dure and produced good results in a relatively short time.
For nonlinear programming, the time complexity of planning
charging activities of different durations is very large; no
polynomial time solution exists. After reducing the number
of charging activities and allowing extensive time for the
nonlinear programming model to perform the computations,
results were still not obtained. This means that the time
complexity of the problem is too expensive to apply this
kind of computation. Nonlinear programming is, therefore, not
practical for scheduling charging activities of varied durations.

V. CONCLUSION

This paper schedules EV charging with the objective of load
balance for the grid operator and minimum cost for the EV
owner while considering EV owner charging preferences. Two
different techniques were used, the greedy algorithm and the
nonlinear programming model, and two scenarios, fixed and
varied durations, were considered. The scenario with varied
durations is more realistic, but fixed durations are included
for comparison. The greedy algorithm achieved a good result
while also having quite low time complexity. On the other
hand, the nonlinear programming algorithm obtained the best
result, but its time complexity is high. Therefore, in the future,
when dealing with scheduling problems, the model selection
will depend on the total number of charging activities. The
nonlinear programming model could be used for a small
number of charging activities to obtain the best result. The
greedy algorithm model could be used for medium to large
numbers of charging activities. With the greedy algorithm

Fig. 4. Example of scheduling with varied durations for the greedy algorithm:
grid load distribution

model, a good result can be generated within a small amount
of time.

Future research will examine the behavior of the models on
a large dataset and in presence of diverse loads. Moreover,
incorporating incentives for for load shifting will also be
considered.
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