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ABSTRACT Rapid expansion of smart metering technologies has enabled large-scale collection of
electricity consumption data and created the foundation for sensor-based load forecasting on individual
buildings or even the household level. With continuously growing energy consumption, the importance of
energy management including load forecasting is increasing in order to remedy the energy effect on the
environment. Numerous machine learning techniques have been proposed for sensor-based load forecasting
but most are offline approaches: the model is trained once and then used to infer future consumption.
However, these approaches are not able to adapt to concept drift: for example, their accuracy will degrade
when the building use changes or new equipment is installed. Thus, an approach capable of learning
from new data as they arrive is needed. This paper proposes adaptive online ensemble learning with
Recurrent Neural Network (RNN) and ARIMA for load forecasting under concept drift. The RNN part of the
ensembles consists of Online Adaptive RNN as its underlying RNN learner has the ability to model temporal
dependencies present in load data while its online nature enables continuous learning from arriving data. The
adaptation to the concept drift is improved by adding Rolling ARIMA to the ensemble. The performance of
the proposed approach has been examined on the four individual homes with different degrees of concept
drift. The results show that the proposed ensemble achieves better accuracy than its constituent algorithms
alone and, moreover, the analysis demonstrates the need to examine load forecasting approaches in respect
to how they handle concept drift.

INDEX TERMS load forecasting, concept drift, energy forecasting, ensemble learning, recurrent neural
network, online learning

Acronyms

ADWIN Adaptive Windowing
ARIMA Autoregressive Integrated Moving Average
BN-RNN Batch Normalized RNN
CMD Connect My Data
DDM Drift Detection Method
DL Deep Learning
DM Diebold-Mariano test
EIA Energy Information Administration
FCC Fully Connected Cascade
GRU Gated Recurrent Unit
IMAE Incremental Mean Absolute Error
LSTM Long Short Term Memory
MA Moving Average

MAE Mean Absolute Error
ML Machine Learning
MSE Mean Squared Error
PAR Passive Aggressive Regression
RNN Recurrent Neural Network
S2S Sequence to Sequence
SBCTL Similarity-based Chained Transfer Learning
TESLA Taylor Expanded Solar Analog Forecasting

I. INTRODUCTION

U .S. Energy Information Administration (EIA) estimates
that energy consumption will grow by 50% between

2018 and 2050 [1]. This expansion is largely driven by
continuously increasing economic activities [2]. Economic
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growth at an annual rate of 3–4% is not only driving energy
demand but also generating the corresponding CO2 emis-
sion and negatively affecting the environment [2]. Energy
management systems play a major role in mitigating energy
production side effects by monitoring, controlling, and opti-
mizing energy consumption and generation..

Load forecasting has been attracting tremendous research
and industry interest because of its essential role in energy
management systems: it is a foundation for energy genera-
tion and distribution planning, operation of supply, energy
budgeting and it is an inseparable part of smart grid develop-
ments [3]. The expansion of smart meters which measure and
record energy consumption has enabled energy forecasting
on the building and even household level. A large number
of smart meters in operation, over 70 million in the USA and
over 96 million in China in 2016 [4], created opportunities for
new deeper insights into energy usage patterns and enabled
large-scale load forecasting. However, traditional forecasting
techniques need to be examined in respect to how they
handle diverse energy consumption patterns present among
individual energy consumers as well as changes in patterns
over time.

In recent years, Deep Learning (DL) approaches have
demonstrated great successes in load forecasting because of
their strong generalization capabilities, the ability to model
complex systems, and extract features from row data [5].
Nevertheless, there is still a gap between conventional of-
fline deep learning methods and the learning required to
obtain insights from continuously arriving smart meter data.
Conventional machine learning (ML) requires that the entire
dataset be available at the start of the learning [6]. Then,
this entire data set is passed repeatedly through the model
and the model’s parameters are adjusted; one pass over data
is referred to as epoch. However, with smart meters, all
data are not available at the start of training as data are
continuously arriving. To acquire knowledge from the new
data, the conventional model needs to be re-trained using all
historical data combined with new data. Of course, this is
impractical and computationally intensive as each time the
model is re-trained from scratch.

Moreover, the underlying distribution of smart meter data
changes over time, producing what is referred to as concept
drift [7]. For example, adding a new appliance or a change in
home occupants behaviour patterns will result in different en-
ergy consumption profiles. Nonetheless, traditional machine
learning techniques are static, and in presence of the concept
drift, they exhibit weak and degrading performance [8].

Therefore, for energy forecasting with smart meter data,
we need an ML approach capable of learning from new data
as they arrive over time without the need to re-train the
model or keep historical data [9]. Online learning, a machine
learning paradigm that uses data streams for training and
learns one or a few instances at a time, has been proposed
to address this challenge. The ’online’ descriptor reflects the
fact that this paradigm continuously maintains its model and
modifies the model as needed. This learn-as-you-go approach

alleviates the computational load and removes the need for
all data to be present at once [6]. Online learning has been
applied for load forecasting: it has achieved better accuracy
than traditional offline models with significantly reduced
computation time [9]. As noted by Fekri el al. [9], online
learning, because of its online nature, should be better at
handling the concept drift; however, further examination of
forecasting under concept drift is needed [9].

Consequently, this paper proposes an online ARIMA-RNN
ensemble, a load forecasting approach capable of learning
from new drifting data as they arrive. The approach combines
two forecasting techniques: Online Adaptive Recurrent Neu-
ral Network (RNN) is used because of its online nature and
demonstrated high accuracy in load forecasting [9], whereas
Rolling ARIMA contributes to the model performance in
presence of the concept drift as it is able to adapt quickly to
changes in the load. The two techniques are combined using
aggregation techniques ranging from simple averaging to
adaptive weighted functions. Results show that the proposed
online ARIMA-RNN ensemble outperforms standalone On-
line Adaptive RNN and standalone ARIMA in terms of over-
all forecasting error. Additionally, the paper examines the
behaviour of the proposed approach for houses with different
degrees of concept drift and highlights the importance of
investigating algorithms’ behaviour in presence of concept
drift and across diverse consumers.

The remainder of the paper is organized as follows: Sec-
tion II presents the related works, Section III discusses the
background, Section IV describes the proposed approach,
and Section V explains the experiments and corresponding
results. Finally, Section VI concludes the paper.

II. RELATED WORK
Machine learning has been used extensively for load fore-
casting [10], [11] with techniques from the RNN category
dominating in recent years.

Memarzadeh et al. [12] proposed Long Short-Term Mem-
ory (LSTM) based forecasting algorithm that uses wavelet
transform to handle the fluctuations in electricity load. Also,
their model employs entropy and mutual information meth-
ods to eliminate the redundant features. The proposed ap-
proach was evaluated on aggregated load forecasting for a
region, therefore, it was not exposed to high data variability
as is the case with individual households.

Sehovac et al. [13] proposed Sequence to Sequence Recur-
rent Neural Network (S2S RNN) with attention mechanism
for load forecasting. The S2S model employs two RNNs,
an encoder and a decoder, to map the input sequence to the
output sequence. The attention mechanism strengthens the
connection between the encoder and the decoder to assist
with processing long sequences. Although S2S with attention
has shown great results, it is computationally much more
expensive than LSTM or even S2S without attention.

Eskandari et al. [14] proposed a CNN-GRU-LSTM model
for hourly load forecasting considering external factors such
as weather, weekday/weekend, and holiday. First, a Con-
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volutional Neural Network (CNN) is utilized to extract the
load and temperature features: at this stage, the univariate
data are converted to multidimensional features by applying
two-dimensional convolutional kernels. Next, these multi-
dimensional features are passed to the bidirectional Gated
Recurrent Units (GRUs) and LSTM units to generate the load
forecasts.

Tian et al. [15] introduced Similarity-based Chained
Transfer Learning (SBCTL) approach for load forecasting
with a large number of smart meters. The proposed ap-
proach trains the initial model for the first smart meter
in a traditional manner. Then, model training for all other
meters uses transfer learning to take advantage of existing,
already trained models based on similarities of consumers’
load profiles. This technique generates a personalized model
for each smart meter. In the experiment with 456 meters,
SBCTL achieved similar accuracy to traditional individual
model training while significantly reducing training time.

Several other studies also employed RNNs for various load
forecasting tasks. Bidirectional RNN combined with a deep
belief network was proposed for short-term load forecasting
[16], [17]. Li et al. [18] also used bidirectional RNN for

short-term load forecasting, but they added attention mech-
anism and distributed representation of input variables. Shi
et al. [19] employed RNN, specifically LSTM, together with
load profile pooling for residential load forecasting. LSTM
and GRU units were also proposed for distribution feeder
long-term load forecasting [20].

Ensemble techniques have also been proposed: Wang et al.
[21] presented an ensemble learning approach for short and
medium-range load forecasting. Their ensemble integrates a
clustering method with LSTM and a Fully Connected Cas-
cade (FCC) network. A clustering algorithm first partitions
the historical data to train multiple LSTM models, and then
the FCC model is used to fuse the trained LSTMs. The
ensemble increased the prediction accuracy in comparison to
standalone LSTM.

Gungor et al. [22] took an advantage of the ensemble tech-
nique for individual household electricity consumption pre-
diction. In their approach, AutoRegressive Integrated Mov-
ing Average (ARIMA), Holt-Winters, TESLA (Taylor Ex-
panded Solar Analog Forecasting), LSTM, and Persistence
prediction algorithms are combined using a feed forward
neural network to construct an ensemble. To decrease the
computational cost of training, they applied pruning by elim-
inating small-valued weights from the network.

The reviewed techniques [12]–[23] are based on RNN
variants such as LSTMs and GRUs because of their ability
to model time dependencies. Although they achieved ex-
cellent accuracy in load forecasting, they all belong to the
category of offline learning: once the model is trained, to
acquire knowledge from new data, it must be re-trained from
scratch with all historical data. In load forecasting, data from
smart meters are continuously arriving and new data may
have different patterns. Repeatedly re-training the model is
computationally intensive and often infeasible. In contrast,

our approach learns from data as they arrive without requiring
re-training. Model parameters, in both Adaptive RNN and
ARIMA, are dynamically adapted to capture the temporal
changes in the underlying data streams. This dynamic nature
makes the proposed ARIMA-LSTM well suited for forecast-
ing under concept drift.

For wind forecasting, adaptive incremental linear regres-
sion was proposed [24]: as new stream samples arrive, the
model learns gradually and endlessly. When the concept
drift is detected, the window of past observations used for
learning is reduced. Because this approach is based on linear
regression, it is not suited for highly non-linear load data.

For forecasting streaming time series data in the presence
of anomalies and change points, Guo et al. [25] devised an
adaptive gradient learning method for RNNs. The approach
wights the gradients based on the local distribution properties
of new data. Although the approach demonstrated excel-
lent results, it only works for one-step ahead forecasting.
Madireddy et al. [26] highlighted the importance of con-
sidering concept drift for job scheduling in production sys-
tems. They proposed a concept drift aware prediction model:
the location of the concept drift is detected with an online
Bayesian changepoint detection method and then the training
data collected before the drift are transformed by transfer
learning-inspired technique for the model re-training.

Works of Vexler et al. [27] and Liang et al. [28] presented
online learning approaches for load forecasting based on
LSTM. Vexler et al. [27] combined LSTM and online density
estimation with Hoeffding trees whereas Liang et al. [28]
presented an approach for the smart grid with the model
located at the network edge. Both studies [27], [28] did not
specifically consider concept drift.

Krannichfeldt et al. [29] proposed an online load fore-
casting approach based on a modified Passive Aggressive
Regression (PAR) model. Their technique actually combines
batch and online learning: batch models provide individual
forecasts, and the online ensemble combines their prediction
to achieve adaptability. The proposed approach is well suited
for smooth and convex problems, while non-linearities and a
high level of complexity, including concept drift, are present
in energy consumption data.

Similar to our study, the reviewed online and incremental
learning techniques [24]–[29] learn continuously from data
streams. However, they either do no consider concept drift
[24], [27]–[29] or are limited in respect to concept drift they
consider [25], [26]. Madireddy et al. [26] considered only
abrupt drift while Guo et al. [25] only consider a single
real-world dataset representing Yahoo services, which is a
very different application and does not directly apply to load
forecasting. In contrast, our research considers concept drift
without a limitation in respect to the type of drift. Moreover,
we consider diverse real-world scenarios and examine the
behavior of the proposed system on data streams with low
and high concept drift presence.

It is important to note that some studies impose as-
sumptions that do not apply to residential load forecasting.
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Sánchez-Medina et al. [24] proposed a linear model while
the approach proposed by Krannichfeldt et al. [29] is well
suited for smooth and convex problems. On the other hand,
non-linearities and a high level of complexity, including
concept drift, are present in energy consumption data and our
study investigates the performance of the proposed approach
on complex real-world data sets.

Finally, Fekri et al. [9] proposed a non-linear approach for
load forecasting and considered concept drift. Their Online
Adaptive RNN uses Batch Normalized RNN (BN-RNN)
as the base learner and combines Bayesian optimization,
performance monitoring, and buffering to tune the BN-RNN
model on the fly. As their approach achieved higher accuracy
than the offline LSTM and several other online algorithms,
we use it as one of the algorithms in our ensemble model.
However, Online Adaptive RNN does not respond rapidly to
changes in data when concept drift occurs, and, therefore, in
our approach, it is assisted by rolling ARIMA.

III. BACKGROUND
This section introduces RNNs, ARIMA, ensemble learning,
and Diebold-Mariano test.

A. RECURRENT NEURAL NETWORKS
Recurrent Neural Networks (RNNs) are among the state of
the art deep learning algorithms for learning from sequential
data [30]. They consist of RNN cells which are, in addition
to the connection to neighbouring layers, also connected
with a recurrent connection to the same cell at the previous
time step. These connections together with the cells’ internal
memory make RNNs suitable for modelling temporal depen-
dencies. However, vanilla RN suffers from vanishing gradient
problem: a long data sequence causes exponential reduction
of gradients as they are backpropagated through time and, as
result, the network forgets older information.

To overcome this problem, Long Short Term Memory
(LSTM) network illustrated in Fig. 1 was designed. In
LSTM, added input i, forget f , and output o gates allow for
better control over the gradient flows and assist in maintain-
ing memory for longer periods of time. At the time t, LSTM
computation is given as follows:

it = σ(Wxixt + bxi +Whiht−1 + bhi) (1a)
ft = σ(Wxfxt + bxf +Whfht−1 + bhf ) (1b)
ot = (Wxoxt + bxo +Whoht−1 + bho) (1c)
ct = ft � ct−1 + it � tanh(Wxgxt + bxg (1d)

+Whght−1 + bhg) (1e)
ht = ot � tanh(ct) (1f)

Here, c is the cell state, h is the hidden state, σ is the
sigmoid activation function, and � represents elementwise
multiplication. The Wx’s and Wh’s are the input-hidden and
hidden-hidden weights, respectively, and bx’s and bh’s are the
corresponding biases.

FIGURE 1. LSTM cell

This memory mechanism makes LSTM successful in load
forecasting and energy prediction tasks. However, the LSTM
is still an offline ML technique, and an adaptive online
LSTM is required to modify itself quickly to reflect the new
revealing patterns in data.

B. ARIMA
AutoRegressive Integrated Moving Average (ARIMA) mod-
els are fitted to past time series data to better understand
data or to predict future values [31]. An ARIMA model
is a combination of three parts: the Auto Regressive (AR)
part represents the variable as a linear combination of its
own lagged values, Moving Average (MA) denotes that the
error is a linear combination of past errors, and Integrated (I)
part refers to differencing applied to transform non-stationary
time-series into stationary. ARIMA(p,d,q) denotes ARIMA
with the order of autoregressive model p, the degree of
differencing d, and order of the moving-average model q.
For time series Xt where t is the time step, ARIMA(p,d,q)
expresses the forecast value X̂t as follows:

X̂t =

AR︷ ︸︸ ︷
α1X

′
t−1 + α2X

′
t−2 + · · ·+ αpX

′
t−p +

et + θ1et−1 + θ2et−2 + · · ·+ θqet−q︸ ︷︷ ︸
MA

(2)

where X ′ is the differentiated time series, α and θ are
autoregressive and moving average coefficients, and e is the
error term.

C. ENSEMBLE LEARNING
Ensemble learning is a machine learning paradigm that com-
bines several base models to improve learning outcomes [6].
The main idea is that when the base models are strategically
combined, the ensemble can achieve better outcomes than
any constituent model.

The three main strategies for combining the base learn-
ers are: bagging, boosting, and stacking. The bagging [32]
approaches train several independent base models and then
aggregate their individual predictions by voting or by averag-
ing to obtain the final prediction. Boosting [33] similarly uses
several base models, however, unlike bagging which simply
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aggregates the individual independent votes, boosting is an
adaptive technique in which each base model depends on the
previous ones. The final prediction is still obtained following
a deterministic formula. Finally, stacking [34] differs from
bagging and boosting in the way it combines the base models:
the combining is carried out with a meta-model. In other
words, the outputs of the base models are the inputs to
another ML model which learns how to combine the base
learners for better predictions.

D. DIEBOLD-MARIANO TEST
Although standard evaluation metrics such as Mean Absolute
Error (MAE) and Mean Squared Error (MSE) are useful
measurements for comparing models’ results, they do not
examine if the difference between the models is significant.
Diebold-Mariano test [35], [36] can be employed to deter-
mine if forecasts are significantly different.

Suppose that we have two forecasts f1, . . . , fn and
g1, . . . , gn for a time series y1, . . . , yn, and we want to
determine if the two forecasts are significantly different. Let
ei = yi− fi and ri = yi− gi be the residuals (errors) for the
two forecasts. The squared-error loss function is then defined
as:

L1 =
n∑
i=1

(ei)
2 (3)

L2 =
n∑
i=1

(ri)
2 (4)

The null hypothesis is given as follows:

H0 : E[L1] = E[L2] (5)

where E is expectation value. Diebold-Mariano test is based
on the loss differentials di:

di = e2i − r2i (6)

Equivalently, the null hypothesis of equal predictive accuracy
is shown as H0: E[di] = 0. Then, the sample mean loss
differential d̄ is:

d̄ =
1

n

n∑
i=1

dt =
1

n
[L1 − L2] (7)

The autocovariance γk at lag k is defined as:

γk =
1

n

n∑
i=1

(di − d̄)(di−k − d̄) (8)

Finally, the Diebold-Mariano statistic is shown as follow:

DM =
d̄√

[γ0 + 2
∑n

1
3 +1

k=1 γk]n−1
(9)

The null hypothesis is rejected at 5% confidence level
every time the DM value is outside the range [-1.96 1.96].

IV. ONLINE ARIMA-RNN ENSEMBLE

This section proposes Online ARIMA-RNN Ensemble, an
ensemble-based load forecasting approach that dynamically
learns from evolving data streams and adapts to new patterns
in the data. Online Adaptive RNN [9] is used as one of the
base learners because of its ability to model time dependen-
cies, online learning strategy, and demonstrated success in
load forecasting. To improve the ensemble’s ability to react
to the concept drift, an ARIMA learner is added. Differ-
ent ensembling strategies are explored including dynamic
weighting based on past performance. The overview of the
proposed Online ARIMA-RNN is shown in Fig. 2 with
the details of the three main components, preprocessing,
prediction models, and ensembler, described in the following
subsections.

A. PREPROCESSING

Preprocessing is a traditional step in offline learning and
involves techniques such as normalization and sample ran-
domization. However, traditional data preprocessing tech-
niques cannot always be applied to online learning as all data
are not available at the start of learning. The preprocessing
module in Online ARIMA-RNN Ensemble (Fig. 2) contains
the preprocessing common for both, ARIMA and Online
Adaptive RNN.

The data from smart meters are first transformed using
the sliding window technique as shown in Fig. 3. The first
window contains the first W smart meter readings and repre-
sents the first training sample. The next sample is obtained
by sliding the window for one time step: it contains the
readings from the time step 2 to W + 1. As in addition to
the load readings, other attributes are used for forecasting
such as the temperature and the day of the week, one sample
is of dimension W × F , where W is the number of time
steps contained in the window, and F is the number of
features. So far, this is the same as in offline learning, with the
exception that the window samples are created gradually as
data become available. Next, the batch is formed by grouping
b consecutive samples created by the sliding window tech-
nique.

In offline learning, the windowing technique is used for
creating the samples to feed into the model (often neural net-
work). Here, this structure, together with batches, also assists
in monitoring the model performance, and any significant
change in performance triggers the model refinement and/or
tuning. In Fig. 3, the windows W1 to W4 are before the con-
cept drift, the windows W5 to W9 lie in the drifting period,
andW10 toW14 belong to the new data patterns. Comparing
the model performance across different windows will show
degradation when the concept drift occurs indicating the need
to adapt the model. For example, comparing between W4
and W5 or between W9 and W10 is expected to indicate the
change in data and should trigger the model adaptation.
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FIGURE 2. Online ARIMA-RNN Ensemble.

FIGURE 3. Sliding window technique

B. PREDICTION MODELS
This subsection describes the two base learners for the pro-
posed ensemble: Rolling ARIMA and Online Adaptive RNN.

1) Rolling ARIMA
As described in Section IV-A, data from smart meters are
transformed into overlapping windows and consecutive win-
dows are placed together into batches which proceed to the
prediction models. Therefore, ARIMA should be trained over
a batch rather than a single window. Although the conven-
tional ARIMA could be fitted over every window in a batch,
this cannot take advantage of windows adjacency.

Consequently, the proposed ensemble uses a rolling
ARIMA, an incremental ARIMA model trained in a rolling
fashion such that to obtain the forecast S steps ahead, the
model is fit on the window data and the prediction from
(S− 1) steps. As seen in Fig. 4, the loop of fitting the model,
predicting, and appending is repeated S times to obtain the

FIGURE 4. Rolling ARIMA example with the forecasting horizon of S steps

prediction S steps ahead. As shown in Algorithm 1, the
ARIMA model is fit to the window (line 4), and the model
is used to predict one step ahead (line 5). Next, the obtained
prediction is appended to the window (line 6) and ARIMA is
fit on this expanded window (line 4). The process of fitting,
predicting, and appending is repeated to obtain the prediction
S time steps ahead. To acquire a stream of load predictions,
the process is repeated for each window in the batch.

6 VOLUME 4, 2016
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Algorithm 1: Rolling ARIMA
Input: Window: w, Forecast steps: S

1 Initialization: model=ARIMA(p, d, q)
2 d← w
3 for n=1,2,3,...,S do
4 model← fitARIMA(d)
5 p← model.predict(d)
6 d← d.append(p)

2) Online Adaptive RNN

Online Adaptive RNN [9] is a deep learning model that
can learn from data streams by updating the model as data
become available. The overview of the model is shown in Fig.
5 [9]. The model consists of three modules Normalizatio,
BN-RNN, and Tuning.

Normalization module: As this is a neural network-based
technique, it requires normalization as an additional pre-
possessing step to bring all features to a common scale,
remove large feature dominance, and improve convergence.
However, the traditional normalization is not possible be-
cause all data is not available at the start of the training
and the normalization must be done as data arrive. This
is addressed with Incremental Min-Max Normalization [9].
In this method, the largest and the smallest values of the
features are tracked with currentMax and currentMin,
and updated as needed with the arrival of new data. The
current batch is normalized using Min-Max normalization
with the current values of currentMax and currentMin
as follows:

x̂ =
x− currentMin(x)

currentMax(x)− currentMax(x)
(10)

FIGURE 5. Online Adaptive RNN model

where x is the original feature value, currentMin(x) and
currentMax(x) are the minimum and maximum of that
feature from the beginning of the data stream, and x̂ is the
normalized value.

BN-RNN module: Online Adaptive RNN is empowered by
Batch Normalized Recurrent Neural Networks (BN-RNN)
[37] as the core learner. The batch normalization in BN-RNN
indicates that the outputs of activation functions in the inner
layers are normalized before passing them to the next layers.
In RNNs, the batch normalization improves convergence
and reduces training time. The BN-RNN is trained with the
current batch and a limited number of epochs to prevent
overfitting to the current batch [9].

Tuning module: This module is responsible for tracking the
performance of the model and tuning it when needed. The
predictions obtained by the BN-RNN module are passed to
the tuning module which then uses the Incremental Mean
Absolute Error (IMAE) to determine if tuning is needed.
IMAE is calculated as follows:

IMAEb =
IMAEb−1 +MAEb

b
(11)

where b is the current batch index, MAEb is the MAE error
for batch b, and IMAEb−1 is the IMEA after batch b− 1.

If IMAE starts to increase, a Bayesian tuning mechanism is
activated to adjust the model hyperparameters before contin-
uing to the next round of training. Note that this assessment
accrues after the actual values for batch b become available
[9]. If there is no significant change in IMEA, the training
continues with the current hyperparameters.

C. ENSEMBLER
The ensembler module, Fig. 2, is responsible for combining
the prediction from constituent base models, in this case,
Rolling ARIMA and Online Adaptive RNN, to obtain the
final prediction. In general, an ensemble model is expected to
have higher accuracy in comparison to the single algorithm
because of its generalization abilities [38]. In the ARIMA-
RNN ensemble, the prediction models, Online Adaptive
RNN and Rolling ARIMA are trained with each batch and
then used to get the respective prediction values. While
ARIMA hyperparameters (e.g., the degree of differencing,
the order of the autoregressive and moving-average model)
remain the same, RNN hyperparameters are optimized as
new batches arrive.

As shown in Fig. 2, the final ensemble prediction is a
combination of these individual predictions. The base models
(RNN and ARIMA) prediction errors from the previous batch
are indicators of how good each individual learner is at a
specific time in the sequence, and therefore, these errors are
considered as a criterion for generating the final prediction.
Four ways of aggregating the final prediction are consid-
ered: average, weighted average, squared weighted average,
and model switching. Fig. 6 illustrates the four aggregation
techniques while the details are described in the following
subsections.
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FIGURE 6. Aggregation techniques for the ARIM-RNN ensemble

1) Average
This is a simple average method belonging to the category
of bagging ensemble approaches. The final prediction is the
average of the base learner predictions, in our case Rolling
ARIMA and Online Adaptive RNN. Equal weights of 0.5
are given to both models, and the final prediction PE1 is
calculated as:

PE1 =
PA + PR

2
(12)

where PA and PR are Rolling ARIMA and Online Adaptive
RNN predictions.

2) Weighted Average
This is an adaptive boosting ensemble approach which uses
Mean Absolute Error (MAE) of the base learners in the batch
n − 1 to determine the weights wA and wR given to the
base learners predictions in the batch n. It is expected that
the model with higher accuracy on the last batch should be
given more weight on the current batch. The ARIMA weight
wA and Online Adaptive RNN weight wR are calculated as
follows:

wA = 1− e
′

A

e
′
A + e

′
R

(13)

wR = 1− e
′

R

e
′
A + e

′
R

→ wR = 1− wA (14)

where e
′

A and e
′

R are the previous batch MAE errors for
Rolling ARIMA and Online Adaptive RNN.

These weights ensure that the higher accuracy model from
the last batch has more influence on the final prediction PE2:

PE2 = (PA ∗ wA) + (PR ∗ wR)

=
((PA ∗ e

′

R) + (PR ∗ e
′

A))

(e
′
A + e

′
R)

(15)

3) Squared weighted average
Like the weighted average, the squared weighted average
uses the error obtained by each base learner on the previous
batch to determine the learners’ impact on the current batch.
In the weighted average, the learner impact is inversely
proportional to the error while the squared weighted average
approach increases the impact of the better model by squaring
the weighted prediction. The final prediction is calculated as
follows:

PE3 =
√

((PA ∗ wA)2 + (PR ∗ wR)2)

=

√
(PA ∗ e

′
R)2 + (PR ∗ e

′
A)2

(e
′
A + e

′
R)

(16)

4) Model switching
The basic idea behind this approach is that the model that
performed better on the batch n − 1 has a high probability
to perform better on the batch n. Therefore, this approach
switches between the two models based on their performance
on the last batch. This way, the weaker model is removed
from the prediction. When there is no concept drift, it is
expected that Online Adaptive RNN will perform better due
to its ability to model complex patterns, and consequently,
this model will be chosen for the following batch. In the
presence of concept drift, Rolling ARIMA may perform
better, and thus will be selected as the model for the final
prediction.

The threshold α has been added to prevent switching
between the models on a minimal difference in error. If on
batch n − 1, the accuracy of one model is higher than the
accuracy of the other model by more than a factor of α, the
better model is used for batch n. Otherwise, the same model
is used on batch n as on n − 1. The final prediction is as
follows:

PE4 =


PA, if e′R − e′A > α

PR, if e′A − e′R > α

keep last model, otherwise
(17)

where e′A and e′R are errors of ARIMA and RNN on the
previous batch. The threshold α ensures that the model is
not switched on minimal differences in error as that could
indicate a false switch alarm and may not denote a concept
drift. The value of α is determined through experiments as
shown in Subsection V-B3.
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V. EVALUATION
London Hydro, a local electrical distribution utility involved
with this project, developed the first Green Button Connect
My Data (CMD) environment to provide secured sharing
of energy data with the consumer’s consent. Enhanced load
forecasting will help London Hydro to increase return on
investment from the smart meter infrastructure and will
demonstrate the value of sharing smart meter data with
3rd parties through a secure Green Button platform. The
proposed ARIMA-RNN ensemble was evaluated on propri-
etary real-world data from four residential consumers ob-
tained through the CMD platform. Each consumer’s dataset
contained hourly energy consumption for three years, for
a total of 25,560 readings. Additional features such as the
day of the year, the hour of the day, and the day of the
week, were devised from the load reading date/time to assist
with modelling daily and weekly patterns. Weather-related
features were also added including temperature, wind speed
and direction, pressure, and humidity. The complete list of
features, together with an example of their value, is shown in
Table 1. All non-numeric features are converted to numbers
with one-hot encoding. Energy consumption is the target
variable. Note that we used many features and relied on
the ability of the deep learning model to extract relevant
features. To examine the differences between the four houses
in respect to the temporal patterns present in data, concept
drift analysis is conducted first. Next, the accuracy of Rolling
ARIMA, Online Adaptive RNN, and the ensemble is exam-
ined. Finally, different load forecasting models are compared
and statistical significance is examined.

A. CONCEPT DRIFT ANALYSIS
The presence of the concept drift degrades the performance
of the offline ML algorithms and may even make them
unusable. Although online ML techniques for load fore-
casting have an advantage as they can adapt to changes in
data patterns, the examination of the impact of the concept
drift on the load forecasting accuracy has been limited [9].

TABLE 1. Features with data examples

Feature Example
Year 2016
Month 11
The Day of the Month 24
The Hour of the Day 16
The Week Number 23
The Day of the Week 4
Season Spring
Holiday True or False
Weather Condition Rainy
Temperature −14.2C◦

Dew Point Temperature −16.4C◦

Relative Humidity 71%
Wind Direction 29◦

Wind Wind Speed 21 mph
Visibility 24.1 meter
Energy Consumption 0.38 KW

Consequently, here we first investigate the four houses with
respect to the presence of the concept drift.

Concept drift detection techniques work on different prin-
ciples and detect different types of drifts. Therefore, to
examine different drifts, three techniques have been used:
Drift-Detection Method (DDM) [39], ADaptive-WINdowing
(ADWIN) [40] and Page-Hinkley [41].

DDM, one of the commonly referenced methods, is based
on the Binomial distribution giving the probability for the
random variable representing the error. A significant increase
in the online error indicates drift occurrence. In ADWIN,
the model has an adaptive window w of a variable size:
the window grows when there is no change in the statistical
properties of data and shrinks otherwise. If there are sub-
windows of w with distinct properties, the drift is detected.
Finally, Page-Hinkley keeps track of the cumulative differ-
ence between the time series values and their current mean.
This cumulative sum is compared against its minimum to
detect the concept drift.

Fig. 7 shows the number of concept drifts detected by each
of the four algorithms for the four houses. It can be observed
that ADWIN detected a higher number of drifts for house one
than for house two, while DDM did not detect any drifts for
house one and detected five for house two. Nevertheless, with
most algorithms, houses one and two exhibit a fewer number
of drifts than houses three and four; thus, we will refer to
houses one and two as Low 1 and Low 2 and to houses three
and four as High 1 and High 2.

Figures 8 and 9 show detected concept drifts for homes
Low 2 and High 2. Drift information is overlapped with
actual load data for those houses. DDM detects concept drift
occurrence along with the duration of the drift: sections with
the same colour indicate the data with similar distributions. In
contrast, ADWIN and Page-Hinkley only indicate the time at
which the concept drift starts: the peak location indicates drift
occurrence while the height of the peak depicts the actual
load value at that point. It can be observed that each algorithm
detected a higher number of drifts for house High 2 than for
Low 2.

The DDM algorithm especially highlights this difference
by many differently coloured areas for house High 2 indi-

FIGURE 7. The number of concept drifts detected by DDM, ADWIN and
Page-Hinkley for the four houses
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FIGURE 8. Drifts detected by DDM, ADWIN and PageHinkley - house High 2

FIGURE 9. Drifts detected by DDM, ADWIN and PageHinkley - house Low 2

cating diverse distributions and concept drifts throughout the
time series. These concept drifts create challenges for online
learning as the model must perpetually change to capture new
data patterns.

B. ACCURACY ANALYSIS FOR ROLLING ARIMA,
ONLINE ADAPTIVE RNN, AND ARIMA-RNN ENSEMBLE
Offline learning models are static and thus can be evaluated
on a static holdout set containing samples that were not
used for model training. In contrast, the assessment of the
online models is more complex as the models change over

time by learning from continuously arriving data. Still, the
out-of-sample evaluation approach must be used to achieve
realistic estimates. We are using the holdout-like technique
on every window: W consecutive time steps with the cor-
responding load, weather, and date/time features constitute
the independent variables and the load to predict is the
dependent variable. The sample is first used as a test sample
by predicting the load value and comparing it to the actual
consumption. Next, the same sample is used for the training.
The process is repeated for the next window and so on. This
is similar to prequential evaluation [9], but in our study, it is
used with the windowing approach.

With traditional machine learning, the larger the training
data set, the higher the model accuracy. For load forecast-
ing with window sliding techniques, a large window size
typically leads to higher accuracy [13]. However, the model
performance under the concept drift depends on discounting
or even removing the insights obtained from the data col-
lected before the concept drift [42]. Thus, there are opposing
needs to increase window length for accuracy increase and to
reduce the window length for better concept drift adaptation.
The load prediction under the concept drift requires a trade-
off between the prediction accuracy on the non-drifting signal
and the accuracy while adapting to the new concepts. Conse-
quently, this subsection examines the impact of windows size
on the accuracy of Rolling ARIMA, Online Adaptive RNN,
and the proposed ARIMA-RNN Ensemble.

1) Rolling ARIMA
As the window size increases, ARIMA has more data points
to fit the model, and therefore, it is expected that the pre-
diction accuracy will increase. However, as the window size
increases further, the ability of the model to adapt to the new
concepts may decrease as the adaptation may take longer
because of the presence of older samples in the window.

Experiments were conducted with window sizes from 100
to 600 time steps, with increments of 100. The Mean Squared
Error (MSE) for the four houses as well as the average MSE
are shown in Fig. 10. As expected, with the increase of
window size from 100 to 200, the error decreases for most
houses. With the further increase of the window size, the er-
ror remains the same or marginally increases. Consequently,
window size 200 was selected for use in the ensemble.

House Low 1 achieved lower errors than the other houses
for all window sizes. This could be explained by the fact
that this home has fewer concept drifts than other homes.
However, house Low 2 had the highest errors of the four
homes despite the low concept drift presence. A possible
reason is the presence of complex dependencies in data not
captured by the ARIMA model.

Fig. 11 demonstrates the ARIMA performance for an
example concept drift: the two graphs show MSE for ARIMA
with window sizes 200 and 600 overlapped with the coloured
region indicating the concept drift according to DDM. For
both window sizes, the errors are low before and after the
concept drift, and the highest spikes are observed during the
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concept drift. The height of the spikes during the drift is
slightly lower for window size 200 than for 600.

2) Online Adaptive RNN
Similar to Rolling ARIMA, Online Adaptive RNN accuracy
is affected by the window size, and therefore, the experiments
for Online Adaptive RNN were also conducted with window
sizes from 100 to 600 time steps, with increments of 100.
The architecture of the RNN remains the same through all
experiments: one LSTM layer with 64 hidden units. The
learning rate is tuned online, whenever IMAE drops, as
described in Subsection IV-B2.

The results are shown on Fig. 12. Whereas with ARIMA,
the error for all houses decreased with increasing the window
size from 100 to 200 (Fig. 10), for Online Adaptive RNN,
the error remained almost the same (Fig. 12). The average

FIGURE 10. Impact of the window size on MSE for ARIMA

FIGURE 11. Examples of Rolling ARIMA errors for window sizes 200 and 600

error only exhibited small oscillations, with the lowest value
achieved for window size 100. Thus, the window size 100
was used for the Online Adaptive RNN in the ensemble
experiments.

As in ARIMA experiments, house Low 2 achieved lower
error irrelevant of the window size. Whereas with ARIMA,
house Low 1 had the highest error rates (Fig. 10), with Online
Adaptive RNN, house Low 1 achieved lower errors than
house High 2 (Fig. 12). This can be explained by the fact that
Online Adaptive RNN is capable of capturing more complex
patterns than Rolling ARIMA. Overall, errors are much lower
for Online Adaptive RNN than for Rolling ARIMA.

An example of Online Adaptive RNN performance in
presence of the concept drift is shown in Fig. 13: graphs show
MSE values for house High 2, window sizes 200 and 300,
with the concept drift indicated with the coloured region.
This house and window sizes were chosen for illustration
as its forecasting error increased significantly when window
size was increased from 200 to 300 as observed from Fig. 12.
At the start of the concept drift, the spikes are higher for the
window size of 300 than for 200. With a large window size,
the model needs more time to adjust to the concept drift. In
the later part of the concept drift, errors are lower for the
window size of 200.

Online Adaptive RNN hyperparameters were determined
by trial and error starting from the tuned model presented by
Fekri et al. [9]. Note that the learning rate, the most impor-
tant RNN hyperparameter [9], is tuned online by Bayesian
optimization.

3) Ensemble ARIMA-RNN
Ensemble ARIMA-RNN used ARIMA and Online Adaptive
RNN with parameters determined individually as described
in the previous two subsections. The only ensemble variant
with additional parameters is the model switching aggrega-
tion which uses threshold α for switching between models.
As switching the models too frequently may result in the
degradation of the overall ensemble performance; this sub-
section examines the impact of the α threshold.

The experiments were conducted with α values from 1 to

FIGURE 12. Impact of the window size on MSE for Online Adaptive RNN
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3, with increments of 0.25: the results are shown in Fig. 14.
As with Rolling ARIMA (Fig. 10) and Online Adaptive RNN
(Fig. 12), for the ensemble, house Low 2 showed the lowest
errors, and houses Low 1 and High 2 exhibited the highest
errors. The average error decreased as α increased: the homes
with higher errors exhibiting a sharper decrease in errors than
the homes with lower errors. This confirms that between the
participating models, Rolling ARIMA and Online Adaptive
RNN, on small differences in the prediction accuracy leads
to performance degradation. The α value of 3 was used in the
remaining experiments.

C. MODEL COMPARISON
This subsection compares the proposed ARIMA-RNN en-
semble with each of its constituent learning algorithms:
Rolling ARIMA and Online Adaptive RNN. Ferki et al.

FIGURE 13. Examples of Online Adaptive RNN errors for window sizes 200
and 600

FIGURE 14. Impact of α value on ensemble MSE

showed that Online Adaptive RNN achieves better results
than state of the art online and offline models [9] including
deep models such as LSTM. Here we show that, in presence
of the concept drift, the Online Adaptive RNN results can be
further improved by combining Online Adaptive RNN with
Rolling ARIMA. Moreover, we compare ensemble models
with Online Linear Regression [43] and Online Bagging
Regression [44], investigate different aggregation techniques,
and examine the behaviour of the models under different
levels of concept drift.

Figures 15 and 16 compare Rolling ARIMA, Online
Adaptive RNN, online linear regression, and online bagging
regression with the four variants of the proposed ARIMA-
RNN Ensemble based on the type of aggregation: average,
weighted average, squared weighted average, and model
switching. Fig. 15 shows MSE while Fig. 16 shows MAE
for the four houses and the average among the four houses.

As seen from Fig. 15, the lowest average error is achieved
by the ensemble method with simple averaging. This method
also achieved the lowest error for houses Low 1, Low 2, and
High 2, while for house High 1, simple and weighted aver-
age achieved almost the same accuracy. The lowest errors,
irrelevant of the model, were achieved for house Low 2, and
for this house, there is very little difference between Online
Adaptive RNN and any ensemble model. However, for house
Low 1, three ensemble variants achieve better accuracy than
Online Adaptive RNN, with the best algorithm being the
ensemble with simple averaging.

All approaches achieved the lowest errors for house Low
2, followed by High 1, High 2, and Low 1. When houses
exhibit a higher presence of concept drift such as High 2,
the performance of all algorithms degrades. Also, errors for
house Low 1 were high for all algorithms what may be
explained with high variability of data. The benefit of the
proposed ensemble is the most evident for houses with higher
errors, Low 1 and High 2, when the difference between the
ensemble with simple averaging and Online Adaptive RNN
increases.

Comparing MAEs among houses, Fig. 16, the ensemble
with weighted average achieved overall the best results, but
the difference from the Online Adaptive RNN is smaller than
in the case of MSE. This is caused by the difference between
the algorithms being highlighted with the squaring operation
in MSE.

Fig. 17 shows an example of how each of the considered
algorithms handles the concept drift. During the concept drift
indicated by the coloured region, each of the algorithms
exhibits spikes in the errors. The ensemble approaches show
somewhat lower spikes during the concept drift, which cor-
responds to their better accuracy as observed from Fig. 15.
Also, all algorithms experience some challenges between
time steps 250 to 300 when errors increase without the
presence of concept drift. Although, the DDM did not detect
the presence of the concept drift during that segment, the
increase of errors for all six algorithms indicates that there
is a difference in data between the time steps 250 and 300.
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FIGURE 15. Comparison of different approaches in terms of MSE

FIGURE 16. Comparison of different approaches in terms of MAE

D. STATISTICAL SIGNIFICANCE

The Diebold-Mariano test introduced in Section III-D is used
to determine if the difference in forecasting performance
between algorithms is significant. The null hypothesis is: the
two algorithms are not significantly different. Figures 18-21
show DM values for each pair of algorithms, for houses
Low1, Low2, High1, and High2.

As seen from Fig. 18 for house Low1, the DM values for

FIGURE 17. An example of errors observed during the concept drift
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FIGURE 18. Diebold-Mariano test: DM values for house Low1

FIGURE 19. Diebold-Mariano test: DM values for house Low2

all pairs, except for the pair {Ensemble Model Switching,
Online Adaptive RNN}, are beyond the range [-1.96 1.96]
indicating that those pairs of algorithms achieve significantly
different forecasts.

Investigating DM values for house Low2 shown in Fig.
19, the pairs {Ensemble Weighted Average, Online Adaptive
RNN}, {Ensemble Squared Weighted Average, Online Adap-
tive RNN}, and {Ensemble Squared Weighted Average, En-
semble Weighted Average} have the DM values in the range
of [-1.96, 1.96]; thus, for those pairs, the null hypothesis is
not rejected and the superiority of one algorithm over the
other is not significant. However, for the remaining pairs of
algorithms, the DV values are significant.

Fig. 20 shows the DM values for house High1. It can be

FIGURE 20. Diebold-Mariano test: DM values for house High1

FIGURE 21. Diebold-Mariano test: DM values for house High2

observed that the DM values for pairs {Ensemble Model
Switching, Ensemble Squared Weighted}, {Ensemble Model
Switching, Ensemble Weighted Average}, and {Ensemble
Model Switching, Ensemble Average} are in the range that
cannot reject the null hypothesis. In other words, one algo-
rithm is not statistically better than the other. However, all
three algorithms involved in those pairs are the variants of the
proposed ensemble and the other pairs have shown significant
differences in their performance.

Finally, for house High2, as seen from Fig. 21, all ap-
proaches have shown significant differences in their perfor-
mance except for pairs {Ensemble Squared Weighted Aver-
age, Online Adaptive RNN}, {Ensemble Squared Weighted
Average, Ensemble Model Switching}, and {Ensemble
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Weighted Average, Ensemble Average}.
The overall outcome of the Diebold-Mariano test indicates

that the forecasts obtained by the proposed ensembles are
significantly different from other approaches. The only al-
gorithm that comes close to the proposed ensemble is Online
Adaptive RNN: for house Low2, Online Adaptive RNN ob-
tains similar forecasts to Ensemble Weighted Average and for
house High2, results of Online Adaptive RNN are similar to
Ensemble Squared Weighted Average. Nevertheless, for the
remaining two houses, the results of the ensemble models are
significantly different from Online Adaptive RNN making
the ensemble overall better solution.

E. DISCUSSION
Load forecasting plays an essential role in smart grids be-
cause of its importance in estimating future demand, bal-
ancing production with consumption, designing demand-
response initiatives, energy budgeting, and similar. This im-
portance is reflected in a plethora of techniques proposed
for load forecasting. Although these techniques have been
achieving great accuracy, they are mostly static and cannot
accommodate changing patterns. Whereas this may be ac-
ceptable when dealing with one or a few models and re-
training them as needed, it becomes unfeasible when dealing
with a large number of models (possibly corresponding to in-
dividual smart meters) or fast-changing data. It is imperative
that we transition toward more dynamic, online models.

Even these online models can exhibit very different accu-
racy for different entities, such as the four houses considered
in this study. As shown in figures 15 and 16, the accuracy
can vary greatly even among houses, and one technique may
not be achieving the very best results for each of the houses.
This highlights the need to evaluate the proposed algorithms
on different data streams.

Typically, load forecasting approaches are compared in
terms of the average error such as MSE or MAE. As shown
in Fig. 15, the proposed ensemble achieved the best overall
average accuracy in terms of MSE. However, this average ac-
curacy does not provide a complete picture of the algorithm’s
behaviour as the error may vary greatly for different time
periods. This can be observed in figures 11, 13, and 17 for
Rolling ARIMA, Online Adaptive RNN, and the proposed
ARIMA-RNN ensemble when the error values spike during
the concept drift and occasionally even outside the drift.

While many machine learning-based load forecasting stud-
ies have been published in recent years, almost all of them
employ offline learning and, therefore, produce static mod-
els. In contrast, our Ensemble ARIMA-RNN is an online
technique capable of adapting to new data as they arrive.
Like our study, the work of Fekri et al. [9] demonstrated
the importance of moving from offline to online learning in
load forecasting. While Fekri et al. also consider concept
drift, we improve the accuracy in presence of concept drift
by employing an ensemble model.

To enable the use of load forecasting techniques on a large
number of residential consumers (or smart meters) and for

longer periods of time, the approaches must be able to adapt
fast to changes in data. This study examines the proposed
ensemble in respect to how it adapts to concept drift and
illustrates the need to evaluate the load forecasting algorithms
with respect to concept drift.

VI. CONCLUSION
Forecasting on a regional level as well as forecasting for
schools and offices have been achieving high accuracy be-
cause data patterns are well defined and consistent. In con-
trast, residential electricity consumption data exhibits high
variability and the presence of concept drift. Consequently,
for such consumers, online learning is becoming paramount
as the models must adapt to newly arriving data.

This paper proposes combing ARIMA and RNN for load
forecasting under the concept drift. The RNN part is using
Online Adaptive RNN to capture time dependencies and
achieve online learning. The ARIMA component makes use
of the rolling technique to improve the ensemble’s adaptation
to the concept drift. The experiments on four homes with
different degrees of concept drift show that the proposed
ensemble approach outperforms its underlying algorithms,
Rolling ARIMA and Online Adaptive RNN. Moreover, the
evaluation demonstrates the importance of examining the
performance of the load forecasting techniques on different
data sets, with different degrees of concept drift and the need
to examine, not only the average error but also the errors
occurring during data drifts.

As currently there are very few studies employing online
learning techniques for load forecasting, these techniques
need to be further examined in diverse scenarios such as long-
term forecasting and aggregated load forecasting. Our study
considered concept drift, and even investigated different de-
grees of concept drift; however, we did not quantify concept
drift or the performance during the drifting period. Future
work will investigate establishing techniques and metrics for
evaluating the performance of algorithms under the presence
of concept drift. Moreover, the neural network will be exam-
ined as a way of merging individual algorithms.
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