Forecasting Building Energy Consumption with Deep Learning: A Sequence to
Sequence Approach

Ljubisa Sehovac, Cornelius Nesen, Katarina Grolinger
Department of Electrical and Computer Engineering
Western University
London, Canada
{Isehovac, cnesen, kgroling} @uwo.ca

Abstract—Energy Consumption has been continuously in-
creasing due to the rapid expansion of high-density cities, and
growth in the industrial and commercial sectors. To reduce the
negative impact on the environment and improve sustainability,
it is crucial to efficiently manage energy consumption. Internet
of Things (IoT) devices, including widely used smart meters,
have created possibilities for energy monitoring as well as for
sensor based energy forecasting. Machine learning algorithms
commonly used for energy forecasting such as feedforward
neural networks are not well-suited for interpreting the time
dimensionality of a signal. Consequently, this paper uses Recur-
rent Neural Networks (RNN) to capture time dependencies and
proposes a novel energy load forecasting methodology based
on sample generation and Sequence-to-Sequence (S2S) deep
learning algorithm. The S2S architecture that is commonly
used for language translation was adapted for energy load
forecasting. Experiments focus on Gated Recurrent Unit (GRU)
based S2S models and Long Short-Term Memory (LSTM)
based S2S models. All models were trained and tested on one
building-level electrical consumption dataset, with five-minute
incremental data. Results showed that, on average, the GRU
S2S models outperformed LSTM S2S, RNN S2S, and Deep
Neural Network models, for short, medium, and long-term
forecasting lengths.

Keywords-Deep Learning; Energy Load Forecasting; Recur-
rent Neural Networks; Sequence-to-Sequence; Gated Recurrent
Units; GRU; Long Short-Term memory; LSTM

I. INTRODUCTION

The rapid expansion of high-density cities [1], combined
with growing industrial and commercial sectors, requires a
continuous increase in energy production. It is estimated
by the EIA (U.S. Energy Information Administration) that
the industrial and commercial sectors consume 50% of the
total energy production [2]. Thus, energy efficiency and
management will maintain vital roles in building energy
consumption, to combat aspects such as the negative en-
vironmental effects and carbon dioxide emission [3].

In addition, buildings with efficient energy systems pro-
vide beneficial economic opportunities, by way of overall
lower operating costs. Commonly commercial, industrial,
and other large energy consumers pay premium prices for
high energy peaks. For example, the Independent Electric-
ity System Operator (IESO) charges their large customers
Global Adjustment (GA) fees based on the consumers’ con-
tribution to the top five province-wide peaks in a set period
[4]. Another category of consumers is charged premiums
based on their peak monthly consumption [4]. The higher is

the surge during these hours, the greater are the endured
costs. Therefore, it is important for respective parties to
improve their energy consumption efficiency during these
peak-hours.

The emergence of smart meters has provided valuable
data and information with regards to building energy con-
sumption patterns. The usage and analysis of this data
can be a pillar for effective energy management strategies.
One approach is to train machine learning (ML) algorithms
using this data from smart meters in order to predict the
energy consumption for a desired time frame ahead. If the
algorithm is able to predict values that behave similarly
to the actual consumption, the interested parties can make
cost-effective decisions based on these values. For example,
if the algorithm predicts that the consumption will be
high during peak hours, then management can take energy
saving measures, plan ahead and budget their consumption
behaviour more appropriately. Thus, this work focuses on a
novel ML algorithm to successfully forecast building energy
consumption.

Machine learning is a form of data analysis that builds
models capable of automatically learning from data. A sub-
field of ML is Deep Learning (DL) which involves multiple
layers of nonlinear processing units for data transformations:
the outputs from the previous layer are used as the inputs
for the next layer. An example of a DL architecture is a
Deep Neural Network (DNN), an Artificial Neural Network
(ANN) with multiple layers between the input and output
layers [5]. A DNN finds the mathematical transformation
that occurs for the input data to produce the output data.
Feedforward neural networks process information strictly in
a single direction, from input to output.

A Recurrent Neural Network (RNN) is a class of DNN
where the connections between nodes constitute a directed
graph along a sequence [6]. While general feedforward
DNNs consider the current input, RNNs consider the current
input along with the previously received inputs. RNNs also
differ by using an internal hidden state (memory) as a
mechanism to remember information throughout a temporal
sequence. For these reasons, RNNs have an advantage in
analyzing the temporal dynamic behaviour of a sequence
[7].

Thus, to accurately forecast energy consumption, this
work utilizes Sequence-to-Sequence (S2S) Recurrent Neural

https://www.ieee.org/publications/rights/copyright-policy.html

kgrol
Text Box
https://www.ieee.org/publications/rights/copyright-policy.html

Networks. These are two RNNs side-by-side, with the first
RNN encoding information and the second RNN sequen-
tially predicting from it [8]. These S2S models were chosen
over the conventional DNNs because of the long range
temporal dependencies they provide [8]. The work focused
on Gated Recurrent Unit (GRU) based S2S models and Long
Short-Term Memory (LSTM) based S2S models. These
models were compared to a standard RNN based S2S model,
as well as a traditional DNN model, in order to determine
which model provides best accuracy.

The rest of the paper is organized as follows: Section
II discusses the background, Section III covers the related
work, Section IV describes the methodology, Section V
explains the experiments and corresponding results, and
finally Section VI concludes the paper.

II. BACKGROUND

This section introduces RNNs and describes Long Short-
Term Memory (LSTM) and gated Recurrent Unit (GRU)
cells.

A. Recurrent Neural Networks

Deep Neural Networks are ML models that have achieved
success in solving many problems, such as speech recogni-
tion [9] and object recognition in images [10]. Nonetheless,
commonly used DNN architectures, such as feedforward
neural networks, are not well-suited at predicting a sequence
consecutively, since DNNs directly predict the sequence.
Such networks generate predictions based solely on the
current input, irrelevant of any prior inputs, thus neglecting
temporal dependencies present in time series problems.
Hence, RNNs provide a solution by using an internal state
to remember information in sequential time steps.

Conventional RNNs take a sequence of inputs
(%[, 2i7)) to compute a sequence of outputs
(Yp)» - Y(ry), where t is a time step, t € 1,..,T.
Hence, yj; is computed using the inputs zp), T_1)---, T[1)-
This is convenient when trying to predict the next word in
a sentence since the RNN will learn to predict the word
“blue” if given the previous inputs “the, sky” and current
input “was”. However, the method is weaker when trying
to predict a consecutive sequence of words. For example,
given the inputs “the, sky, was, blue”, conventional RNNs
will struggle at predicting the consecutive sequence “so, I,
went, outside” and will be unable to predict a sequence of
different length such as “and, sunny.”

In comparison, S2S-RNNs contain two RNNs, an Encoder
and Decoder RNN. The general idea, as shown in Fig. 1, is
to pass the input sequence (x[y, ..., Z[7]) into the Encoder
RNN, one time step at a time, to obtain a context vector
(). This context vector is an encoded representation of
the processed input sequence, which is then passed through
the Decoder RNN, extracting information at each unraveled
time step to obtain the output sequence (ym, ces UIN]), where

Encoder Decoder
Iy 2y i
hny [
Ecar [Ecar [> = 2 Eca P Dcer > Dcen [P Dcen
X1y 12 X1 Yol Yy -1

Figure 1. Sample passed through the RNN S2S network. Here, ¢ and Yjo]
denote the context vector and context value respectively.

n € 1,..., N. For the Decoder RNN, the predicted output at
n is used as the next input, hence gy, is computed using
the inputs y[n,l], ...,Q[O],Z‘[T], ey T[1]- Note that y[o] is the
context value, derived from ¢, and is used as the initial input
for the Decoder RNN. The use of two RNNs strengthens
consecutive sequence prediction, while also allowing the
time dimensionality of inputs and outputs to vary. Hence,
regardless of the input sample length T" (“the, sky, was, blue”
= 4 steps), the output can be an arbitrary N time steps (“‘and,
sunny” = 2 steps).

B. LSTM and GRU Cells

This subsection provides a brief overview of the algo-
rithms in Long Short-Term Memory (LSTM) and Gate Re-
current Unit (GRU) networks. While traditional RNN mod-
els are mainly trained using the back-propagation through
time algorithm [11], this method will lead to the vanishing
gradient problem for longer sequences [12]. Thus, LSTM
networks [13] are a form of RNNs that were designed to
specifically overcome the problem of vanishing gradient,
producing a model able to store information for longer
periods of time.

These LSTMs are comprised of cells, which contain
internal mechanisms called gates that perform actions on
the flow of information. The general idea behind these
gates is that they learn which data in the given sequence
is meaningful and should be kept, and which data can be
forgotten. By doing so, relevant information can be passed
down through longer sequences and, hence, the model can
make better predictions.

The LSTM cell architecture contains three gates (input
i, forget f and output o), an update step g, a cell memory
state ¢ and a hidden state h. Formally, the computations in
a single LSTM cell at time ¢, for input x, can be given as
[13]:

it = o(Wairpyg + b + Whihj—1) + bni) (la)
Jt = o(Wayppg + by + Whyphpe—1) + bay) (1b)
gt = tanh(Wogapy) + bug + Wighp_q) +brg) (10
01 = Weox) + bro + Whohji—1] + bno) (1d)
= ft Ocp—1+it O g (le)
hy = o; © tanh(cy_q)) (1f)

Here, o is the sigmoid activation function, tanh represents
the hyperbolic tanh activation function, and the ® stands for

element-wise multiplication. The W, ’s are the input-hidden
weight matrices, and Wj’s are the hidden-hidden weight
matrices parameters learned during training. Similarly, the
b,’s and by,’s are the biases learned during training.

The forget gate (1b) decides what information to keep
and what information to forget. It does so by passing the
current input z[; and previous hidden state hj;_y) through
a sigmoid function, which assigns a value between 0 and
1, to be element-wise multiplied to the cell state in (le).
A value closer to 1 means “’keep this information”, while a
value closer to 0 means “forget”. The input and output gates
work similarly.

The GRU model [14] was recently introduced to simplify
the LSTM model, while maintaining similar functionality.
GRU cells differ from LSTM cells by merging the cell
memory state and hidden state into one all-purpose hidden
state h and also by combining the input and forget gates
into a single update gate z. Introduced is the reset gate r,
which moderates the impact of the previous hidden state on
the new hidden state, as can be seen in the update step k
(2c). Formally, the computations in a single GRU cell are
given as [14]:

re = 0(Warap) + bar + Whphjp—1) + bny) (22)

2t = o(Wazpyy + boz + Whzhy—1) + bnz) (2b)
ke =tanh(Warz) + bak + 76 © (Whihji—1) + bax)) (2¢)
hyg = (1= 2t) © ke + 26 © by (2d)

Where the o, tanh, and ® are equivalently used as in the
LSTM cell. Note that there is one less learnable input-hidden
weight matrix W, as compared to the LSTM cell. This is
also true for W, b, and b;,. Thus, GRUs have fewer tensor
operations, less parameters, and they omit an internal cell
state. This means that training and convergence are achieved
faster on GRUs, while nonetheless, they contain enough
gates and hidden state dimension for long-term retention.

III. RELATED WORK

Forecasting energy can be classified into three main
categories: short, medium, and long-term [15] [16]. Un-
fortunately, long term forecasting still poses problems to
researchers, especially those working with one-minute [15]
[16] or even five-minute incremental data. Nonetheless, the
presented work focuses on prediction lengths comparable to
short, medium, and long-term energy forecasting.

There are two main methods for carrying out energy load
forecasting: physics based models and statistical/machine
learning based models. Physics based models incorporate
engineering principles which relay on a complex mix of
material, structural, and geometric properties. The statistical
based models analyze historical energy consumption data, by
implementing ML algorithms to mathematically represent
the relationship between the historical data and variables

affecting energy consumption. This section concentrates on
the statistical methods as our work belongs to that category.

Traditional machine learning methods, such as ANNs and
Support Vector Machines (SVM), have been used to forecast
energy consumption. The work by Jetcheva et al. [17]
proposed an ANN model to forecast day-ahead building-
level energy, with an ensemble approach to select model
parameters. The use of ANNs for general load forecasting
has been explored in several studies, for all three forecasting
horizons: short, medium and long [18] [19]. In comparison,
the work by Naji et al. [20] predicted building energy
consumption by applying an Extreme Learning Machine
method with the data regarding building material thickness
and their thermal insulation capability. Several studies [21]
[22] have proposed ANN and SVM models for estimating
energy consumption and compared performance. Convolu-
tional Neural Networks (CNN) have also been used for load
forecasting [23], which showed to outperform SVM models
while achieving comparable results to ANN and other deep
learning methods [24]. The work by Mocanu et al. [16]
showed that newly developed stochastic models, Factored
Conditional Restricted Boltzmann Machine, outperformed
ANN, SVM, and classic RNNs for short-term prediction
lengths. While the aforementioned works contribute to load
forecasting in their respective ways, the presented work
differs by focusing on S2S GRU and LSTM based models.
These S2S models offer a stronger analysis in time series
problems, since their internal hidden state is passed through
a directed graph along a sequence. This allows S2S models
to retain information in sequential data better than traditional
ANNSs, SVMs and CNNs.

LSTM and GRU based RNNs are becoming increasingly
popular for time series regression problems. The work by
Malhotra et al. [25] used standard LSTM networks to
detect anomalies in power demand. Similarly, Bouktif et
al. [26] used a standard LSTM model, coupled with a
genetic algorithm, for short to medium term aggregate load
forecasting. Although these two studies used LSTM based
models for load forecasting, their focus was on standard
LSTM prediction, rather than S2S prediction as in our work.
The main difference, as described in section II, is that
standard LSTM models use the outputs from the Encoder
as predictions, while S2S models combine the Encoder and
Decoder to use the sequential outputs from the Decoder as
predictions.

The most comparable work to ours is the work by Marino
et al. [15]. They used standard LSTM and LSTM-based S2S
models to forecast residential-level energy consumption, on
one hour and one-minute time step datasets. It was shown
that the S2S model performed well on both datasets, and
produced comparable results with other deep learnings meth-
ods [16]. While our work also used S2S models, it varies by
means of: overall different algorithm, sample generation, and
longer prediction sequence length. Moreover, the technique

of using the previous Decoder output as next input is not
utilized in the aforementioned work for their respective
LSTM-S2S model.

Therefore, the combination of sample generation and S2S
algorithm in the presented work provides a novel approach
to building-level load forecasting.

IV. METHODOLOGY

This section discusses the detailed methodology process.
The features and evaluation process are introduced first,
followed by the sample generation and S2S algorithm.

A. Features and Evaluation Process

Smart meters are digital electricity meters that are able to
measure how much electricity is used and when it is used.
The original private dataset, provided by an industry partner,
contained 5-minute incremental readings from a smart meter,
with the time stamp and usage recorded at each reading.
The weather data [27] for the meter’s specific location was
appended to the original dataset. Ultimately, the dataset
consisted of readings with 11 features, as given in Table
1. Three readings from the dataset are randomly given to
show how the data can vary. There was a “minute” feature,
but it was omitted since the usage at minute 55 and minute
0, of the next hour, could be very similar, while the minute
readings are the maximum and minimum respectively. For
re-assurance, simulations were run with the extra “minute”
feature with no improvement in accuracy.

The entire dataset was divided into a training and test set.
The first 80% of all readings were assigned as the training
set and the last 20% as the test set. Fig. 2 shows where
the train set ends and test set begins for the usage feature.
This validation process was chosen since the problem is
time series specific, and thus, randomizing the entire dataset
prior to subsetting (splitting into train and test set) is counter
intuitive; it would potentially allow the model to see the most
recent energy data during training, while being tested on the
first most data. Note that the usage data, as seen in Fig. 2,
describes a building that experiences a regular work-week.

Usage: Training vs Testing data

800 -

700 A

600 -

Usage (kW)
5 g
o o

w

=3

=3
!

N
1=
I3

-
o
=3

104000 106000 108000
Time: 5 minute timesteps

T
102000 110000

Figure 2. Usage data zoomed in to show breakdown between the train
and test sets.

Hence, the spikes represent the typical Monday-Friday work-
week, while the drops represent lower consumption during
the weekend.

The data was normalized using standardization. Hence,
the values of each feature in the data were transformed to
have zero-mean and unit-variance. The formula used is given
as:

T—H

o

= 3)

Here, x is the original feature vector, x is the mean of that
feature vector, o is its standard deviation, and & represents
the feature vector after normalization.

B. Sample Generation

An important step of the S2S approach is the sample
generation process. More specifically, how the input and
target samples were generated to be passed to the model. Let
one input sample be represented as a matrix, X € RT*/,
where T is the number of time steps and f is the number of
features. As defined in the previous subsection, the number
of features was f = 11, where each row of the matrix X is
defined as:

zp) = [Monthy DayOfYear),) DayOfMonthy,
Weekday,; Weekendy;) Holiday,; Houry, “4)
Seasony;) Tempy,; Humidity,; Usagey]

Where t € 1,....,T. For each input sample, one target
sample was generated, represented by a vector y € RV*1,
where NN represents the number of predicted time steps
from T'. The target vector represents the actual usage vector,
which is given by:

y = [Usagepj, ..., Usagep,, ..., Usage;y] (5)

Where yp, is the actual usage value at time step n, and
n € 1,..., N. We use this target vector to compare with the
predicted usage vector, 3 € RV*1,

Thus, the input and target samples were generated using
the technique demonstrated in Fig. 3. Here, ¢+ 1 denotes the
index (of the dataset) where the window starts, ' denotes
the length of the input window, and N denotes the length
of the target vector. As an example, to predict the next hour
of energy consumption using the previous four hours (in
5-minute increments), 7" and N would be set to T° = 48
and N = 12. It is important to note that the indices
(minus the last T+ N) of the training set were first
uniformly randomized, not the data itself, then the input and
target samples were generated. This way, data in a single
input sample represents consecutive time steps. The formal
process for sample generation, of the training set, can be
given as:

1) Uniformly randomize indices i. Here, ¢ € 1, ..., %4145t

Where i;,5: denotes the total length of the training set
minus the last 7'+ N indices. If ¢ was chosen to be

Table T
FEATURE DATA (BEFORE STANDARDIZATION)

Index Month Day of Year Day of Month Weekday = Weekend Holiday Hour Season Temp. (°C) Humidity = Usage (kW)
0 7 187 5 1 0 0 0 3 21.0 83.0 405.8743

23470 9 268 24 5 1 0 18 4 19.0 60.0 332.7853

104275 7 184 3 0 0 1 7 3 18.0 100.0 297.4848

11ast + 1, the input sample would still be length 7', but
the target sample would now be length N — 1, since
it is not possible to exceed the available index of the
training set.

2) For each i:

a) Append, from the training set, consecutive data
from indices 7 + 1 to ¢ + 1" as the input sample.
Hence, obtaining X € RT*S,

b) Append, from the training set, i+7+1 to i+7+
N as the target usage vector. Hence, obtaining
y € RN X 1'

Obtaining the input and target samples for the test set was
slightly different. Instead, as seen in Fig. 4, a sliding window
technique was used; the window shifted sequentially with
the overlap size equivalent to the target length, /N. Hence,
if we obtain one test input sample starting at index i’ + 1,
the target sample still ends at ¢’ + 7'+ N, similar to what is
done in Fig. 3 and the training set. However, the indices are
not randomized for the test set, and the next input sample
slides N time steps and starts at i’ + 1 + N, with the target
sample ending at i’ +7T +2N. The formal process for sample
generation, of the test set, can be given as:

1) Foreach ¢, st. i €1,1+ N,1+4+2N,...,1),,, where

i), denotes total length of the test set minus the last
T+ N:

a) Append, from the test set, consecutive data from
indices i’ 41 to i’ +7T as the input sample. Hence,
obtaining X’ € RT*7,

b) Append, from the test set, ¢’ +7+1 to i’ +T+ N
as the target usage vector. Hence, obtaining 3’ €
RN X 1'

Note that the process above accounts for the sliding
window technique by starting at index 1 and adding N each
time. Doing so allows for an overlap in input test samples,
but no overlap in target test samples. This was done to
concatenate the predicted usage vectors together into one
vector which has equivalent length as the total actual usage
vector. Thus, from here, comparisons between the predicted

Input: length T Target: length N

X L
[|]

i+T+N

i+T

i i+1 i+2 wes i+T |i+T+1|i+T+2 FN+1

Figure 3. Training set sample generation. Input and target samples
generated from random index ¢ 4 1 of the dataset.

and actual usage can be done by means of accuracy measures
and plotting.

C. S28 Algorithm

This section gives a detailed breakdown of the S2S algo-
rithm used for this work. As briefly described in section II,
each RNN (LSTM and GRU) has an Encoder RNN (E7) of
length T" and Decoder RNN (D) of length N respectively.
The inputs, as obtained in the previous subsection, are passed
through E'r, one time step at a time. Hence, Fig. 1 (a) shows
Er unrolled, where a vector, as in (4), is passed to it at each
time step. Each cell takes the previous hidden state and the
current input at time ¢, performs the actions discussed in
section II (equations la-f for an LSTM cell or 2a-d for a
GRU cell), and outputs a hidden state. Note that GRU cells
output one hidden state, while LSTM cells output both a
cell state and a hidden state.

Fig. 5 shows how Er and Dy connect for the proposed
S2S approach. Once the entire input has been processed by
Er, the output produced is a hidden state commonly referred
to as the context vector [8], since it encodes context from
the entire input sequence. This context vector, shown as)
in Fig. 5, is then used as the initial hidden state for Dy.
The context vector is also passed through a fully-connected
layer to produce the feature context value, shown as Ylo)»
which is the initial input of Dy. Let us denote this fully-
connected layer as Whr=1 where h represents the hidden
state dimension, otherwise known as the number of features
in the hidden state of each cell. Note that the E cell took
f = 11 features as input, while the D cell only takes f = 1
feature, hence the previously predicted usage value g,
Therefore, this W"~! transforms the output vector from
dimension & to a single value of dimension 1, allowing it to
be used as the next input value for Dy . Hence, this approach
is novel to building-level load forecasting, and separates
this work from others in literature. Thus, let us denote
these proposed models with a “-0” notation, representing the
distinguishing characteristic of the proposed architecture for
energy load forecasting; one predicted value computed at
time step n is passed as the next input. Hence, GRU S2S
will be denoted as GRU S2S-o.

Continuing, each output produced from the remaining D
cells is passed through the same fully-connected layer. This
transforms the output B[n] to a single predicted usage value,
Yn)» at time step n. Thus, after N time steps we have
obtained the predicted usage vector, and we can compute

Input Target

[| |

i+T
4 4 J M ./ J 4
i i +1 i'+2 i 4T (i +T+1i +T+2 e P+ TH+ FN+1
(@)
Input : Target
[Al]
4 . i , i+T i+T i+T i+T
T +N |if +1+N|i +2+N| i+ T+ FN+1| +N+2 +ON | +2N+1

(b)

Figure 4. Test set sample generation. (a) Input and target samples generated
from dataset at index i’ + 1. (b) Sequential input and target samples
generated from sliding window with overlap length V.

the loss from the target usage vector, formally given as:

N

n=1

Where (6) is the objective function that is minimized
after each epoch; it is calculated as the Mean Squared Error
(MSE) of the target and predicted values.

To train the model, back-propagation through time
(BPTT) is used. The entire network is unrolled by a fixed
number of time steps 7" + N; hence, it can be seen as
a deep standard feed-forward neural network with shared
parameters. Thus, standard BPTT can be applied to train the
network using a gradient based method. Here, the ADAM
[28] algorithm is used as the gradient based optimizer since
it outperformed other methods in terms of faster convergence
and better accuracy measures. The complete process is
formally given in Algorithm 1. In step 13, we initialize the
hidden state to be 0 of size B x h, where B is denoted
as the batch size - the number of training examples the
model processes for one update of weight parameters [29].
Batching is done to speed up convergence. Since the weight
parameters are updated per batch, a smaller batch size
provides a more accurate update. Once all the batches have
been processed by the model, one full epoch has occurred.
Steps 15-17 show the input being passed through the Erp.
Steps 19-20 transform the output of Ep, the context, to
create the initial input and hidden state of the Dy. Steps
22-27 describe the process of predicting the usage value,
appending that value, and preparing the next input and
hidden state. In steps 29-32, the total loss is computed,
BPTT is applied, and the model parameters are updated.
See that Algorithm 1, Train-S2S, is used to train the model,
and will differ slightly when applied to the test set. Namely,
for the test set, we build the inputs and targets differently

(as outlined in the subsection IV-B) and do not apply BPTT
on the loss, hence do not update the parameters in anyway.

V. EXPERIMENTS AND RESULTS

The used dataset is based on approximately 1 year and
3 months of energy consumption data, in kW, for one
commercial building/smart meter. The readings were in five
minute increments, so the total number of readings was 12
readings in one hour x 24 hours in one day = 287 x 458
days = 131,446. As stated in section IV, each reading, or
row of data, consists 11 features. The rest of this section
covers the conducted experiments and their results.

A. Experiments

The model was tested for three different prediction length
scenarios, which we consider here as short, medium, and
long prediction lengths. Since input length 7" to prediction
length N combinations are endless, the following three
cases were chosen for experiments:

e Case 1 (Short):
e Case 2 (Medium):
e Case 3 (Long):

input 7' = 12, predict N =6
input 17" = 144, predict N = 48
input 7' = 288, predict N = 120

In 5 minute increments, those cases equate to: 1 hour
— predicts next 30 minutes, 12 hours — predicts next 4
hours, and 24 hours — predicts next 10 hours, respectively.
Although the longest length of applicable prediction is 10
hours, this length correlates to predicting 120 time steps.
With datasets consisting of one-hour increments, 120 time
steps would translate to predicting 120 hours (5 days)
consecutively.

No model was trained for longer than 10 epochs, and
the hyperparameters were kept the same for each respective
model, and for each case. In all experiments, 10 epochs
was sufficient to reach an acceptable level of convergence.
The total loss computed, for both the training and test set,
showed minimal signs of improvement as the 10th epoch
approached. These precautions were taken to observe and
compare each model’s performance fairly and reasonably in

Yo e : Yy eeeeeees \ Yo

©

hyr-n hen hy ; by

L 1 1 1 I |
> Ecal Ecen Dceu Dear P ...

Figure 5. Detailed process of the S2S RNN. The left box shows the last
two steps of E7, while the right box shows the first two steps of D .

Algorithm 1 Train-S2S(G = (Ep, Dy, W't Py))
1: Input : Model G consisting of: Ep of length T, Dy
2. of length N, fully-connected layer W1 and initial

3: weight parameters denoted Fj.

4: Output : Model G trained to convergence, with updated
5: weight parameters P.

6:

7. Generate randomized input samples X € R”*/ and
8: corresponding target vectors y € RV <1

9:

10: for each epoch do

11: for each batch do

12:

13: initialize hy;_q) + 0 € RPX" B = batch size
14:

15: for time step ¢ from 1 to 7" do

16: hiy < Ecenn(2pg, hie—1))

17: h[t—l] — h[t]

18:

19: Q[O] — Wh_ﬂ(h[T])

20: h[o] — h[T]

21:

22: for time step n from 1 to N do

23: hin) < Deett(Ym—1)> Pin—1))

24: y[n] — Whﬁl(il[n])

25: append gy, to predicted usage vector y
26: h[n—l] — h[n]

27 Un—1] < Yn)

28:

29: compute L as in (6)

30: BPTT(L)

31 P + Adam(Py,r), r = learning rate

32: Py« P

33:

34: Return : Trained model G, with updated parameter
35: weights P.

terms of accuracy. The hyperparameters used to compute the
results were:

o Hidden dimension size h = 64

o Cell state dimension size ¢ = 64 (only for LSTM)
o Batch size = 256

e Epochs = 10

e Learning rate = 0.001

Note that choosing these external parameters has yet to be
optimized, and doing so holds potential for improved results.

The S2S-0 models with GRU/LSTM cells were compared
against a S2S-o model with the basic RNN cell, as well as
a Deep Neural Network, for all three cases. The DNN took
the same input matrix X € RT*f but instead flattened
it into a single vector of dimension size = T x f. This
vector was then passed through three deep layers consisting
of 512 nodes per layer. The output was a layer consisting of

N nodes, which is equivalent to length N of the predicted
usage sequence used in the S2S-o models. The DNN is used
to directly predict the sequence of values, all at once, while
the S2S-o0 models sequentially predict the values one at a
time. Thus, the DNN results give a good comparison be-
tween direct prediction accuracy versus sequential prediction
accuracy. The activation function used for the output layer
was linear, since this is a regression problem.

As stated in the sample generation subsection, there was
no overlap in target test samples, to enable concatenation of
predicted usage vectors into one vector. Hence, the accuracy
measures were obtained by comparing this one overall pre-
dicted usage vector against the overall actual usage vector.
The accuracy measures used throughout this work were the
Mean Absolute Error (MAE) and Mean Absolute Percentage
Error (MAPE), given by the following equations:

177.
MAE = — i — Ui 7
n;\y il)
100% ~~ | i — 4
MAPE = 8
DB ®

i=0
Where y represents the actual value, y the predicted value,
and number of observations or samples is given by n.
Lastly, since this work randomized the training samples,
it was important to run a few simulations where the model
saw a different randomized order of training samples each
time. Hence, 7 random seeds were used for each case. For
example, if random seed equals 1, then the training samples
are in one randomized order, and that order is used by each
model, for that case. If random seed equals 2, the training
samples are in a different randomized order. A value (such
as 1 or 2) is assigned to the seed to keep track of the random
order, to later reproduce identical results.

B. Results and Discussion

The results were computed using Python and the PyTorch
optimized tensor library [30], which is an open-source
machine learning library.

Fig. 6 shows the predicted usage values obtained from
the GRU S2S-o0 model compared to the actual, for all three
cases. Each plot shows only the last 7 days of the test set,
and it was produced with the same external parameters for
each case. From Fig. 6, we can observe that the accuracy
decreases as we move from Case 1 — 3. Hence, Fig. 6
(a) shows the predicted values best fitting to the actual
values, with 6 (b) showing lower accuracy and 6 (c) showing
the worst. Hence, as the prediction length N increases, the
accuracy is expected to decrease [15] [16]. This can also be
seen in Table II, which gives the accuracy that each model
obtained in terms of MAE and MAPE for all three cases. A
visualization of the MAPE increasing from Case 1 — 3 is
demonstrated in Fig. 7.

Predicted vs Actual: Cases 1-3

MAPE (%) for Cases 1-3

—e— GRU S25-0
6001 81 5 LSTMS25-0
(a) ;] —# RNNS2S-0
400 DNN
— Actual ;\? 61
= Predicted ~
200 1 . . : W |
0 250 500 750 1000 1250 1500 1750 2000 <
=
—~ 47
s 600
Y3
~ 3 4
®re 400
g 2 4
=) r r r
2001, . . \ Case 1 Case 2 Case 3
0 250 500 750 1000 1250 1500 1750 2000
Figure 7. MAPE (%) for the three cases and for each model.
600)
confirmed by Chung et al. [31] and Jozefowicz et al. [32].
c
(©) 400
VI. CONCLUSION
2001 The rapid expansion of high-density cities along with

0 250 500 750 1000 1250 1500 1750 2000
Time: 5 min increments

Figure 6. Predicted usage compared to actual, for the three cases: Hence,
(a) represents case 1, (b) and (c) represent cases 2 and 3 respectively.

Therefore, as seen in Table II and Fig. 7, even though ac-
curacy does decrease for the GRU/LSTM S2S-o models, it is
clear they still outperform the RNN S2S-0 and DNN model,
for all three forecasting cases. As expected, the GRU/LSTM
S2S-0 models significantly outperformed the basic RNN
S2S-0 model for longer prediction horizon represented with
case 3. This was expected as LSTM and GRU cells were
introduced to overcome the long-term drawbacks that RNN
cells pose.

It is interesting to compare the results between the GRU
S2S-0 and LSTM S2S-o models. For cases 1 and 2, the
results are very similar. For case 3, the GRU S2S-o model
outperformed the LSTM S2S-o model, with 12.56% de-
crease in MAE and 14.05% decrease in MAPE. Section II
provides a detailed analysis of calculations occurring in an
LSTM and GRU cell respectively. The LSTM cell contains
an extra secondary state, called the cell state, as well as an
extra gate. Even though the GRU cells have fewer states,
they outperformed the LSTM cells. This result is similarly

accompanying industrial and commercial development result
in increasing energy consumption. To reduce the energy
footprint, it is crucial to enhance energy management strate-
gies for buildings; energy forecasting is an important aspect
of such initiatives. Sensor-based energy forecasting uses
historical data from smart meters or other sensors to predict
energy consumption. This study belongs to sensor-based
forecasting category; it uses data from smart meters and
deep learning algorithms to predict energy consumption. A
novel methodology in both sample generation and S2S RNN
algorithm for building-level energy forecasting is proposed.
Hence, this work adapts a true S2S approach from language
translation for energy load forecasting: the predicted output
value is passed as the next input in the decoder. The method-
ology was applied to three S2S RNN cell-based models:
basic RNN, GRU, and LSTM. All were trained and tested
on five minute incremental data, with equivalent external
parameters, and compared against a Deep Neural Network.
The GRU S2S-0 and LSTM S2S-0 models outperformed the
basic RNN S2S-0 and DNN models, for short, medium, and
long-term prediction lengths. On average, the GRU S2S-o
model outperformed the LSTM S2S-o0 model, for all three
prediction lengths.

ACCURACY RESULTS FOR THE ALL MODELS AND ALL CASES. TOP NUFII\'/?EERIIIS BEST ACHIEVED; NUMBER IN BRACKETS IS THE AVERAGE OF RUNS.
Model MAE MAPE (%)
Case 1 Case 2 Case 3 Case 1 Case 2 Case 3
GRU S2S-o 10.673 18.432 24.378 2.365 4.137 5.416
(10.946) (19.369) (26.037) (2.441) (4.363) (5.834)
LSTM S2S-o 10.736 18.491 27.441 2.381 4.136 6.178
(11.029) (21.161) (29.745) (2.451) (4.745) (6.695)
RNN S2S-0 10.908 21.584 84.729 2.440 4.992 18.950
(11.196) (43.000) (99.994) (2.510) (10.233) (23.698)
DNN 12.258 25.681 28.40 2.733 6.082 6.777
(12.487) (28.845) (29.486) (2.826) (6.898) (7.041)

Future work will analyze the GRU S2S-0 and LSTM S2S-
o model outcomes for longer-term prediction, and apply the
S2S-o0 algorithm to relatable datasets.

ACKNOWLEDGMENT

The authors would like to thank Utilismart Corporation for
supplying industry knowledge and data used in this study.

REFERENCES

[1] H. Ritchie and M. Roser, “Urbanization,” 2018, Our World in
Data, Available: https://ourworldindata.org/urbanization. [Ac-
cessed: Jan. 2019].

[2] U.S. Energy Information Administration, “Use of En-
ergy in the United States Explained,” 2017, Available:
https://www.eia.gov/energyexplained. [Accessed: Jan. 2019].

[3] H. C. Akdag and T. Beldek, “Waste Management in Green
Building Operations Using GSCM,” International Journal of
Supply Chain Management, Vol. 6 (3), pp. 174-180, 2017.

[4] Independent Electricity System Operator, “Global
Adjustment and Peak Demand Factor,” 2019, Available:
http://www.ieso.ca/Sector-Participants/Settlements/Global-
Adjustment-and-Peak-Demand-Factor. [Accessed: Jan. 2019]

[5]1 J. Schmidhuber, “Deep learning in neural networks: an
overview,” Neural Networks, Vol. 61, pp. 85-117, 2015.

[6] D. E. Rumelhart, G. E. Hinton and R. J. Williams, “Learning
representations by back-propagating errors,” Nature, Vol. 323
(6088), pp. 533-536, 1986.

[7]1 A. Graves, S. Fernandez, F. Gomez and J. Schmidhuber,
“Connectionist temporal classification: labelling unsegmented
sequence data with recurrent neural networks,” In Proc. of the
International Conference on Machine Learning (ICML), pp.
369-376, 2006.

[8] L. Sutskever, O. Vinyals and Q. V. Le, “Sequence to sequence
learning with neural networks,” In Proc. of Advances in Neural
Information Processing Systems (NIPS), pp. 3104-3112, 2014.

[9] G.E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent
pre-trained deep neural networks for large-vocabulary speech
recognition,” IEEE Transaction on Audio, Speech, and Lan-
guage Processing, Vol. 20 (1), pp. 3042, 2012.

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet
classification with deep convolutional neural networks,” In
Proc. of Advances in Neural Information Processing Systems
(NIPS), pp. 1097-1105, 2012.

[11] P. J. Werbos, “Backpropagation through time: what it does
and how to do it,” Proceedings of the IEEE, Vol. 78 (10), pp.
1550-1560, 1990.

[12] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty
of training recurrent neural networks,” In Proc. of the Inter-
national Conference on Machine Learning (ICML), pp. 1310—
1318, 2012.

[13] S. Hochreiter and J. Schmidhuber, “Long short-term mem-
ory,” Neural Computation, Vol. 9 (8), pp. 1735-1780, 1997.

[14] K. Cho et al., “Learning phrase representations using RNN
encoder—decoder for statistical machine translation,” In Proc.
of the Empirical Methods in Natural Language Processing
(EMNLP), pp. 1724-1734, 2014.

[15] D. L. Marino, K. Amarasinghe and M. Manic, “Building
energy load forecasting using deep neural networks,” In Proc.
of the IEEE Industrial Electronics Society (IECON), pp. 7046—
7051, 2016.

[16] E. Mocanu, P. H. Nguyen, M. Gibescu and W. L. Kling,
“Deep learning for estimating building energy consumption,”
Sustainable Energy, Grids and Networks, Vol. 6 (1), pp. 91-99,
2016.

[17] J. G. Jetcheva, M. Majidpour and W. Chen, ‘“Neural network
model ensembles for building-level electricity load forecasts,”
Energy and Buildings, Vol. 84 (1), pp. 214-223, 2014.

[18] S. Ferlito et al., “Predictive models for building’s energy
consumption: an artificial neural network (ANN) approach,” In
Proc. of the Italian Association of Sensors and Microsystems
(AISEM), pp. 1-4, 2015.

[19] Y. T. Chae, R. Horesh, Y. Hwang, and Y. M. Lee, “Artificial
neural network model for forecasting sub-hourly electricity
usage in commercial buildings,” Energy and Buildings, Vol.
111 (1), pp. 184-194, 2016.

[20] S. Naji et al., “Estimating building energy consumption using
extreme learning machine method,” Energy, Vol. 97 (1), pp.
506-516, 2016.

[21] D. B. Araya, K. Grolinger, H.F. ElYamany, M. Capretz
and G. Bitsuamlak, “An ensemble learning framework for
anomaly detection in building energy consumption,” Energy
and Buildings, Vol. 144 (1), pp. 191-206, 2017.

[22] S. Seyedzadeh, F. P. Rahimian, I. Glesk and M. Roper, “Ma-
chine learning for estimation of building energy consumption
and performance: a review,” Visualization in Engineering, Vol.
6 (1), pp. 5-25, 2018.

[23] N. L. Tasfi, W. A. Higashino, K. Grolinger and M. A. Capretz,
“Deep neural networks with confidence sampling for electrical
anomaly detection,” In Proc. of the IEEE International Con-
ference on Smart Data, pp. 1038-1045, 2017.

[24] K. Amarasinghe, D. L. Marino and M. Manic, “Deep neural
networks for energy load forecasting,” In Proc. of the IEEE
International Symposium on Industrial Electronics (ISIE), pp.
1483-1488, 2017.

[25] P. Malhotra, L. Vig, G. Shroff and P. Agarwal, “Long short
term memory networks for anomaly detection in time series,”
In Proc. of the European Symposium on Artificial Neural
Networks, Computational Intelligence and Machine Learning
(ESANN), pp. 89-95, 2015.

[26] S. Bouktif, A. Fiaz, A. Ouni and M. A. Serhani, “Optimal
deep learning LSTM model for electric load forecasting us-
ing feature selection and genetic algorithm: comparison with
machine learning approaches,” Energies, Vol. 11 (7), pp. 1636—
1656, 2018.

[27] Weather Underground, “Historical Weather,” 2018, Avail-
able: https://www.wunderground.com/history. [Accessed: May
2018]

[28] D. P. Kingma and J. Ba, “Adam: a method for stochastic
optimization,” arXiv preprint arXiv:1412.6980, 2014.

[29] E. Hoffer, I. Hubara and D. Soudry, “Train longer, generalize
better: closing the generalization gap in large batch training of
neural networks,” In Proc. of Advances in Neural Information
Processing Systems (NIPS), pp. 1731-1741, 2017.

[30] A. Paszke, S. Gross, S. Chintala, and G. Chanan, “Py-
Torch: from research to production,” 2016. Available:
https://pytorch.org. [Accessed: May, 2018]

[31] J. Chung, C. Gulcehre, K. Cho and Y. Bengio, “Emperical
evaluation of gated recurrent neural networks on sequence
modeling,” arXiv preprint arXiv:1412.3555, 2014.

[32] R. Jozefowicz, W. Zaremba, and 1. Sutskever, “An emperical
exploration of recurrent network architectures,” In Proc. of the
International Conference on Machine Learning (ICML), pp.
2342-2350, 2015.

