
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2019.DOI

Deep Learning for Load Forecasting:
Sequence to Sequence Recurrent Neural
Networks with Attention
LJUBISA SEHOVAC (Student Member, IEEE) AND KATARINA GROLINGER (Member, IEEE)
1Department of Electrical and Computer Engineering, Western University, London, ON N6A 3K7, Canada (e-mail: {lsehovac, kgroling}@uwo.ca)

Corresponding author: Katarina Grolinger (e-mail: kgroling@uwo.ca).

ABSTRACT The biggest contributor to global warming is energy production and use. Moreover, a push for
electrical vehicle and other economic developments are expected to further increase energy use. To combat
these challenges, electrical load forecasting is essential as it supports energy production planning and
scheduling, assists with budgeting, and helps identify saving opportunities. Machine learning approaches
commonly used for energy forecasting such as feedforward neural networks and support vector regression
encounter challenges with capturing time dependencies. Consequently, this paper proposes Sequence to
Sequence Recurrent Neural Network (S2S RNN) with Attention for electrical load forecasting. The S2S
architecture from language translation is adapted for load forecasting and a corresponding sample generation
approach is designed. RNN enables capturing time dependencies present in the load data and S2S model
further improves time modeling by combining two RNNs: encoder and decoder. The attention mechanism
alleviates the burden of connecting encoder and decoder. The experiments evaluated attention mechanisms
with different RNN cells (vanilla, LSTM, and GRU) and with varied time horizons. Results show that S2S
with Bahdanau attention outperforms other models. Accuracy decreases as forecasting horizon increases;
however, longer input sequences do not always increase accuracy.

INDEX TERMS Attention Mechanism, Gated Recurrent Units, GRU, Load Forecasting, Long Short-Term
memory, LSTM, Recurrent Neural Networks, Sequence-to-Sequence Networks

I. INTRODUCTION

ENERGY production and use is the single biggest con-
tributor to global warming, accounting for roughly two-

thirds of human-induced greenhouse gas emissions [1]. In-
ternational Energy Agency estimates that a push for electric
mobility, electric heating, and electricity access could lead to
a 90% rise in power demand by 2040 [2]. Furthermore, EIA
(U.S. Energy Information Administration) estimates that the
industrial and commercial sectors consume 50% of the total
energy production [3]. Hence, efficient energy management
in buildings will prove crucial to combat negative envi-
ronmental hazards, such as degradation and carbon dioxide
emission [4].

In addition to environmental impact, energy efficiency
measures in buildings provide economic benefits in terms of
reduced overall operating costs. Large electricity consumers
commonly pay premium prices for demand peaks. For exam-
ple, Independent Electricity System Operator (IESO) charges
their large consumers fees based on the consumers’ contribu-

tion to the top five province-wide peaks and another category
of consumers is charged premiums based on their monthly
peak [5].

Load forecasting has been attracting research and industry
attention because of its importance for energy production
planning and scheduling. The rapid increase of smart meter
use has created opportunities for load forecasting on indi-
vidual building and household level, thus facilitating budget
planning, identifying savings opportunities, and reducing
energy footprint.

Energy consumption data from smart meters is used, often
together with meteorological data, to build models capable
of inferring future energy consumption. One way of building
these systems is by training Machine Learning (ML) models
using historical data and then using these trained models
to predicting future loads. If the model produces a pre-
dicted load pattern similar to the actual, the interested parties
can make cost-effective decisions based on these predicted
values. Examples of ML models for load forecasting in-

VOLUME x, 2019 1

clude Neural Networks (NN) [6], Support Vector Regression
(SVR) [7], and deep learning [8].

Feedforward neural networks (FFNN) [9] and Deep Neural
Network (DNN) [8] have achieved favorable results [8], [9];
however, FFNN and many Deep Learning (DL) architectures
are not designed to capture time dependencies since they
only take the current input to calculate predictions. Recur-
rent Neural Networks (RNNs) are capable of capturing time
dependencies as their nodes establish a directed graph along
a sequence [10]. This allows RNNs to consider the current
input along with the previously received inputs and makes
them suitable for time-series data.

While RNNs have an advantage over DNNs in analyzing
the temporal dynamic behaviour [11], in language translation
a Sequence-to-Sequence (S2S) RNN which combines an
encoder RNN and decoder RNN has shown a greater success
[12]. The encoder RNN is tasked with encoding information
into a fixed-length vector, which the decoder RNN uses
to sequentially produce translation outputs [12]. However,
in these models the encoder is burdened with compress-
ing all necessary information into this fixed-length vector.
In language translation, this was addressed using attention
mechanisms [13], [14] which allow the decoder to look back
at the encoder outputs to find the most relevant information.

This paper proposes S2S RNN with Attention for load
forecasting and evaluates prediction accuracy of different
attention mechanisms with varied forecasting horizons. S2S
RNN from neural machine translation which is a classifi-
cation task, is adopted for the regression task of load fore-
casting. To accommodate S2S RNN, a sample generation
approach based on the sliding window is applied. Attention
mechanism is added to ease the connection between encoder
and decoder. Bahdanau [13] and three variants of Luong [14]
attention are considered as well as three RNN cells: vanilla
RNN, Gated Recurrent Units (GRU), and Long-Short-Term
Memory (LSTM). The results show that S2S with Bahdanau
attention outperform DNNs, S2S RNNs, and S2S with other
attention mechanisms. As expected, the accuracy decreases
as the forecasting horizon expands; however, the increased
input sequence length does not always lead to improved
accuracy.

The rest of the paper is organized as follows: Section II dis-
cusses the background, Section III presents the related work,
Section IV describes the methodology, Section V explains the
experiments and corresponding results, and finally Section
VI concludes the paper.

II. BACKGROUND
This section introduces RNNs, S2S RNNs, and attention
mechanisms.

A. RECURRENT NEURAL NETWORKS
Recurrent Neural Networks have an architecture similar to
FFNN, but with the addition of recurrent connections to the
same neurons in the previous time step. The output at each
time step is based on both the current input and the input

at the previous time steps, making RNNs good at modeling
temporal behaviours found in time series data.

As illustrated in Fig. 1, RNNs take a sequence of inputs
x[1], ..., x[T], and previous hidden states, to compute a se-
quence of outputs y[1], ..., y[T]. Output y[t] at time step t is:

y[t] = f◦(x[t], h[t−1]) (1a)

where h[t−1] denotes the previous hidden state and f◦ is a
non-linear function, potentially combined of either a Vanilla
RNN, LSTM, or GRU cell, and some multi-layered network.

Traditional or Vanilla RNNs are mainly trained using back-
propagation through time (BPTT) [15]; however, this method
can lead to the vanishing gradient problem for longer se-
quences [16]. Long-Short-Term Memory (LSTM) networks
[17] were designed to overcome this problem; therefore, they
are capable of storing information for longer periods of time
and the model can make better predictions.

LSTMs are comprised of cells which contain gates respon-
sible for learning which data in a given sequence should
be kept and which data can be forgotten. The LSTM cell
contains three gates (input i, forget f and output o), an update
step g, a cell memory state c, and a hidden state h. LSTM cell
computation at time t, for input x, is given as [17]:

i[t] = σ(Wxix[t] + bxi +Whih[t−1] + bhi) (2a)
f[t] = σ(Wxfx[t] + bxf +Whfh[t−1] + bhf) (2b)
g[t] = tanh(Wxgx[t] + bxg +Whgh[t−1] + bhg) (2c)
o[t] = (Wxox[t] + bxo +Whoh[t−1] + bho) (2d)
c[t] = ft � c[t−1] + it � gt (2e)
h[t] = ot � tanh(c[t−1]) (2f)

Here, σ is the sigmoid activation function, tanh represents
the hyperbolic tanh activation function, and the � stands for
element-wise multiplication. The Wx’s are the input-hidden
weight matrices, and Wh’s are the hidden-hidden weight
matrices parameters learned during training. Similarly, the
bx’s and bh’s are the biases learned during training.

To simplify the LSTM model, the Gated Recurrent Unit
(GRU) was recently introduced [18]. GRU merges the mem-
ory state and hidden state into a single hidden state and
combines the input and forget gates into an update gate. As
GRUs have fewer parameters, convergence is achieved faster

...

x[2] x[T]x[1] x[T−1]

h[1] h[T−1]

y[1] y[2] y[T−1] y[T]

FIGURE 1. Recurrent neural network.

2 VOLUME x, 2019

than with LSTMs; nevertheless, GRUs contain sufficient
gates and states for long-term memory retention.

B. SEQUENCE TO SEQUENCE RNNS
Sequence to Sequence (S2S or Seq2Seq) RNNs [12] consist
of an encoder and decoder RNN as illustrated in Fig. 2. A
sequence x[1], ..., x[T] is passed into the encoder RNN, one
time step at a time, to obtain a context vector ~c. A common
approach is to use an RNN such that:

h[j] = f∗(x[j], h[j−1]) (3)

~c = q({h[1], ..., h[T]}) (4)

where h[j] is the hidden state at time j, f∗ is some non-
linear functions, and q = h[T] is usually the last hidden state
produced by the encoder RNN [12].

The context vector is an encoded representation of the
input sequence that is passed to the decoder RNN which
extracts information at each unraveled time step to obtain the
output sequence ẏ[1], ..., ẏ[N]. The S2S output is obtained as:

ẏ[i] = g∗(ẏ[i−1], h
∗
[i−1]) (5)

where h∗[i] is the decoder hidden state at time i, and g∗ is
some non-linear function. Note that ẏ[0] is the context value
(derived from ~c) used as the initial input for the decoder.

The use of two RNNs strengthens consecutive sequence
prediction, while also allowing the time dimensionality of
inputs and outputs to vary [12]. Although load forecasting
does not require varying lengths, it can benefit from strong
consecutive sequence prediction.

C. ATTENTION MECHANISM
In S2S models, the encoder is responsible for compressing
all significant information of an input sequence into a single
context vector~c. For longer input sequences, the decoder may
have difficulties extracting valuable information from this
single vector; thus, attention mechanism was added. Bah-
danau et al. [13] and Luong et al. [14] both added attention-
based architectures to S2S models for neural machine trans-
lation. Language translation is very different task than load
forecasting; nevertheless, load forecasting could benefit from
the attention mechanisms. Our work adopts Bahdanau and
Luong attentions for load forecasting.

ẏ[0]

ẏ[1]

ẏ[N−1]

ẏ[N]

ẏ[1]

...

x[2] x[T]x[1]

h[1]

ẏ[2]

...
h∗

[1]c
→

FIGURE 2. S2S RNN.

The Bahdanau [13] attention (BA) mechanism was the first
form of attention for S2S models. With BA, encoder hidden
states hb[i] and outputs ẏ[i] at time step i are calculated as:

hb[i] = f b([ẏ[i−1]; c
b
[i]], h

b
[i−1]) (6)

ẏ[i] = gb(ẏ[i−1], c
b
[i], h

b
[i]) (7)

where superscript b indicates BA variables, [·] represents
concatenation, f b denotes a Vanilla RNN, LSTM, or GRU
cell, and gb some non-linear function. The vector cb[i] is
computed as a weighted sum of the encoder hidden states:

cb[i] =

T∑
j=1

αb
[ij]h[j] (8)

where the attention weight αb
[ij] between the output at time i

and input at time j is computed as:

αb
[ij] =

exp(eb[ij])∑T
m=1 exp(eb[im])

(9)

The attention energies eb[ij] are:

eb[ij] = S(hb[i−1], h[j]) (10)

Here, S is is an alignment model which scores how well the
inputs around time j and the output at time i match.

The attention weight αb
[ij], and its associated energy e[ij],

reflect the importance of each encoder state h[j] in generating
the next hidden state hb[i] and prediction value ẏ[i]. This
allows the decoder to pay attention to specific parts of the
input sequence.

Luong et al. [14] developed global and local attention-
based models for machine translation, differing whether the
attention is concentrated on a few input positions or on all.
In remainder of our paper, Luong attention (LA) will refer to
the global model. The main difference between BA and LA is
that BA applies the attention mechanism before the variables
are passed through the respective RNN cell, while LA applies
the mechanism to the outputs of that respective cell. Luong
et al. [14] presented attention variants differing in the score
functions:

S(hl[i], h[j]) =

hl[i]

ᵀ
h[j] dot

hl[i]
ᵀ
W (h[j]) general

vᵀ tanh(W (cat(hl[i], h[j]))) concat
(11)

where v is a parameter learned with the rest of the system.
Ultimately, both LA and BA serve the same purpose: to
relieve the encoder of having to compress all information
from the input sequence into a single fixed-length vector.

III. RELATED WORK
This section discusses related load forecasting works as well
as the S2S models in other domains.

VOLUME x, 2019 3

A. LOAD FORECASTING
Load forecasting can be classified into three main categories:
short, medium, and long-term [19] [20]; however, there is
no clear distinction between those categories. In our work,
short-term is considered the next hour, medium-term refers
to next few hours to a day ahead, and long-term implies a
day or more ahead.

There are many approaches to load forecasting (physics,
statistics, and machine learning-based), but this section fo-
cuses on machine learning-based models as our work be-
longs to this category. Support Vector Regression (SVR) and
NN have been very popular: several studies considered NN
and SVM models for estimating energy loads [9], [21] and
some compared their performance [9]. The accuracy and
conclusions varied depending on data sets, features, system
architectures, and similar. NNs applications for energy fore-
casting are not new [22]–[24], but as the field of neural
networks and deep learning has been evolving fast, so is
NN-based forecasting. Jetcheva et al. [25] proposed a NN
model for day-ahead building-level load forecasting with an
ensemble-based approach for parameter selection whereas
Chae et al. [26] and Yuan et al. [27] considered a NN model
with Bayesian regularization algorithm. Araya et al. [28]
proposed an ensemble framework for anomaly detection in
building energy consumption; they included prediction-based
classifiers (SVR and random forest) as their base forecasting
models. Convolutional Neural Networks (CNN) have also
been used for load forecasting [29]; they outperform SVM
models while achieving comparable results to NN and other
deep learning methods [30]. Approaches based on AutoRe-
gressive Integrated Moving Average (ARIMA) have also
been proposed [31].

Recently, RNNs have been gaining popularity for load
forecasting because of their ability to capture time dependen-
cies in data. Kong et al. [32] proposed an LSTM based RNN
model for short-term residential load forecasting. Likewise,
Shi et al. [33] also focused on short-term forecasting; they
proposed a novel pooling based deep recurrent neural net-
work (PDRNN) for residential consumers. Short to medium
term aggregate load forecasting was considered by Bouktif
et al. [34]; they coupled a standard LSTM model with a
genetic algorithm (GA). In a different work, same authors
Bouktif et al. [35] proposed an RNN with multiple sequences
of inputs to capture the most relevant time lags. Yu et al. [36]
combined GRU with dynamic time warping (DTW) for daily
peak load forecasting. A time-dependency convolutional neu-
ral network (TD-CNN) and a cycle-based long short-term
memory (C-LSTM) network have also been used to improve
accuracy of short-term load forecasting [37].

As can be seen from recent works on load forecasting
[32], [33], [36], RNNs have been outperforming other ap-
proaches. Our work differs by focusing on S2S RNN which
have shown great success in modeling time-dependencies
in language translation. Marino et al. [19] used standard
LSTM and LSTM-based S2S models for residential load
forecasting; our work differs by means of different sample

generation, different connection of encoder and decoder, use
of attention mechanisms, and a longer prediction sequence
length. Zheng et al. [38] proposed a hybrid algorithm that
combines similar days (SD) selection, empirical mode de-
composition (EMD), and LSTM neural networks. Whereas
Zheng et al. [38] work proposed a unique hybrid model,
the S2S LSTM-based model is identical to the one used by
Marino et al. [19]. Rahman et al. [39] developed two S2S
LSTM-based models for medium to long-term forecasting.
Our work differs from all three S2S works [19], [38], [39] by
means of different sample generation, different connection
of encoder and decoder, and use of attention mechanisms. In
our previous work [40], we presented initial results on S2S
RNN for energy forecasting; in contrast, this work focuses
on adding attention mechanisms to the S2S models and
evaluating their performance with different RNN cells and
forecasting lengths.

B. SEQUENCE-TO-SEQUENCE MODELS
Sequence to Sequence models have been used not only
for load forecasting, but also for a number of other tasks.
Also known as encoder-decoder RNNs, these models have
become increasingly popular in tackling classification prob-
lems. They were originally developed by Cho et al. [18]
to improve performance of statistical machine translation
(SMT). This same work not only proposed a novel model
architecture, but also a novel RNN cell structure, later to
become known as the GRU unit. The work by Sutskever et al.
[12] introduced a slight variation to the RNN S2S framework,
for translation from English to French. In contrast to Cho et
al. [18], Sutskever et al. [12] used LSTM in place of GRU;
moreover they also differ in how they connect encoder and
decoder.

Examples of S2S use in other domains include the work
of Venugopalan et al. [41] on LSTM-based S2S models for
generating descriptions of real-world videos and the work of
Kawano et al. [42] on predicting changes in protein stability.

While S2S RNN models have found success in several
domains, the encoder in S2S is burdened with the need
to represent all information in a fixed-length vector. Thus,
an attention mechanism, otherwise known as an “alignment
model", was added to these models by Bahdanau et al. [13]
and also by Luong et al. [14]: these mechanisms have been
described in Section II. Both were designed for machine
translations, whereas our work adapts them for load forecast-
ing. Moreover, we evaluate performance of different attention
models with different cell types and different time horizons.

IV. METHODOLOGY
This section first introduces the features and evaluation pro-
cess. Next, the sample generation and the proposed BA and
LA S2S RNNs for load forecasting are described.

A. FEATURES AND EVALUATION PROCESS
Data sets obtained from smart meters typically contain the
reading date and time with corresponding energy consump-

4 VOLUME x, 2019

tion. From those attributes, additional features are extracted
and the resulting data set contains nine features: month, day
of year, day of month, weekday, weekend, holiday, hour,
season, and energy usage.

The data set was divided into a training and test set: the
first 80% of data was used for training and the last 20% for
testing. This validation process was chosen to ensure that the
model is built using older data and tested on newer data.

Standardization was applied to bring all variables into
similar ranges. The values of each feature in the data were
transformed to have zero-mean and unit-variance:

x̃ =
x− µ
σ

(12)

where x is the original feature vector, µ is the mean of that
feature vector, σ is its standard deviation, and x̃ represents
the feature vector after normalization.

B. SAMPLE GENERATION
Sample generation here refers to the process of transforming
data into the input and target samples to be passed to the
ML model. The same approach is used as in Sehovac et al.
[40]. An input sample is represented as a matrix,X ∈ RT×f ,
where T is the number of time steps and f is the number of
features. Each input sample is defined as:

x[j] = [Month[j] DayOfYear[j] DayOfMonth[j]
Weekday[j] Weekend[j] Holiday[j] Hour[j]
Season[j] Usage[j]]

(13)

For each input sample, one target sample y ∈ RN×1 is
generated, where N is the number of predicted time steps.
The target vector is given by:

y = [Usage[1], ... , Usage[i], ... , Usage[N]] (14)

where y[i] is the actual usage value at time step i, and i ∈
1, ..., N .

Fig. 3 illustrates the sample generation process for training
set. T denotes the length of the input window and N denotes
the length of the target vector. For each time step i of the
training set, consecutive data from i + 1 to i + T forms an
input sample and data from i+T +1 to i+T +N makes the
corresponding target vector. After the samples are generated,
their order is randomized.

f X ∈ ℝ
T×f

i i + 1 i + 2 ... i + T i + T + 1 i + T + 2 ... i + T + N . . . +1

y ∈ ℝ
N×1

Index

NTInput: length Target: length

FIGURE 3. Training set sample generation.

f ∈X ′

a ℝ
T×f

i
′

+ 1i
′

+ 2i
′ ... + Ti

′
+ T + 1i

′
+ T + 2i

′ ... + T + Ni
′

. . . +1

∈y′

a ℝ
N×1

Index

Input Target

f ∈X ′

b
ℝ

T×f

+ Ni
′

+ N + 1i
′

+ N + 2i
′ ... + T + Ni

′
. . . +1 . . . +2 +2N . . . +1

∈y′

b
ℝ

N×1

Index

Input Target

(a)

(b)

FIGURE 4. Test set sample generation. (a) Samples generated at index
i′ + 1. (b) Samples generated from sliding window with overlap length N .

For the test set, samples are generated somewhat differ-
ently. As illustrated in Fig. 4, the sliding windows for the
test set shifts sequentially with the overlap equivalent to the
target lengthN . Similar to the training set, if the input sample
starts at i′ + 1, the target sample still ends at i′ + T + N ;
however, the difference is that the next sample will start at
i′+N+1. This way prediction vectors from different samples
do not overlap. Sliding each time by N allows for an overlap
in input test samples, but there is no overlap in target test
samples. Consequently, the predicted usage vectors can be
concatenated into one vector with the length equivalent to
the number of time steps in the test set.

C. S2S PREDICTION WITH BA
S2S load forecasting proposed by Sehovac et al. [40] is
augmented by adding Bahdanau Attention (BA). Whereas
Section II-C gives a generic breakdown of the BA mecha-
nism, here we give the process of adapting BA to S2S models
for load forecasting. The overall process is illustrated in Fig.
5 and details are provided in Algorithm 1.

The encoder process, lines 14-22 of Algorithm 1, are the
same as in Sehovac et al. [40] since an identical encoder
(ET) approach is taken, except in Algorithm 1 the encoder
output weights are initialized and stored in lines 15 and 19
respectively. Let us denote these encoder outputs as H =[
h[1], ..., h[T]

]
∈ RT×h where each output can be defined as

H[j] = h[j] ∈ Rh. Dimensions T and h are the length of the
input sequence and the hidden state dimension, respectively.
Hence, at the end of the encoder process, we have obtained
the context vector h[T], the initial input value ẏ[0] for decoder
DN , and the encoder outputs H .

The context vector is used as the initial hidden state of
decoder DN , so we denote it as hb[0]. Therefore, at decoder
time step i, the first step of BA is to compute the attention
energies eb[ij]. In order to do so, T copies of hb[i−1] are created;
this matrix is denoted as Hb

[i−1] ∈ RT×h. As in lines 25-27

VOLUME x, 2019 5

of Algorithm 1, the energies are computed by:

λ1 = [Hb
[i−1];H] ∈ RT×2h (15a)

λ2 = tanh(W 2h→h(λ1)) ∈ RT×h (15b)

eb[ij] = 〈λ2, v〉 ∈ RT ,where v ∈ Rh (15c)

Here, W 2h→h and v are parameters to be learned dur-
ing training, 〈·〉 denotes inner product, W 2h→h is a fully-
connected layer and v is a vector randomly initialized from
N (0, 1√

h
). Note that the [·] notation is used to indicate con-

catenation, while the λs in equations (15), and in subsequent
equations are used as placeholders to denote the steps taken
to produce respective outputs and to separate steps illustrated
in Fig. 5.

Concatenation is performed first (15a), followed by a
fully-connected layer and activation function tanh (15b),
and finally the inner product is calculated (15c). Equations
(15) also provide dimensions for each step: for example, in
equation (15c), λ2 has dimensions T × h. At decoder time
step i, eb[ij] is a vector of length T , where each element
j ∈ 1, ..., T represents the attention energy dedicated to that
encoder output. The next step (Algorithm 1, line 28) is to
compute the attention weights αb

[ij] ∈ RT :

αb
[ij] =

exp(eb[ij])∑T
k=1 exp(eb[ik])

(16)

Equation (16) is the Softmax of the attention energies
computed in (15c). These attention weights are then used in
an inner product with H (Algorithm 1, line 29), to compute
the context vector cb[i] ∈ Rh (Algorithm 1, line 30) as:

�

�
�

[�−1]

ℎ
�
[�−�]

tanh()�
2ℎ→ℎ

�
�
[��]

Softmax �
�
[��]

ℎ
�
[�]

�
1+2ℎ→ℎ

�
ℎ→1

�˙ [�]

...

�
�
[�]

... ...

⟨ , �⟩
⟨ , �⟩

�˙ [�−1]�˙ [1]

�[1] �[�−1] �[�] �˙ [0] �˙ [�−2]

[]

[]

[]

Legend
: Concat

⟨, ⟩ : Inner product

: make copies

[]

ℎ
�
[0]

FIGURE 5. The BA mechanism at decoder time step i.

cb[i] = 〈α
b
[ij],H〉 (17a)

=

T∑
j=1

αb
[ij]h[j] (17b)

The next step is to concatenate the context vector with
the previously predicted output ẏ[i−1], and pass this newly
formed vector through the respective RNN cell (Algorithm 1,
line 30), to obtain the current hidden state hb[i]:

Algorithm 1 S2S-BATrain(G =
(ET , DN , tanh,Softmax,W 2h→h,W 1+2h→h,Wh→1, v, P))

1: Input : Model G consisting of: ET , DN , activation
2: functions tanh and Softmax, fully-connected layers
3: W 2h→h,W 1+2h→h,Wh→1, vector parameter v,
4: and initial weights P .
5: Output : Trained model G
6:
7: Generate input samples X ∈ RT×f

8: and corresponding target vectors y ∈ RN×1

9: Initialize v ∼ N (0, 1√
h
) ∈ Rh

10:
11: for each epoch do
12: for each batch do
13:
14: initialize h[j−1] ← ~0 ∈ RB×h, B = batch size
15: initialize H ← ~0 ∈ RT×B×h

16:
17: for time step j from 1 to T do # Encoder
18: h[j] ← GRUcell(x[j], h[j−1])
19: H[j] ← h[j]
20:
21: ẏ[0] ←Wh→1(h[T])
22: hb[0] ← h[T]

23:
24: for time step i from 1 to N do # Decoder
25: Hb

[i−1] ← T copies of hb[i−1]
26: eb[ij] ← tanh(W 2h→h(

[
Hb

[i−1];H
]
))

27: eb[ij] ← 〈e
b
[ij], v〉

ᵀ

28: αb
[ij] ← Softmax(eb[ij])

29: cb[i] ← 〈α
b
[ij], H

ᵀ〉
30: hb[i] ← GRUCell(

[
ẏ[i−1]; c

b
[i]

]
, hb[i−1])

31: ẏ[i] ←Wh→1(W 1+2h→h(
[
ẏ[i−1]; c

b
[i];h

b
[i]

]
))

32: append ẏ[i] to predicted usage vector ẏ
33:
34: compute loss
35: BPTT(loss)
36: P ← Adam(P, r), r = learning rate
37:
38: Return : Trained model G.

6 VOLUME x, 2019

λ3 = [ẏ[i−1]; c
b
[i]] ∈ R1+h (18a)

hb[i] = GRUCell(λ3, h
b
[i−1]) ∈ Rh (18b)

where the GRUCell takes λ3 and the previous hidden state
hb[i−1] as inputs.

The last step is to pass the current hidden state, the context
vector, and the previous output through a function as given
in equation (7). In this work, we concatenate all three vari-
ables and pass this vector through two fully-connected layers
(Algorithm 1, line 31):

λ4 = [ẏ[i−1]; c
b
[i];h

b
[i]] ∈ R1+2h (19a)

λ5 =W 1+2h→h(λ4) (19b)

ẏ[i] =Wh→1(λ5) ∈ R1 (19c)

where W 1+2h→h and Wh→1 are parameters to be learned
during training.

This concludes the process for one time step and after N
time steps, we have obtained the predicted usage vector ẏ ∈
RN , and we can now compute the loss. The remaining steps,
BPTT using gradient based method to update the weights, are
identical as in traditional S2S [40].

D. S2S PREDICTION WITH LA
This section explains the process of adapting LA to S2S RNN
for load forecasting: Fig. 6 provides the overview whereas
Algorithm 2 shows details. The encoder takes the identical
approach as in BA; lines 12-20 in Algorithm 2 are identical to
lines 14-22 of Algorithm 1, respective to their own variables.
Hence, at time step T , encoder obtained h[T], ẏ[0], andH . Let
us denote LA variables with the l superscript notation.

The key difference between BA and LA is that in BA
energies are computed first whereas the first step in LA is to
compute the current hidden state hl[i] ∈ Rh. This hidden state
is calculated taking as inputs the previous predicted output
and previous hidden state; for the decoder time step i, this is
calculated as (Algorithm 2, line 23):

hl[i] = GRUCell(ẏ[i−1], h
l
[i−1]) (20)

This hidden state hl[i] is then used in the LA mechanism.
Hence, the LA mechanism is applied using the current hidden
state counter to the previous hidden state used in BA (equa-
tion (15)).

The next step is to compute the attention energies el[ij]
using one of three score functions in equation (11). Note that
in equation (11), when used with LA, only one score function
is chosen at a time, and this constitutes one model. If using
dot score function, energies el[ij] are computed as:

el[ij] = 〈H,h
l
[i]〉 ∈ RT (21)

Here, the dot product is computed between h[j] and hl[i], and
the scalar value is stored in the j-th element of el[ij]. Instead,

if the general score function is chosen, the attention energies
are computed as in line 24 of Algorithm 2:

λ6 =Wh→h(H) ∈ RT×h (22a)

el[ij] = 〈λ6, h
l
[i]〉 ∈ RT (22b)

Note that the dot and general score functions are very similar,
differing only by the general score adding a fully-connected
layer that first transformsH into a matrix with the exact same
dimensions. Hence, the general score function can be seen as
applying the dot score function to the matrix resulting from
equation (22a).

The remaining score function, concat, computes the ener-
gies similarly as in the equations (15). However, the differ-
ence here is that LA use the matrix H l

[i] ∈ RT×h, T copies
of hl[i], instead of Hb

[i−1] used in BA.
Continuing (line 25, Algorithm 2), shows that the attention

weights αl
[ij] ∈ RT are computed using equation (16), except

with attention energies el[ij] in place of eb[ij]. The attention
context vector cl[i] ∈ Rh is then computed in line 26 using
the equations (17) with the respective attention weights αl

[ij].
The next step (Algorithm 2, line 27) is to compute the

attentional hidden states ĥl[i]:

λ7 = [hl[i]; c
l
[i]] ∈ R2h (23a)

ĥl[i] = tanh(W 2h→h(λ7)) ∈ Rh (23b)

Lastly, the predicted output value is obtained by passing
ĥl[i] through a fully-connected layer (line 28):

ẏ[i] =Wh→1(ĥl[i]) (24)

where W 2h→h and Wh→1 are parameters to be learned
during training.

�

ℎ
�
[�]

tanh()�
2ℎ→ℎ

�
�
[��]

S �
�
[��]

�
ℎ→1

�˙ [�]

...

�
�
[�]

... ...

⟨ , ⟩ℎ
�

[�] ⟨ , �⟩

�˙ [1]

�[1] �[�−1] �[�] �˙ [0] �˙ [�−1]

�
ℎ→ℎ

ℎ
̂ �
[�]

Legend
: Concat

⟨, ⟩ : Inner product

[]

: for attention

[]

ℎ
�
[0]

FIGURE 6. The LA mechanism at time step i, using the general score
function.

VOLUME x, 2019 7

Note that the attentional hidden state and current hidden
state have different functions in LA. The attentional hidden
state ĥl[i] is only used in computing the output value, equation
(24), while the current hidden state hl[i] is used to compute the
attention context vector (equation (17)), and as the hidden
state to be used in the next time step.

This concludes the LA mechanism for one time step. After
N time steps, we have obtained the predicted usage vector,
and the remaining steps in LA algorithm are equivalent to
those in the BA algorithm.

V. EVALUATION
The proposed approach was evaluated on a real-world dataset
from a commercial building provided by an industry partner.
The dataset contained one year and three months of energy

Algorithm 2 S2S-LA-generalTrain(G =
(ET , DN , tanh,Softmax,W 2h→h,Wh→h,Wh→1, P0))

1: Input : Model G consisting of: ET , DN , activation functions
2: tanh and Softmax, fully-connected layers
3: W 2h→h,W 1+2h→h,Wh→1, and initial weights P .
4: Output : Trained Model G.
5:
6: Generate input samples X ∈ RT×f and
7: and corresponding target vectors y ∈ RN×1

8:
9: for each epoch do

10: for each batch do
11:
12: initialize h[j−1] ← ~0 ∈ RB×h, B = batch size
13: initialize H ← ~0 ∈ RT×B×h

14:
15: for time step j from 1 to T do # Encoder
16: h[j] ← GRUCell(x[j], h[j−1])
17: H[j] ← h[j]
18:
19: ẏ[0] ←Wh→1(h[T])
20: hl[0] ← h[T]

21:
22: for time step i from 1 to N do # Decoder
23: hl[i] ← GRUCell(ẏ[i−1], h

l
[i−1])

24: el[ij] ← 〈W
h→h(H), hl[i]〉

ᵀ

25: αl
[ij] ← Softmax(el[ij])

26: cl[i] ← 〈α
l
[ij], H

ᵀ〉
27: ĥl[i] ← tanh(W 2h→h(cat(hl[i], c

l
[i])))

28: ẏ[i] ←Wh→1(ĥl[i])

29: append ẏ[i] to predicted usage vector ẏ
30:
31: compute loss
32: BPTT(loss)
33: P ← Adam(P, r), r = learning rate
34:
35: Return : Trained model G.

load data in five minute intervals for a total number of read-
ings: 12 readings in one hour × 24 hours in one day = 287
× 458 days = 131,446. As stated in section IV, the data were
pre-processed and the resulting set contained nine features.
The rest of this section describes the conducted experiments,
presents their results, and discusses the findings.

A. EXPERIMENTS
All S2S models were tested for four different prediction
lengths N given as elements of vector ~N :

~N = [12, 48, 120, 288] (25)

For five-minute reading intervals, this equates to predicting
the next [1 hour, 4 hours, 10 hours, 24 hours]. There are end-
less combinations of input length T to prediction length N ;
the following four input cases were chosen for experiments:

• Input Case 1: input T = 12, predict each N of ~N
• Input Case 2: input T = 48, predict each N of ~N
• Input Case 3: input T = 120, predict each N of ~N
• Input Case 4: input T = 288, predict each N of ~N

The four input cases with four prediction lengths, makes
for a total of 16 cases considered. All models were trained
for 10 epochs, since this was sufficient to reach an acceptable
level of convergence. The RNN hyperparameters used to
compute the results were:
• Number of layers 1, with exception of Non-S2S-3L

which had three layers
• Hidden dimension size h = [64, 128]
• Cell state dimension size c = [64, 128] (LSTM)
• Batch size B = 256
• Learning rate = 0.001
Only one h, and equivalent dimension c for LSTM, was

used for each experiment. Two sizes of h were considered
to see if increasing the hidden state, hence adding more
parameters, would improve the accuracy. With each of the
16 cases, 24 different models were evaluated:
• S2S-o model from the work of Sehovac et al. [40] with

GRU/LSTM/RNN cells (3 models)
• S2S-BA model with GRU/LSTM/RNN cells (3 models)
• S2S-LA model with GRU/LSTM/RNN cells. Accom-

panied with each cell is one of three attention score
functions: dot, general, concat (9 models)

• Non-S2S RNN, one layer with GRU/LSTM/RNN cell
(3 models)

• Non-S2S RNN, three layers with GRU/LSTM/RNN cell
(3 models)

• DNN model with sizes: small, medium, and large (3
models)

We define a model type as one of the seven listed above
(three LA score functions are considered separately) and a
model as a combination of model type and cell type. Each
model is different for each of the 16 cases in terms of input
length T and prediction length N .

8 VOLUME x, 2019

The two Non-S2S RNN models are conventional RNN
models, and thus cannot have a prediction length longer than
input sequence length. Hence, this model is only used when
N ≤ T . For example, for input case 3, input length T = 120,
the Non-S2S RNN can only predict for 12, 48, and 120 steps
ahead.

The DNN model took the same input matrixX ∈ RT×f as
was used with all other models, but this matrix was flattened
into a single vector of dimension size = T × f . Hence, each
input vector x[j] of X was now side-by-side constituting one
long vector. The three considered DNN sizes are:
• DNN-small: Input layer (size T × f) on 512 on 256

on 128 on Output layer (size N)
• DNN-medium: Input layer on 512on3 on 256 on 128 on

Output layer
• DNN-large: Input layer on 1024on2 on 512on3 on 256on2

on Output layer
The notation on is used to indicate the joining of the

previous layer to the next, and AonB notation used to indicate
joining B layers of size A. Multiple layers of the same size
were used to add more parameters, to see whether increasing
parameters improved the accuracy.

The accuracy measures used throughout this work are the
Mean Absolute Error (MAE) and Mean Absolute Percentage
Error (MAPE):

MAE =
1

n

n∑
i=0

|yi − ŷi| (26)

MAPE =
100%

n

n∑
i=0

∣∣∣∣yi − ŷiyi

∣∣∣∣ (27)

where y represents the actual value, ŷ the predicted value,
and n the number of samples. Note that the MAE and MAPE
were calculated with the unnormalized values; the predicted
usage vector obtained in the normalized space was converted
to the original domain space for the accuracy calculations.

Since this work randomizes the training samples and uses
randomly initialized initial weights, five random seeds were
used for each case so that each model sees a different
randomized order of training samples and different initial
weights.

B. RESULTS AND DISCUSSION
The proposed approach was implemented in Python with the
PyTorch tensor library [43]. Experiments were conducted
using GPUs on two different machines: the first contained
two NVIDIA GeForce RTX 2080 Ti GPU cards, and the
second contained one NVIDIA GeForce GTX 1060 GPU
card.

The following four subsections present results obtained
for the four input cases. The first figure in each of the four
subsections shows the best achieved results by each model
type and compares the performance of each model type,
regardless of cell or hidden dimension size h. This figure also
identifies the overall best performing model.

The second figure in each input case subsections analyzes
the performance of cells used in the models and compares
cell performance as input length T is kept stationary while
prediction length N varies. The DNN models are not in-
cluded in this figure as DNNs do not deal with RNN cell
variation.

1) Input Case 1: One Hour
This subsection analyzes the results obtained for input length
T = 12. Fig. 7 shows the best achieved MAPE and MAE
by each model type, for each prediction length. The best ob-
tained MAPE and MAE for each prediction N are indicated in
bold. The lowest accuracy was observed with the three layer
Non-S2S RNN model (Non-S2S-3L), even the one layer
Non-S2S RNN (Non-S2S) and the DNN model achieved bet-
ter results. Increasing the number of layers, hence increasing
the number of weights, in the same Non-S2S architecture
does not result in the increased accuracy nor it improves
the capturing of temporal dependencies. Furthermore, it can
be seen that as N increases, the accuracy of each model
decreases with the accuracy of the DNN model decreasing
at a much greater rate than the accuracy of other models.

It is important to note that the S2S-o models perform
comparable to the attention models. A short input length such
as T = 12 produces only 12 encoder outputs, and this might
not contribute enough to these attention models. Nonetheless,
the attention models obtained the best MAPE for each input
length, as can be seen by the bold numbers in Fig. 7.

Fig. 8 shows how accuracy changes with increase of pre-
diction length N for each model type and each cell: Vanilla
RNN, GRU, and LSTM. For all cells, and all model types, the
accuracy decreases as the prediction length N increases. The
Non-S2S RNN models produced results only for N = 12,
and for each cell, the three layer Non-S2S has the lowest
accuracy.

The Vanilla RNN cell achieved comparable results with the
two attention models: S2S-LA-general and S2S-LA-concat.
In addition, for the Vanilla RNN cell, every attention model
outperformed the S2S-o model for N = 120 and N = 288.

For the GRU cell, results are similar among all models
across all prediction lengths, with the majority of attention
models performing slightly better than the S2S-o model for
N = 288. However, this is not the case for the LSTM cell,
as the S2S-o model outperforms the attention models for
N = 120 and N = 288.

MAE results show the same patterns as MAPE for all four
input cases, therefore, MAE graphs are not included with the
remaining three cases.

2) Input Case 2: Four Hours
This subsection analyzes the results obtained for input length
T = 48. Fig. 9 shows the best results achieved by each model
type, for each prediction length. Similarly, as shown in Fig.
7, the Non-S2S RNN models perform the worst for N = 12,
but do perform better than the DNN model for N = 48. As
in case 1, one layer Non-S2S RNN performs better than three

VOLUME x, 2019 9

S2
S-

BA

S2
S-

LA
-c

on
ca

t

S2
S-

LA
-d

ot

S2
S-

LA
-g

en
er

al

S2
S-

o

DN
N

No
n-

S2
S

No
n-

S2
S-

3L

Models

2.5

5.0

7.5

10.0

12.5

15.0

17.5

M
AP

E

 2.798 2.809 2.817 2.835 2.871 3.557 3.631 3.932 4.474 4.447 4.513 4.484 4.467

 7.233
 5.931 5.873 5.762 5.805 5.906

 11.426

 7.552 8.161 7.683 7.422 7.536

 17.693
N = 12
N = 48
N = 120
N = 288

S2S-BA

S2S-LA-concat

S2S-LA-dot

S2S-LA-general
S2S-o DNN

Non-S2S

Non-S2S-3L

Models

10

20

30

40

50

60

70

M
AE

 12.594 12.694 12.66 12.735 12.88
 15.71 16.25 17.557 19.956 19.749 20.315 20.154 20.341

 31.494
 26.331 26.125 25.813 25.836 26.722

 48.407

 33.937
 36.617 34.619 33.316 33.093

 69.337

FIGURE 7. Best achieved results by each model type: input T = 12, all prediction lengths N .

12 48 120 288
N

5

10

15

20

M
AP

E

Vanilla RNN cell
S2S-BA
S2S-LA-concat
S2S-LA-dot
S2S-LA-general
S2S-o
Non-S2S
Non-S2S-3L

12 48 120 288
N

3

4

5

6

7

8
GRU cell

12 48 120 288
N

3

4

5

6

7

8

9 LSTM cell

12 48 120 288
N

20

40

60

80

M
AE

12 48 120 288
N

15

20

25

30

35

12 48 120 288
N

15

20

25

30

35

40

FIGURE 8. Comparing cell performance of each non-DNN model: input T = 12, all prediction lengths N .

layer Non-S2S RNN. The S2S-o model shows comparable
results to the attention models for N = 12 and N = 48.
Ultimately, a similar outcome is obtained as in input case
1: the best achieved MAPE for each prediction length is
obtained by one of the attention models.

The comparison of the DNN model results between Fig. 7

and Fig. 9 shows that the accuracy slightly increases as input
length T increases. Nonetheless, as N increases in Fig. 9,
the DNN models are significantly outperformed by all S2S
models.

Fig. 10 analyzes performance of different cells. It can be
seen that for all cells the Non-S2S RNN models perform the

10 VOLUME x, 2019

worst when N ≤ T . The Vanilla RNN cell, similarly as
in Fig. 8, shows comparable results for two of the attention
models, here S2S-LA-dot and S2S-LA-concat, for N = 120
and N = 288. However, Fig. 8 shows the S2S-LA-general
model as the best Vanilla RNN model for N = 288 whereas
in Fig. 10, the S2S-LA-dot model shows better accuracy.

Like with the Vanilla cell, the GRU cell results in Fig.
10 show the majority of attention models outperforming
the S2S-o model as N increases. The opposite happens for
the LSTM cell: the S2S-o model outperforms the attention
models as N increases. The LSTM cell contains two states,
the hidden state and the cell state, and only one state, the
hidden state, is used in the attention mechanisms. Hence,
the use of only one internal LSTM state in attention models
could be the underlying reason as to why the S2S-o models
outperformed the attention models, for increasing N .

3) Input Case 3: Ten Hours

This subsection provides the results obtained for input length
T = 120. Fig. 11, shows a re-occurring pattern seen in cases
1 and 2, figures 7 and 9: the attention models obtain the best
MAPE across all prediction lengths

In case 3, as can be observed from Fig. 12, for the Vanilla
RNN cell, both Non-S2S RNN models obtain better results
than the S2S-o model for N = 120. Hence, the use of a
Vanilla RNN cell in the decoder part of the S2S-o model
does not retain information better than the one encoder in the
Non-S2S RNN model. The Vanilla RNN-based S2S attention
models outperformed the S2S-o model for N = 120 and
N = 288, similar to findings for input cases 1 and 2 (figures
8 and 10).

For the GRU and LSTM models, the Non-S2S RNN
models perform the worst for all prediction lengths. Similar
to the GRU and LSTM cell results for input cases 1 and 2,
the majority of GRU-based attention models outperform the
S2S-o model as N increases, while the LSTM-based S2S-
o model still outperforms the attention models for all input
lengths.

4) Input Case 4: Twenty-Four Hours

For this case, the input length is T = 288. The best results
by each model type are shown in Fig. 13. The DNN model
achieved worse results than the S2S models, but did outper-
form both Non-S2S RNN models for each prediction length.
Nonetheless, the DNN model results in case 4 (Fig. 13) are
a significant improvement from those in cases 1 to 3 (figures
7, 9, and 11). Unlike in the previous input cases, the S2S-o
model achieved the best MAPE for N = 120 and N = 288
indicating that using 288 values in the attention mechanisms
may not be necessary.

With the Vanilla RNN cells, the Non-S2S RNN models
performed the best forN = 288. This is a similar observation
as in input case 3: an Encoder-Decoder + Vanilla RNN
cell model does not retain information better than a model
consisting of a sole Encoder + Vanilla RNN cell.

As in input case 3, the GRU and LSTM Non-S2S RNN
models performed the worst for all prediction lengths. As
in other input cases, the LSTM-based S2S-o model outper-
formed all other LSTM models for N = 288. It is important
to note that, unlike in cases 1, 2, and 3 (figures 8, 10, and
12), in case 4, the GRU-based S2S-o models outperformed
all other GRU models for N = 288. Hence, for case 4, all
288 encoder outputs contribute to each decoder output, which
may be excessive and causes a loss in accuracy rather than
improvement.

C. DISCUSSION
This subsection analyzes model results for varying input
length T , hence across input time as the prediction length in-
creases to determine how each model performs with different
input lengths.

From Fig. 15, it can be seen that, for the longest prediction
length N = 288, the best model versions were obtained
for input lengths either T = 48 or T = 120. Looking at
the S2S-BA model in Fig. 15, the model with input length
T = 288 achieved better accuracy than the same model
with other input lengths for prediction lengths N = 12 and
N = 48; a result that is shared with all other model types.
However, the S2S-BA model with input length T = 288
achieved the worst results for N = 120 and N = 288;
a result that is not shared with any other model. The S2S-
BAT=48 model achieved the best MAPE for N = 288. Note
the subscript notation indicates the respective model version
for that input length. The S2S-LA-dotT=120 model achieved
the best results for N = 120 and N = 288; similar to the
S2S-LA-concatT=120 model.

Mostly, the S2S attention models share a similar pattern:
versions with T = 288 achieve the best results for N ≤ 48,
while versions for T < 288 achieve the best results for N ≥
120. With T = 288 andN = 288, attention models are trying
to “pay attention" to an entire previous day in the latter end
of the decoder part. As the decoder approaches the end of a
long prediction sequence, looking at the entire previous day
does not seem necessary in determining the next predicted
value. For example, to predict the last output value at i =
288, attention calculation incorporates the very first encoder
output at j = 1, which is 576 (288× 2) time steps in the past,
nearly 48 hours previous.

As expected, the best S2S-o models for N = 288 are,
in order: S2S-oT=288, S2S-oT=120, S2S-oT=48, S2S-oT=12.
The S2S-o models do not use an attention mechanism; the
predicted output is computed using the previously predicted
output and previous decoder hidden state, therefore there is
no loss of accuracy with long input and output sequences.

Lastly, the DNN model in Fig. 15 shows the clearest signs
of improvement over input length versions T ; the DNNT=288

model achieved the best results across all prediction lengths.
Overall, it can be concluded that as the prediction lengthN

increases, the accuracy decreases. This can also be observed
from Table 1 which summarizes all results and identifies the
best performing model. As seen from the table, the S2S-

VOLUME x, 2019 11

S2S-BA

S2S-LA-concat

S2S-LA-dot

S2S-LA-general
S2S-o DNN

Non-S2S

Non-S2S-3L

Model Type

2.5

5.0

7.5

10.0

12.5

15.0

M
AP

E

 2.83 2.834 2.869 2.844 3.416 3.524 3.692
 4.456 4.537 4.516 4.462 4.467

 6.8
 6.018 6.071 6.023 5.978 5.895 6.0

 11.074

 6.774 7.269 6.977 7.375

 16.411
N = 12
N = 48
N = 120
N = 288

FIGURE 9. Best achieved results by each model type: input T = 48, all prediction lengths N .

12 48 120 288
N

5

10

15

20

M
AP

E

Vanilla RNN cell
S2S-BA
S2S-LA-concat
S2S-LA-dot
S2S-LA-general
S2S-o
Non-S2S
Non-S2S-3L

12 48 120 288
N

3

4

5

6

7

GRU cell

12 48 120 288
N

3

4

5

6

7

8

LSTM cell

FIGURE 10. Comparing cell performance of each non-DNN model: input T = 48, all prediction lengths N .

S2S-BA

S2S-LA-concat

S2S-LA-dot

S2S-LA-general
S2S-o DNN

Non-S2S

Non-S2S-3L

Model Type

4

6

8

10

12

M
AP

E

 2.783 2.767 2.749 2.774 3.275 3.389 3.591
 4.324 4.499 4.462 4.523 4.414

 5.981 5.606 6.12
 5.599 5.822 5.707 5.82

 9.807

 7.612 7.86
 6.998 7.172 6.773

 7.418

 13.104
N = 12
N = 48
N = 120
N = 288

FIGURE 11. Best achieved results by each model type: input T = 120, all prediction lengths N .

BA model presented in Fig. 5 was the dominant model;
it obtained the best MAPE for N = 12, 48, 120 and al-
most matches the best MAPE for N = 288. The S2S-BA
model also obtained the best MAE for T = 48, 120, 288
and obtained the second best MAE for N = 12. The one
layer Non-S2S outperformed the three layer Non-S2S model

what demonstrated that additional layers did not improve the
forecasting accuracy. Still, all S2S models performed better
than one layer Non-S2S models for all input lengths.

However, the preferred model may not necessarily be the
S2S-BA model or any attention model for that matter. The
attention models contain more parameters than other models,
with the S2S-BA model containing the most parameters.

12 VOLUME x, 2019

12 48 120 288
N

5

10

15

20

M
AP

E

Vanilla RNN cell
S2S-BA
S2S-LA-concat
S2S-LA-dot
S2S-LA-general
S2S-o
Non-S2S
Non-S2S-3L

12 48 120 288
N

3

4

5

6

7

8
GRU cell

12 48 120 288
N

3

4

5

6

7

8

9
LSTM cell

FIGURE 12. Comparing cell performance of each non-DNN model: input T = 120, all prediction lengths N .

S2S-BA

S2S-LA-concat

S2S-LA-dot

S2S-LA-general
S2S-o DNN

Non-S2S

Non-S2S-3L

Model Type

4

6

8

M
AP

E

 2.705 2.743 2.714 2.709 2.735 3.051 3.38 3.581
 4.116 4.266 4.401 4.383 4.386

 5.051
 5.835 6.191 6.055 6.198 6.171 5.955 5.925

 6.936
 7.372 7.465

 8.094 8.077
 7.654 7.985

 7.016

 8.938 9.147 9.166
N = 12
N = 48
N = 120
N = 288

FIGURE 13. Best achieved results by each model type: input T = 288, all prediction lengths N .

12 48 120 288
N

5

10

15

20

M
AP

E

Vanilla RNN cell
S2S-BA
S2S-LA-concat
S2S-LA-dot
S2S-LA-general
S2S-o
Non-S2S
Non-S2S-3L

12 48 120 288
N

4

6

8

GRU cell

12 48 120 288
N

4

6

8

10 LSTM cell

FIGURE 14. Comparing cell performance of each non-DNN model: input T = 288, all prediction lengths N .

Table 2 shows the total number of weights and biases for
each S2S model and each cell type. It can be observed that as
cell changes from Vanilla to GRU and to LSTM, the number
of parameters increases. Also, for each cell, the number
of parameters increases when attention is added to S2S-o
model: attention models in order of the number of weights

are LA-dot, LA-general, LA-concat, and BA. Nonetheless,
the S2S-o model achieves comparable results to all attention-
based models for each prediction length while being faster
to train because of having fewer parameters. Hence, if the
interested party main objective is high accuracy irrelevant of
the training speed, the S2S-BA model is preferred. If a slight

VOLUME x, 2019 13

3

4

5

6

7

8

M
AP

E

Model: S2S-BA

T = 12
T = 48
T = 120
T = 288

3

4

5

6

7

8

Model: S2S-LA-concat

3

4

5

6

7

Model: S2S-LA-dot

12 48 120 288
N

3

4

5

6

7

8

M
AP

E

Model: S2S-LA-general

12 48 120 288
N

3

4

5

6

7

Model: S2S-o

12 48 120 288
N

4

6

8

10

12

14

16

18
Model: DNN

Model Comparison: MAPE across T for each N

FIGURE 15. Analyzing the best MAPE achieved over varied input lengths T and prediction lengths N .

TABLE 1. Best achieved MAPE and MAE for each model and prediction length. Input length, cell used, and hidden state size not taken into consideration.

Model MAPE (%) MAE
N 12 48 120 288 12 48 120 288

S2S-o 2.735 4.386 5.891 7.016 12.328 19.683 26.081 31.109
S2S-LA-dot 2.714 4.401 5.707 6.773 12.175 19.518 25.356 30.316

S2S-LA-general 2.709 4.383 5.805 7.375 12.137 19.421 25.836 33.316
S2S-LA-concat 2.743 4.266 5.822 7.172 12.287 19.189 25.747 32.664

S2S-BA 2.705 4.116 5.599 6.774 12.155 18.383 24.948 30.069
Non-S2S 3.380 5.606 7.372 9.147 15.146 24.668 33.249 40.559

Non-S2S-3L 3.581 6.071 7.465 9.166 15.915 27.064 32.854 41.294
DNN 3.051 5.051 6.936 8.938 13.424 21.436 28.966 37.389

decrease in accuracy is acceptable, a reduction in training
speed can be achieved by using the S2S-o model.

NNs with a large number of weights such as S2S with
attention are prone to overfitting; thus, we have examined
train and test losses. An example plot for the S2S-BA model
with GRU cell, T = 12 and N = 12 is shown in Fig. 16. As
both train and test loss gradually decrease, this model is not
showing signs of overfitting. Patterns are similar for other
models, cells, and input/output lengths.

TABLE 2. Number of weights and S2S model and each cell.

Cell
Model Vanilla RNN GRU cell LSTM cell
S2S-o 9,153 27,329 36,417
S2S-LA-dot 17,409 35,585 44,673
S2S-LA-general 21,569 39,745 48,833
S2S-LA-concat 25,729 43,905 52,993
S2S-BA 29, 889 56,257 69,441

VI. CONCLUSION
Continuously increasing electricity consumption and its im-
pact on global warming are escalating importance of energy
efficiency and conservation. Load forecasting is contributing
to energy management efforts through improved production
planning and scheduling, budget planning, and by identify-
ing savings opportunities. Feedforward neural networks and
Support Vector Regression have had a great success in load
forecasting; however, Recurrent Neural Networks have an ad-
vantage because of their ability to model time dependencies.

This paper proposes Sequence to Sequence Recurrent
Neural Network (S2S RNN) with Attention for electrical load
forecasting. RNN provides ability to model time dependen-
cies and the S2S approach strengthens this ability by using
two RNNs: encoder and decoder. Moreover, an attention
mechanism was added to ease the connection between en-
coder and decoder and further improve load forecasting. The
proposed solution was evaluated with four attention mech-

14 VOLUME x, 2019

FIGURE 16. Train and test loss for S2S-BA with GRU cell, T = 12 and N = 12.

anisms, three RNN cells (vanilla, LSTM, and GRU), with
different forecasting horizons, and different input lengths. As
expected, the forecasting accuracy decreases as prediction
length increases; however, the decline is much steeper with
DNN models then with S2S-o or S2S models with attention.
Overall, S2S with Bahdanau attention outperformed all other
models. It is important to note that with S2S attention models,
accuracy does not continuously increase with the increase of
input sequence length. For longer prediction length N =
288, attention models with input sequence T = 48 and
T = 120 achieve better accuracy than the same models with
T = 288. This demonstrated that long input sequences are
not needed with S2S attention models.

This work evaluated 348 NNs on a single data set, but fur-
ther experiments with different datasets are needed to draw
more generic conclusions. Future work will also consider
other time series data and explore industrial applications.

REFERENCES
[1] U. N. E. Programme, “Energy.” https://www.unenvironment.org/explore-

topics/energy, 2018. Accessed on: July 2019.
[2] I. E. Agency, “Energy.” https://www.iea.org/weo2018/, 2018. Accessed

on: July 2019.
[3] U. E. I. Administration, “Use of energy in the united states explained.”

https://www.eia.gov/energyexplained, 2017. Accessed on: July 2019.
[4] H. C. Akdag and T. Beldek, “Waste management in green building oper-

ations using gscm,” International Journal of Supply Chain Management,
vol. 6, no. 3, pp. 174–180, 2017.

[5] I. E. S. Operator, “Global adjustment and peak demand factor.”
http://www.ieso.ca/Sector-Participants/Settlements/Global-Adjustment-
and-Peak-Demand-Factor, 2019. Accessed on: July 2019.

[6] R. Jiao, T. Zhang, Y. Jiang, and H. He, “Short-term non-residential load
forecasting based on multiple sequences lstm recurrent neural network,”
IEEE Access, vol. 6, pp. 59438–59448, 2018.

[7] H. Jiang, Y. Zhang, E. Muljadi, J. J. Zhang, and D. W. Gao, “A short-term
and high-resolution distribution system load forecasting approach using
support vector regression with hybrid parameters optimization,” IEEE
Transactions on Smart Grid, vol. 9, no. 4, pp. 3341–3350, 2018.

[8] K. Chen, K. Chen, Q. Wang, Z. He, J. Hu, and J. He, “Short-term load
forecasting with deep residual networks,” IEEE Transactions on Smart
Grid, vol. 10, no. 4, pp. 3943–3952, 2019.

[9] K. Grolinger, A. L’Heureux, M. A. Capretz, and L. Seewald, “Energy
forecasting for event venues: Big data and prediction accuracy,” Energy
and Buildings, vol. 112, pp. 222–233, 2016.

[10] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
pp. 436–444, 2015.

[11] A. Graves, S. Fernandez, F. Gomez, and J. Schmidhuber, “Connectionist
temporal classification: labelling unsegmented sequence data with recur-

rent neural networks,” in International Conference on Machine Learning
(ICML), pp. 369–376, 2006.

[12] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with
neural networks,” in Advances in Neural Information Processing Systems
(NIPS), pp. 3104–3112, 2014.

[13] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” in International Conference on
Learning Representations (ICLR), 2015.

[14] M. Luong, H. Pham, and C. D. Manning, “Effective approaches to
attention-based neural machine translation,” 2015. arXiv preprint
arXiv:1508.04025.

[15] P. J. Werbos, “Backpropagation through time: what it does and how to do
it,” Proceedings of the IEEE, vol. 78, no. 10, pp. 1097–1105, 1990.

[16] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recur-
rent neural networks,” in International Conference on Machine Learning
(ICML), pp. 1310–1318, 2012.

[17] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[18] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[19] D. L. Marino, K. Amarasinghe, and M. Manic, “Building energy load
forecasting using deep neural networks,” in IEEE Industrial Electronics
Society (IECON), pp. 7046–7051, 2016.

[20] E. Mocanu, P. H. Nguyen, M. Gibescu, and W. L. Kling, “Deep learning
for estimating building energy consumption,” Sustainable Energy, Grids
and Networks, vol. 6, no. 1, pp. 91–99, 2016.

[21] S. Seyedzadeh, F. P. Rahimian, I. Glesk, and M. Roper, “Machine learning
for estimation of building energy consumption and performance: a review,”
Visualization in Engineering, vol. 6, no. 1, pp. 5–25, 2018.

[22] H. S. Hippert, C. E. Pedreira, and R. C. Souza, “Neural networks for short-
term load forecasting: A review and evaluation,” IEEE Transactions on
power systems, vol. 16, no. 1, pp. 44–55, 2001.

[23] G. A. Darbellay and M. Slama, “Forecasting the short-term demand for
electricity: Do neural networks stand a better chance?,” International
Journal of Forecasting, vol. 16, no. 1, pp. 71–83, 2000.

[24] Y.-C. Li, T.-J. Fang, and E.-K. Yu, “Study of support vector machines
for short-term load forecasting [j],” Proceedings of the Chinese Society
of Electrical Engineering, vol. 23, no. 6, 2003.

[25] J. G. Jetcheva, M. Majidpour, and W. Chen, “Neural network model
ensembles for building-level electricity load forecasts,” Energy and Build-
ings, vol. 84, no. 1, pp. 214–223, 2014.

[26] Y. T. Chae, R. Horesh, Y. Hwang, and Y. M. Lee, “Artificial neural
network model for forecasting sub-hourly electricity usage in commercial
buildings,” Energy and Buildings, vol. 111, no. 1, pp. 184–194, 2016.

[27] C. Yuan, D. Niu, C. Li, L. Sun, and L. Xu, “Electricity consumption
prediction model based on bayesian regularized bp neural network,” in The
International Conference on Cyber Security Intelligence and Analytics,
pp. 528–535, Springer, 2019.

[28] D. B. Araya, K. Grolinger, H. ElYamany, M. Capretz, and G. Bitsuamlak,
“An ensemble learning framework for anomaly detection in building
energy consumption,” Energy and Buildings, vol. 144, no. 1, pp. 191–206,
2017.

VOLUME x, 2019 15

[29] N. L. Tasfi, W. A. Higashino, K. Grolinger, and M. A. Capretz, “Deep neu-
ral networks with confidence sampling for electrical anomaly detection,”
in IEEE International Conference on Smart Data, pp. 1038–1045, 2017.

[30] K. Amarasinghe, D. L. Marino, and M. Manic, “Deep neural networks for
energy load forecasting,” in IEEE International Symposium on Industrial
Electronics (ISIE), pp. 1483–1488, 2017.

[31] L. Di Persio, A. Cecchin, and F. Cordoni, “Novel approaches to the energy
load unbalance forecasting in the italian electricity market,” Journal of
Mathematics in Industry, vol. 7, no. 5, 2017.

[32] W. Kong, Z. Y. Dong, Y. Jia, D. J. Hill, Y. Xu, and Y. Zhang, “Short-term
residential load forecasting based on lstm recurrent neural network,” IEEE
Transactions on Smart Grid, 2019.

[33] H. Shi, M. Xu, and R. Li, “Deep learning for household load forecasting -
a novel pooling deep rnn,” IEEE Transactions on Smart Grid, vol. 9, no. 5,
pp. 5271–5280, 2018.

[34] S. Bouktif, A. Fiaz, A. Ouni, and M. A. Serhani, “Optimal deep learning
lstm model for electric load forecasting using feature selection and ge-
netic algorithm: comparison with machine learning approaches,” Energies,
vol. 11, no. 7, pp. 1636–1656, 2018.

[35] S. Bouktif, A. Fiaz, A. Ouni, and M. Serhani, “Single and multi-sequence
deep learning models for short and medium term electric load forecasting,”
Energies, vol. 12, no. 1, p. 149, 2019.

[36] Z. Yu, Z. Niu, W. Tang, and Q. Wu, “Deep learning for daily peak load
forecasting–a novel gated recurrent neural network combining dynamic
time warping,” IEEE Access, vol. 7, pp. 17184–17194, 2019.

[37] L. Han, Y. Peng, Y. Li, B. Yong, Q. Zhou, and L. Shu, “Enhanced deep
networks for short-term and medium-term load forecasting,” IEEE Access,
vol. 7, pp. 4045–4055, 2018.

[38] H. Zheng, J. Yuan, and L. Chen, “Short-term load forecasting using emd-
lstm neural networks with a xgboost algorithm for feature importance
evaluation,” Energies, vol. 10, no. 8, p. 1168, 2017.

[39] A. Rahman, V. Srikumar, and A. D. Smith, “Predicting electricity con-
sumption for commercial and residential buildings using deep recurrent
neural networks,” Applied energy, vol. Vol. 212, pp. 372–385, 2018.

[40] L. Sehovac, C. Nesen, and K. Grolinger, “Forecasting building energy
consumption with deep learning: A sequence to sequence approach,” in
International Congress on Internet of Things (ICIOT), 2019.

[41] S. Venugopalan, M. Rohrbach, J. Donahue, R. Mooney, T. Darrell, and
K. Saenko, “Sequence to sequence-video to text,” in IEEE international
conference on computer vision, pp. 4534–4542, 2015.

[42] K. Kawano, S. Koide, and C. Imamura, “Seq2seq fingerprint with byte-
pair encoding for predicting changes in protein stability upon single
point mutation,” IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 2019.

[43] A. Paszke, S. Gross, S. Chintala, and G. Chanan, “Pytorch: from research
to production.” https://pytorch.org, 2017. Accessed on: July 2019.

16 VOLUME x, 2019

