Malicious and Benign URL Dataset Generation
Using Character-Level LSTM Models

Spencer Vecile, Kyle Lacroix, Katarina Grolinger, Jagath Samarabandu
Department of Electrical and Computer Engineering
Western University
London, Canada
svecile@uwo.ca, klacroi6@uwo.ca, kgroling@uwo.ca, jagath@uwo.ca

Abstract—As technologies advance, so do the attacks on them.
Cybersecurity plays a significant role in society to protect every-
one. Malicious URLs are links designed to promote scams, at-
tacks, and frauds. Companies often have web filtering algorithms
that will blacklist specific URLs as malicious; however, due to
privacy concerns, they will not give outside entities access to their
cybersecurity data. Unfortunately, this lack of data creates a dire
need for more data in cybersecurity research and machine learn-
ing applications. This paper proposes using machine learning to
generate new synthetic URLs characteristically indistinguishable
from the data they replace. To do this two character-level long
short-term memory (LSTM) models were trained, one to generate
malicious URLs and one to generate benign URLs. To assess
the quality of the synthetic data two tests were performed.
(1) Classify the URLs into malicious and benign to ensure the
characteristics of the original data were preserved. (2) Use the
Levenstein ratio to check the similarity between the real and
synthetic URLs to ensure sufficient anonymization. The results
from the classification test show that the synthetic data classifier
only slightly underperformed the real data classifier; however,
with having accuracy, precision, recall, sensitivity, and specificity
above 99%, it can be concluded that the characteristics of the
malicious and benign URLs were preserved. The Levenstein ratio
tests showed a mean of 67% and 79% similarity for the benign
and malicious URLSs, respectively. In the end, the character-level
LSTM model successfully generated an anonymized, synthetic
dataset, that was characteristically similar to the original, which
could pave the way for the publication of many more datasets
in this way.

Index Terms—LSTM, Deep Learning, Dataset Generation,
Dataset Anonymization, Malicious URLSs, Cybersecurity

I. INTRODUCTION

When doing machine learning research or applying it to
a problem there is always one constant regardless of the
project or application; a need for vast amounts of data. This
acquisition of data is a challenging process both in time and
resources for many reasons but mainly because data contains
valuable information that is not often given away for free.
This case is especially true for private companies whose data
can contain trade secrets or they may be in the business of
data like social media companies. If they were to publicize
these datasets first, they would have to ensure all private and
privileged information was removed by having a data analyst
go over the entire dataset which for a large dataset with billions
of data points is just not feasible or would be incredibly
costly. Now think about a world where these datasets could
be sanitized not by a data analyst but by a machine learning

algorithm. This is the end goal of this research and as a proof
of concept, we will be applying this concept to network data,
specifically, malicious and benign URLs.

Malicious URLs are links designed to promote scams,
attacks, and fraud [1]. Victims are induced to click on a
malicious URL that initiates the download of ransomware,
viruses, trojans, or other types of malware [1]. A successful
attack may compromise the target device or, in the case of a
business, even its entire network. Before now, companies used
rule-based network intrusion detection systems (IDS) [2] to
detect attacks coming from malicious URLs and that worked
fine but could quickly fail when the rules are subverted by a
skilled attacker.

An IDS can be improved by applying machine learning
to this task [3], but it must be trained on a good dataset
for it to be effective. A good dataset has the following three
characteristics: up to date, labeled, and contains realistic user
behavior [4]. Realism is especially important as experimental
results have shown that classification performance is signifi-
cantly reduced when an IDS is used in a network environment
that is significantly different than where its training data was
extracted [5]. This should not be a problem as there is a lot
of cybersecurity data globally, but most of it is held by private
companies that are unwilling to release it for confidentiality
reasons [6]. Companies often have web filtering algorithms
that will blacklist specific URLs as malicious [7]; however,
it is hard for outside entities to create predictive models to
classify new and unseen URLs as malicious without access
to these lists. Unfortunately, this lack of data creates a dire
need for more data for cybersecurity research and machine
learning applications. When companies are willing to give
access to their network data, the data is most of the time
heavily anonymized [4].

This is a significant problem because to train and evaluate
supervised learning algorithms, high-quality, realistic datasets
are required. By creating a character-level long short-term
memory (LSTM) model [8] that will generate realistic, labeled
URLS, this paper tackles issues related to realism and labeling.
Intrusion detection systems can then be trained and evalu-
ated by using this synthetic data. This paper proposes using
machine learning to generate new synthetic URLs that are
characteristically indistinguishable from the data they replace.
Using this method, the new data will be created with the

2022 TIEEE Conference on Dependable and Secure Computing (DSC) DOI: 10.1109/DSC54232.2022.9888835
IEEE Copyright policy can be found at https://www.ieee.org/publications/rights/copyright-policy.html

same characteristics as the original without compromising
the privacy of the original data provider. Eventually, this
method could allow a corperation to outsource much of their
cybersecurity development using sanitized datasets created
through our method.

II. RELATED WORK

A. Network Traffic Data Generation with Generative Adver-
sarial Networks

An article by Cheng et al. discussed the use of Generative
Adversarial Networks (GAN) [9] for the creation of IP packet-
layer network traffic data [10]. The GAN has proven highly
successful over the past few years with its ability to create
highly realistic yet artificial images, text, audio, and video
data [11]. Convolutional neural networks (CNN) GANs are
used in this study. CNN GANs use CNN models for both
the discriminator and generator. The researchers developed a
new technique to encode network data specifically for use in
CNN GANs. There are two steps to the encoding scheme:
1) converting packet byte values into subranges of sequential
values, and 2) duplicating and mapping these converted values
into a CNN input square matrix multiple times. Generating
individual traffic types can lead to a success rate of up
to 99%, whereas the generation of different traffic mixes
produces a success rate of up to 88% [10]. This study
shows excellent results using GANs to generate data so we
attempted a replication of their work as a starting point. This
also showed good generation results sometimes in terms of
correctly formed packets but, we also found that it suffered
from mode collapse causing most of the generated packets to
be exactly the same. Due to this, it was decided to not use
the GAN architecture but instead use a character-level LSTM
model that is often used in text generation.

B. Long Short-Term Memory Rap Lyric Generation

Another study by Potash et al. took a closer look at using
an LSTM [12] to generate language, specifically rap lyric
generation [13]. LSTM models are best suited for classifica-
tion, processing, and predicting in the case of time-series data.
Their goal was to develop a model to generate lyrics similar to
a given rapper’s style but not identical to existing lyrics. This
is called ghostwriting. The researchers compared the LSTM
model to an n-gram model. They evaluated the models on
both similarities of style and novelty. They used a similarity
algorithm to compare produced lyrics with all verses from the
same artist in order to assess the novelty of generated lyrics.
Using an LSTM model, the researchers were able to generate
lyrics without templates or constraints while also providing
full verses instead of single lines. According to the results,
the LSTM model excels at producing lyrics that also reflect
the rhyming style of the target artist. In this study, LSTM is
used to create data, which advances the proof of concept.

III. METHOD
A. Character-Level Long Short-Term Memory Models

Two character-level LSTM models were coded! and trained
in Pytorch, one to generate malicious URLs and one to gener-
ate benign URLs. The LSTM models consist of an embedding
layer, an LSTM layer, a dropout layer, and a fully connected
layer. The embedding layer embeds each of the integers in an
encoded training sample into a vector that is the length of the
character dictionary. The LSTM has two layers and a hidden
size of 512. The dropout layer helps with overfitting and has
a probability of 0.5. Finally, a fully connected layer is at the
end of the model and takes the hidden size of 512 in, and has
an output the same size as the character dictionary. This is
because each of the output neurons contains the probability of
each character in the character set being the next character in
a sequence.

B. Dataset

In our experiment, the URL dataset we used was ISCX-
URL2016 from the Canadian Institute for Cybersecurity [14].
It contains 35,377 benign URLs, 12,000 spam URLs, 11,566
malware URLs and 9,965 phishing URLs. The spam, malware,
and phishing URLs are concatenated together to create the
malicious URL dataset containing 33,531 samples.

C. Preprocessing

Before the dataset can be used in the character-level LSTM
model, it must be preprocessed into something the model
can use. The first step is to get all the possible characters
in the list of URLs and make a dictionary that encodes the
characters to integers and another that decodes the integers
back to characters. The dictionary must also have the Oth entry
as the special padding token. This padding token is used to
pad the URLs in a batch since the URLs will vary in length
and LSTMs require a uniform length throughout a batch. It
will also contain a special start token to indicate to the LSTM
model the start of a sequence and a special end token that the
LSTM model places at the end of a sequence to indicate the
end of the generated sequence. The dictionary is then used to
encode the entire set of URLs into integer representations. An
example of this encoding can be seen in Fig. 1.

D. Training

The goal of training is to train the character-level LSTM
models to generate data with the same characteristics as the
original URL data but not generate the same data. The first
step is splitting the data into train, validation, and test sets;
75%, 10%, and 15%, respectively. The training set was much
larger since these models require a large amount of data to
train. There is no test set because you can’t test character-level
LSTM models by comparing inputs to generated sequences.
Their only input is the start token, then they generate URLs
one character at a time based on the probability of what the
model thinks the next character should be. Next, the batches

ICode available at https:/github.com/svecile/URL-Dataset-Generation

must be created. In a batch of size one, take a sample and
make two arrays, one for input and one for target, each being
of size one longer than the length of the sample (length of
n+1). The input array has the start token placed in the first
position of the array and then each character of the sample in
the rest of the cells. The target array has the characters of the
sample placed in the first n cells and the end token placed in
the last cell (n+1). This creates an offset between the input and
target arrays. This is because the LSTM is trying to predict the
next character; therefore, if the input is the start token, then
the next character (target) is the first character in the URL and
onward [15].

The next part of the batching process deals with the URL
samples all having different lengths. Since they have varying
lengths to do batched training, you must find the lengths of
all the samples, then sort them by longest to shortest, and
then pad all the shorter sequences with the special padding
character [16]. The special padding token is ignored in the
loss function; and therefore, it does not contribute to the loss.
An example of the batching and encoding process can be seen
in Fig. 1.

The training function uses cross-entropy loss and Adams
optimization with a learning rate of 0.001, beta one of 0.9,
and beta two of 0.999. It has a batch size of 128, and to
ensure that we do not run into the exploding gradient problem
with really long URLSs, the gradient norm is clipped with a
max norm of 5. Every epoch, a validation step is included,
and if the validation loss doesn’t improve after three epochs,
then training will be stopped.

hello.com, he.com

Make integer mapped
dictionary for all characters

PAD | START |END | c |e|h| 1 |m| o] .
D 1 2 lalalslel[z[s] 9]
Add start token to input batch,
pad token to shorter URL,
and end foken to target batch
Input Batch
START |h|e|l]| 1| o . c o m
START |h|e]|.|c| o m PAD | PAD | PAD
Target Batch
h ellll]la]. C o m | END
h e|l.|lclo[m]|END]| PAD | PAD | PAD

Encode each characier
using dictionary
Input Batch Integer Encoded

1 s|la|e|6|l 8] 9 3 3 7
1 2|4]|9|c| 8 7 0 0 0
Target Batch Integer Encoded
5 4(6|6|8| 5 C] 7 2
S5 419|c|&| 7 2 0] 4]

Fig. 1. Example of encoding one batch that includes two URLs hello.com
and he.com.

E. Generating URLs

To evaluate the quality of the character-level LSTM models,
two synthetic URL datasets will have to be generated. One
is made up of synthetic malicious URLs generated by the
LSTM model trained on the real malicious URLs. The second
is made up of synthetic benign URLs generated by the LSTM
model trained on the real benign URLs. To do this, two
custom functions were used, one called ‘predict’ and one
called ‘sample’.

The predict function takes in a character, and a hidden
state passes these to the model’s forward function and obtains
probabilities raw output and a new hidden state. The hidden
state will be returned to the calling function in order to be
passed to predict again if it needs another character. The
raw output is given to the Softmax function, which outputs
the probability that each character in the character dictionary
should be the next character. This probability distribution is
then passed to a random choice function that randomly selects
one of the characters considering the Softmax probabilities.
This random choice function can be used to add more variation
(anonymization) to the model by making it output more than
one choice and randomly selecting from those. This function
then returns the chosen character and hidden state.

The ‘sample’ function calls the ‘predict’ function. The
sample function takes in an LSTM model as input and outputs
a fully formed URL string. It first passes the start token to
the model and obtains a prediction for the next character,
which is added to a list. It then continues to call the predict
function passing in the most recently predicted character until
the network predicts the special end token, which tells the
algorithm the URL is fully formed and it stops predicting and
returns the URL string.

To illustrate the generation process think back to the exam-
ple of hello.com and he.com in Fig. 1. Now if an LSTM was
trained on these two URLs it would definitely overfit and we
would most likely get the same URLs back when we generate
samples. If we wanted it to generate a URL string, first, the
’sample’ function shown in Fig. 2 would be called and it would
pass the start token to the trained LSTM’s predict function as
can be seen in Fig. 3, which would put the start tag through
the LSTM and the output would be a probability distribution
like the one shown in step 1 of Fig. 3 and a hidden state which
is the memory of the network. The distribution is the Softmax
probability that each of the characters in the dictionary should
be the next character in the URL string. In this case, the
probability that h is next is 1 because in our two training
samples ’h” is the only character that ever comes after the
start tag and the LSTM would have learned this. The random
choice function would see this, select it as the next character,
and ”h” along with the hidden state would be passed back to
the sample function.

Now “h” is concatenated to the generated URL string and
the first hidden state and ’h” are passed back to the LSTM’s
predict function. Next, in step 2 of Fig. 3 it can be seen that ’e”
has a probability of 1 because e” is the only thing that ever

Sample function is called]

v

Pass start token to
LSTM's predict function

START

LSTM Predict

Returns predicted
next char and
hidden state

Return fully
s formed URL
siring

Ts the next
<Character the END

char, hidden state

No

Concatenate predicted
char to URL siring and

pass the char and hidden
state back to LSTM
predict

Fig. 2. Sample function flow diagram.

Pass start tag to predict function

l START
Step 1 Characters | PAD | START |END | c |e|h]| 1 |m]| o
Probability | © 0 0 |ojoji1jojojol D
Generated URL=h ,L h, hidden state 1
Step 2 Characters | PAD | START |END | c |e|h| 1 |[m|o| .
Probability 0 (] 0 g|1j]0j0l0(0] O
Generated URL = he ,L e, hidden state 2
Step 3 Characters | PAD | START |END | c |e|h| | |m]|o]| .
Probability | 0 0 0 |ojojolos|ojo|0S
Generated URL = hel ,L I, hidden state 3
Step 4 Charac‘t_‘ers PAD | START [END [c |e| h I m o :
Probability | 0 0 0 |ojojojo75({0]j025]| 0

Fig. 3. Prediction function example.

comes after ’h” in our two training samples. So “’e” is chosen
as the next character and it along with the new hidden state
is passed back to the sample function. The sample function
concatenates ’e” to ’h” and our URL is now "he”. Next, ’e”
and the hidden state are then passed back to predict and the
probability distribution in step 3 of Fig. 3 shows that ”I” and
””” both have a 0.5 probability this is because in hello.com
”1” comes after "e” and in he.com ”.” comes after e. This is
where the random choice function comes in and will pick one
or the other adding variability to the generated samples. In
this example, it picks ”1” as the next character. Now the URL
string is "hel” so 1” is passed back to the predict function
and the probability distribution may look like step 4 of Fig. 3.
In this case 1 is predicted with a probability of 0.75 and ~0”
has a probability of 0.25. This case may arise because both
”I” and 0" can possibly come after ”1” in hello.com. The
reason why 1”7 has a higher probability than ”0” is because
the LSTM’s hidden state (memory) is allowing it to remember
the letters that came before the ”1” which were ”h” and “e”. It
would know that there should probably be two 1’s” before it

predicts ”0”. This process continues until the LSTM predicts
the end token should be next at which time the sample function
shown in Fig. 2 knows that the string is fully formed and to
stop predicting and return it.

F. Evaluation Method

This research had two goals: to create data that was char-
acteristically similar to the original in terms of classification
and for that data to be different enough (anonymized) from the
original data; therefore, it could be made publicly available?.
To evaluate these requirements, two tests were performed.
The first test attempted to classify the URLs into malicious
and benign to satisfy the first requirement. The second test
checked the similarity between the real and synthetic URLSs
to satisfy the anonymization constraint. For these tests to be
performed, 50,000 malicious and 50,000 benign URL samples
were generated. Then any URLs with illegal characters were
removed, and any duplicates within each set were removed.
This resulted in 48,890 synthetic benign samples and 40,541
synthetic malicious samples.

G. Classifier

The classifier is another LSTM model but modified to do
binary classification. This test for characteristic preservation
will involve giving the network a list of malicious URLs (class
1) and a list of benign URLSs (class 0) and asking it to classify
them into one of the two classes. For this test, two classifiers
are trained one on the real benign and malicious datasets and
one on the synthetic benign and malicious datasets. These two
classifiers are then tested on both the real and the synthetic
data. So overall there will be four parts to this test: train on
real, test on real (TRTR), train on synthetic, test on synthetic
(TSTS), train on real, test on synthetic (TRTS), and train
on synthetic, test on real (TSTR). The performance of these
classifiers is then compared and if the classifiers have similar
performance, we can say the real data’s characteristics have
been preserved in the synthetic dataset. Several metrics were
used to compare the performance, including accuracy, recall,
precision, sensitivity, specificity, and a confusion matrix. The
classifier was trained with a learning rate of 0.001, binary
cross-entropy with logits loss, a batch size of 128, and a two-
layer LSTM with a hidden size of 512. It was allowed to go
for a maximum of 50 epochs, but early stopping was set to
3; therefore, training will stop if the validation loss doesn’t
improve. The data split used was 75% train, 10% validation,
and 15% test when doing TRTR and TSTS. When TRTS is
performed the entire synthetic dataset is used to test it since
the classifier has not seen any of this data during training there
will be no leakage. The same is true for TSTR where the entire
real dataset will be used for testing since it was not used for
training.

2The trained models can not be released as they would contain too much
information about the real dataset.

H. Levenshtein Similarity Test

The Levenshtein ratio was used to evaluate how similar
a synthetic URL is to a URL in the real dataset. Using
Levenshtein distance [17], one can measure the difference
between two sequences. The Levenshtein distance between
words represents the number of single-character edits (inser-
tions, deletions, and substitutions) necessary to convert one
word into another. The Levenshtein ratio uses the Levenshtein
distance to calculate the percent similarity between two strings
or, in our case, two URLs. For example, two strings are exactly
the same if they have a Levenshtein ratio of 100%. Using this
ratio, every synthetic malicious URL is compared to every
real malicious URL. Every synthetic benign URL is compared
to every real benign URL, and the highest similarity ratio is
recorded. These are then plotted on two histograms to visually
represent the two similarity distributions. Then based on a
user’s similarity tolerance, packets above a certain similarity
ratio can be removed.

IV. RESULTS

A. Malicious URL LSTM model

The first model that was assessed was the malicious URL
LSTM. The training took place over 18 epochs and the model
converged to a training loss of about 0.6 and a validation loss
of around 0.8. A visual representation of this can be found in
Fig. 4.

The Levenshtein ratio histogram shown in Fig. 5 shows how
similar a synthetic malicious URL is to URLs in the real
dataset. Looking at the histogram, it can be seen that most
of the data points are between 0.5-1.0. The average value for
this histogram is 0.78913. This indicates that on average a
synthetic data point is 78.913% similar to a data point in the
real dataset. The maximum value that the histogram got was
1.0. This indicates that when the model created data, it created
some copies of the real data points. The minimum value the
histogram got was 0.15.

1.8—

Training Loss ——
Validation Loss ——

1.6—

14—

Loss

12—

1.0—

0.8 —

0.6 —

I I I I I | I I
0.0 25 5.0 7.5 10.0 12.5 15.0 17.5

Epoch

Fig. 4. Malicious URL LSTM model training graph.

5000 —

4000 —

3000 —

Number of Samples

2000 —

1000 —

I
0.2 0.4 0.6 0.8 1.0

Fig. 5. Similarity of generated malicious URLSs to real URLs used in training.

B. Synthetic Malicious URL Samples

Below are some examples of synthetic malicious URLSs that
were created by the LSTM. As you can see the URLs have
proper top-level domain suffixes and are formatted correctly.
Some include http and some are https. Some include the www.
and some do not but all this is good as it shows the model
has good diversity and that it is learning the URL syntax.

o http://amazon.co.uk/s/ref=sr_nr_n_2_2/202-2513040-
1206232?e=UTF8&rh=n:195522

o http://9779.info/%E8% A1%8D%E7%BA%B8%ES/

o http://www.accontamparoeb.com/wp-
content/plugins/content/tmpl/ch/modules/mod_memage.css

o http://www.freatusa.com/ilap/images/nmh851/aol?products
_readedpartnerld=2&nid=05

« https://spreadsheets.google.com/spreadsheet/viewform?
formkey=dGJViHLWECjGUJMD3G2QC3==

C. Benign URL LSTM model

The benign URL LSTM was the next model to be evaluated.
The training period was 27 epochs. In training, the model’s
training loss converged to a value near 0.8 and its validation
loss converged to a value of about 1. This is illustrated in Fig.
6.

According to the histogram shown in Fig. 7, the majority
is around 60% similar. This histogram has an average value
of 0.6719. As a result, on average, a synthetic data point has
a 67.19% similarity to a real data point. A maximum value
of 1.0 was obtained in the histogram. The minimum value the
histogram got was 0.16.

D. Synthetic Benign URL Samples

Below are some examples of synthetic benign URLs that
were created by the LSTM. Again the URLs have various
schemes, subdomains, second-level domains, and top-level
domains and are formatted correctly. Often, the domains in
the synthetic samples are real however the subdirectory part
of the URLSs often leads nowhere which is the anonymization
part of the algorithm working.

3.0
0.175—
Training Loss ~—— T
15 E—+ Training Loss ~——
25— Validation Loss 0.150— Validation Loss ——
2.0 — 0.125—
» 0.100—
8 157 2
[+
-
0.075—
1.0 —
0.050—
0.5—
0.025—
98— \ \ | i = 0.00—
0 5 10 15 20 25 I i t
15 20
Epoch 0 ° 10
Epoch

Fig. 6. Benign URL LSTM Training Graph

Fig. 8. Classifier trained on real data training graph.

TABLE I
CLASSIFIER TRAINED ON REAL DATA TEST RESULTS

Metrics TRTR Values TRTS Values

Accuracy 0.9966 0.9873
g Recall 0.9967 0.9952
3 Precision 0.9951 0.9772
5 Sensitivity 0.9967 0.9952
é Specificity 0.9965 0.9807
&

F. Classifier Trained on Synthetic Data

Next, the synthetic data classifier was evaluated. There were
10 epochs during the training period for this model. During
0.2 04 06 08 10 training, the model showed a low loss, convergent to about
0.1. Furthermore, the validation loss was also relatively low,
Fig. 7. Similarity of generated benign URLs to real URLs used in training. convergent to about 0.15. This can be seen in Fig. 9. After the
model was trained, the model was tested using the generated

« https://medium.com/dan-sanchez/duke-your-sony-couple- test set. The results of the test sets can be seen in Table 2.

to-drab-temple-fakes-happening-with-mars-possibless
« https://www.gov.uk/government/organisations/review-in-

detective-second-pental-illegal-goods 0.16—
« http://kickass.to/bundles-player-2-killing-kongs-season- 014 TAInnALoss, ——
6-week-192s-song-crash/ Validation:bassr——
« https://wordpress.org/showcase/electronics-dad-100- 92
onlines-mailcategory/%5%35 0.10—
« http://google.com/big/pep-watch-the-way-world- 2 008
constructions-for-a-san/ L
0.06—
E. Classifier Trained on Real Data oo
The classifier trained on real data was the next model to .
be evaluated. There were 25 epochs during the training period 002
for this model. The model showed a very low training loss, 0.00—
converged to around 0.005. Additionally, the validation loss | | | 1 i b
was extremely low, converged to about 0.01. This can be seen o 4 s 6 8 10
in Fig. 8. After the model was trained, the model was tested Epoch
twice, once using the real test set and once using the synthetic
dataset. The results of the test sets can be seen in Table 1. Fig. 9. Classifier trained on synthetic data training graph.

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on September 26,2023 at 01:14:07 UTC from IEEE Xplore. Restrictions apply.

TABLE II
CLASSIFIER TRAINED ON SYNTHETIC DATA TEST RESULTS

Metrics TSTS Values TSTR Values

Accuracy 0.9957 0.9906

Recall 0.9948 0.9857
Precision 0.9958 0.9913
Sensitivity 0.9948 0.9857
Specificity 0.9966 0.9940

G. Confusion Matrices

The confusion matrix provides a visual representation of
how a classification algorithm performs on its test set and
what types of errors it is making. The confusion matrix
provides count values for the number of correct and incorrect
predictions. Ideally, numbers should appear on the diagonal
and zeros elsewhere. Numbers outside the diagonal indicate
that the model’s performance is not perfect.

Starting with the classifier trained and tested on the real
dataset in Fig. 10, it can be seen that the model does well
overall. Looking at the diagonal on the matrix, there are only
a few mislabeled data (30 out of 8,960). This indicates that
the classifier can identify which real URL links are benign
or malicious with high accuracy. Next, in Fig. 11 you can
see how the classifier trained on the real data performs when
classifying the synthetic dataset. It only misclassified 1136
out of 89,344 synthetic samples showing it can accurately
distinguish between the malicious and benign samples even
when it was not trained on the same dataset.

The confusion matrix of the classifier trained and tested on
the synthetic dataset shown in Fig. 12 can be seen to be very
similar to Fig. 10 only mislabeling 56 out of 13,312 samples.
As with the confusion matrix of the real dataset, only a few
data points have been mislabeled in this dataset. Finally, in Fig.
13 you can see how the classifier trained on the synthetic data
performs when classifying the real data. It only misclassified
562 out of 59,904 real samples showing its ability to classify
the malicious and benign samples even when the dataset is
different from the one it was trained on.

The fact that all confusion matrices have a very small
amount of false positives and false negatives shows that the
performance of the two classifiers is similar suggesting that
the synthetic dataset accurately captured the characteristics of
the real dataset.

V. DISCUSSION/CONCLUSION

The results from the TRTR and TSTS classification tests
show that the synthetic data classifier only slightly underper-
formed the real data classifier; however, with having accuracy,
precision, recall sensitivity, and specificity above 99%, it’s
easy to conclude their performance is similar, and excellent.
However, these metrics alone can’t prove that characteristic
preservation was achieved. The TRTR is mainly to show the
best performance that could be achieved using only real data
and the rest of the tests should strive to be as close to this as
possible. The results of TSTS being very close to this TRTR
is very good but the data could be in a format that is only

Tue label

Tue label

Tue label

Tue label

Benign

Malicious

5000
4000
3000
2000
1000

Fig. 10. TRTR classifier confusion matrix.

Benign Malicious
Predicted label

40000
Benign

30000
20000

Malicious
10000

Benign Malicious
Predicted label

Fig. 11. TRTS classifier confusion matrix.

Benign

Malicious

Benign Malicious
Predicted label

Fig. 12. TSTS classifier confusion matrix.

35000

30000
Benign 35166 212

5000

20000

15000

Malicious L

Benign Malicious
Predicted label

Fig. 13. TSTR classifier confusion matrix.

usable by character level LSTM models or there could be mode
collapse in the model. This is where TRTS and TSTR come
in.

TRTS is important because it shows that when a classifier
only sees real data during training it is still able to classify the
synthetic data with very similar accuracy. This means that the
syntax used in the real URLs was captured by the LSTM that
generated the synthetic data and the data it created should be
usable by any model in the same way the original data was
used. This is shown in Table 1 where All metrics are only
different by approximately 0.01-0.02 which is a great result.
However, this test still wouldn’t pick up mode collapse in the
model but it is still a good result that shows some characteristic
preservation.

Finally, and most importantly is TSTR, as it will be able
to detect mode collapse in the model and it represents our
main use case where a company could outsource cybersecurity
development using the synthetic dataset to alleviate privacy
concerns. In Table 2 you can see that again the TSTR is
only off from TRTR by about 0.01 in all metrics which is
an excellent result. This result shows that there was no mode
collapse in the model since there is enough diversity in the
synthetic training set that the model was able to classify almost
all of the real data correctly. This means that a company could
use the synthetic dataset to develop a machine learning model
and be confident that when it is deployed back at the company
that hired them, on real network data, the results should be
almost the same. TSTR combined with TSTS and TSTR and
compared to TRTR show that the characteristics of what makes
a malicious URL malicious and a benign URL benign were
preserved in the generated dataset.

One can visually verify the characteristic preservation by
looking at the examples in sec 4 B and D. You may also
notice that the last example in sections 4 A and B are both
google websites however they have different subdomains. The
classification model can correctly classify these but deface-
ment and typosquatting URLs were not used in the training
data so it will be left to future work to see if the algorithm
can deal with these situations.

The Levenstein ratio tests showed a mean of 67% similarity
for the benign URLs and a mean of 79% similarity for the
malicious URLs. 67% for the benign URLs shows a sufficient
level of anonymization, with some still being exact copies
of the real ones; however, these can be discarded from
the final set. The malicious URLs had more similarity
with a mean of 79%, but this still should be sufficient
anonymization. However, the malicious dataset had a
significant amount more samples with 100% similarity. We
think this can be attributed to the datasets used to train the
character-level LSTM models. The benign LSTM model’s
dataset had around half a million unique URLs initially,
and then after duplicates and domain-only URLs were
removed, it was down to a little over 35,000. When manually
inspecting the dataset, it seemed to have more variance
than the malicious dataset. On the other hand, the malicious
dataset had many URLs with the same base URL (e.g.

www.google.ca/) but slightly different queries or paths added
to the base URL (e.g. https://www.google.ca/search?q=hello,
https://www.google.ca/search?q=goodbye). We think this
caused some overfitting and caused the LSTM model to
generate many URLs with the same base URL but different
paths attached, which increased the mean similarity. This
problem could be solved by finding a dataset with more
variance in the malicious URLs. Despite this, the character-
level LSTM model successfully generated an anonymized
synthetic dataset that was characteristically similar to the
original. It is our hope that this research paves the way for
the publication of many more datasets in this way; giving
researchers better access to high-quality, real-world data
for use in their research and companies easier access to
outsourcing cybersecurity development.

REFERENCES

[1] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, “Beyond blacklists:
learning to detect malicious web sites from suspicious urls,” in Proceed-
ings of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining, 2009, pp. 1245-1254.

[2] H.-J. Liao, C.-H. R. Lin, Y.-C. Lin, and K.-Y. Tung, “Intrusion detection
system: A comprehensive review,” Journal of Network and Computer
Applications, vol. 36, no. 1, pp. 16-24, 2013.

[3] H. Kaur, G. Singh, and J. Minhas, “A review of machine learning based
anomaly detection techniques,” arXiv preprint arXiv:1307.7286, 2013.

[4] 1. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating
a new intrusion detection dataset and intrusion traffic characterization.”
ICISSp, vol. 1, pp. 108-116, 2018.

[5] S. Mahdavifar and A. A. Ghorbani, “Application of deep learning to
cybersecurity: A survey,” Neurocomputing, vol. 347, pp. 149-176, 2019.

[6] S. Molnar, P. Megyesi, and G. Szabd, “How to validate traffic gen-
erators?” in 2013 IEEE International Conference on Communications
Workshops (ICC). 1EEE, 2013, pp. 1340-1344.

[7] M. S. I. Mamun, M. A. Rathore, A. H. Lashkari, N. Stakhanova, and
A. A. Ghorbani, “Detecting malicious urls using lexical analysis,” in
International Conference on Network and System Security. Springer,
2016, pp. 467-482.

[8] K. Hong, “Programming a poet: Poetry text generation using Istm,”
2020.

[9] A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and
A. A. Bharath, “Generative adversarial networks: An overview,” IEEE
Signal Processing Magazine, vol. 35, no. 1, pp. 53-65, 2018.

[10] A. Cheng, “Pac-gan: Packet generation of network traffic using gen-
erative adversarial networks,” in 2019 IEEE 10th Annual Information
Technology, Electronics and Mobile Communication Conference (IEM-
CON). IEEE, 2019, pp. 0728-0734.

[11] A. Aggarwal, M. Mittal, and G. Battineni, “Generative adversarial
network: An overview of theory and applications,” International Journal
of Information Management Data Insights, p. 100004, 2021.

[12] H. Sak, A. Senior, and F. Beaufays, “Long short-term memory based
recurrent neural network architectures for large vocabulary speech
recognition,” arXiv preprint arXiv:1402.1128, 2014.

[13] P. Potash, A. Romanov, and A. Rumshisky, “Ghostwriter: Using an
Istm for automatic rap lyric generation,” in Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing,
2015, pp. 1919-1924.

[14] M. S. I. Mamun, M. A. Rathore, A. H. Lashkari, N. Stakhanova, and
A. A. Ghorbani, “Url dataset (iscx-url2016),” 2016. [Online]. Available:
https://www.unb.ca/cic/datasets/url-2016.html

[15] C. Lara, “Character-level Istm in pytorch,”
https://github.com/LeanManager/NLP-PyTorch/blob/master/Character-
Level %20LSTM%?20with%20PyTorch.ipynb, 2019.

[16] H. Trivedi, “Minimal tutorial on packing and unpacking sequences in
pytorch,” https://github.com/HarshTrivedi/packing-unpacking-pytorch-
minimal-tutorial, 2019.

[17] G. Navarro, “A guided tour to approximate string matching,” ACM
computing surveys (CSUR), vol. 33, no. 1, pp. 31-88, 2001.

