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Abstract

Human Activity Recognition (HAR) has been attracting research attention because of its impor-
tance in applications such as health monitoring, assisted living, and active living. In recent years,
deep learning, specifically Convolutional Neural Networks (CNNs), have been achieving great results
due to their ability to extract features and model complex actions. These generic models work great
for the subjects on which they were trained, but their performance degrades substantially for new
subjects. Consequently, this paper proposes a personalized HAR model based on CNN and signal
decomposition. First, features are extracted from multi-modal sensor data with signal processing
techniques, including Stationary Wavelet Transform, Empirical Mode Decomposition (EMD), and
Ensemble EMD. Next, CNN carries out the information fusion and the final classification. Personal-
ization is achieved by using a few seconds of the target subject data to select the version of the trained
CNN best suited for the target subject. Results show that EMD with cubic spline achieves better accu-
racy than other signal processing techniques. Moreover, the proposed approach, irrelevant of the type
of signal processing, outperforms the state-of-the-art CNN approaches with time-domain features.

Keywords: Human Activity Recognition, Personalized Models, Deep Convolutional Neural Networks,
Wearable Sensors, Signal Processing, Sensor Fusion

1 Introduction

Human Activity Recognition (HAR) seeks to
detect and identify human activities from the
information collected by environmental devices or
body-mounted sensors. Environmental devices like
cameras require installation and are affected by
environmental conditions such as lighting, shad-
ows, and view obstructions, which restricts their
application in terms of the monitored spaces. Fur-
thermore, these devices are intrusive and may

impose an invasion of privacy [1, 2]. Recent break-
throughs in sensor technologies and developments
in Internet of Things (IoT) made data collection
from body-mounted sensors straightforward and
more economical, resulting in increased prolifera-
tion of body area networks. This, together with
sensors’ robustness, ubiquitousness, and diversity,
made multi-sensor fusion with wearable technolo-
gies the most common approach for HAR [2, 3].
In contrast to environmental devices, wearable
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sensors are well suited for multi-user activity
recognition in crowded spaces.

A myriad of Machine Learning (ML) tech-
niques have been proposed for HAR, such as
K-Nearest Neighbors (KNNs) [4], Support Vector
Machines (SVMs) [5], Decision Trees (DTs) [6],
Hidden Markov Models (HMMs) [7], and Deep
Neural Networks (DNNs) [8]. In recent years,
DNNs have been showing great success in HAR,
as well as in many other domains including object
recognition [9], natural language processing [10,
11], fault detection [12], and emotion recognition
[13, 14]. For HAR tasks, DNNs from the category
of Convolutional Neural Networks (CNNs) have
been dominant [15–18]. CNNs take advantage of
spatial relationships within data to extract hier-
archical representations of increasing complexity,
and then use those representations to perform the
ML task.

Sensor-based activity recognition is typically
performed with data from different sensors by fus-
ing sensor readings and extracting high-quality
features critical for ML methods [19]. Regardless
of the fusion approach, irrelevant or redundant
features do not contribute to activity recognition
and can even degrade the performance while also
increasing computational cost [20]. Obtaining a
high-quality set of robust features is important
for the improvement of accuracy and reduction
of computational cost as has been recognized in
research studies [21, 22].

Features for multi-sensor fusion can be
extracted in time-domain, frequency-domain, or
in both [23]. Most HAR studies focus only on
the time-domain, and although quite successfully,
time-domain approaches may not be sufficient as
most human activities generate complex sensor
readings. Analyzing data in the frequency-domain
can augment time-domain analysis by exposing
characteristics of the signal not easily obtainable
from the time-domain, such as the presence of dif-
ferent frequencies within the signal and energy
distribution over a range of frequencies.

Signal processing techniques, specifically
decomposition methods, have been used to
improve accuracy in different domains, including
geophysical [24], image analysis [25], thermal pro-
file analysis [26], and power quality analysis [27].
According to the type of signal transformation,
these techniques can be linear and non-linear.
Linear techniques, as their name indicates, are

suited for linear systems and examples from
this category are Fourier Transforms (FTs) and
Wavelet Transforms (WTs). Although FTs have
been applied in many domains, they only show
what frequencies are present in the signal. In con-
trast, WTs indicate what frequencies are present
and where (or at what scale). In other words,
if a signal had a change at some point in time,
the FTs would not specify when (time) this has
occurred whereas WTs would. Moreover, WTs
are fast, computationally light, and maintain
temporal information present in the signal [28].

On the other side, non-linear methods such
as Empirical Mode Decomposition (EMD) and
Ensemble EMD (EEMD) have been utilized
for non-linear and non-stationary systems [29].
Although HAR is recognized as a non-linear and
non-stationary problem [30], both linear and non-
linear approaches have been used [31, 32]. How-
ever, those techniques must be examined with
respect to how they impact HAR accuracy when
used in conjunction with deep learning.

CNNs with signal processing can help fuse
information from multiple sensors, but to ensure
performance for diverse subjects/people, person-
alization must be considered. CNNs in HAR work
very well when the same person’s data is present
in the train and the test set; however, the perfor-
mance drops sharply when the subject in the test
is different from the subject(s) in the training set
[33]. As we cannot assume that data from each
possible subject is available at the time of initial
model training, personalized models are required
to take into account differences among people.
Here, personalization refers to adapting the global
model to better suit the specific target subject.

Hence, this paper proposes a personalized
model for human activity recognition based on sig-
nal processing techniques and deep Convolutional
Neural Networks (CNNs). Signal processing tech-
niques first decompose the raw signal from sensors
by applying linear and non-linear transforma-
tions to create high-quality features. Then, CNN
fuses decomposed signals from different sensors to
extract higher level features and detect activities.
The personalization is achieved by using a few
seconds of the target subject’s data to dynami-
cally select the version of the trained CNN model
best suited for the target subject. Experiments
analyze the impact of the linear and non-linear
decomposition techniques and examine the effect
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of personalization. Results show that the signal
decomposition improves the HAR accuracy and
that using as little as two seconds of the target
subject data per activity can improve the model
performance.

The rest of the paper is organized as fol-
lows: Section 2 explains the background and
Section 3 reviews related work. Section 4 describes
the methodology, and Section 5 presents the
experiments and discusses corresponding results.
Finally, Section 6 concludes the paper.

2 Background

This section provides an overview of Wavelet
Transform, Empirical Mode Decomposition, and
Convolutional Neural Networks.

2.1 Wavelet Transform

The Wavelet Transform (WT) is a signal process-
ing algorithm that introduces a representation of
a function (signal) in the time-frequency domain
[34, 35] with the help of low-pass and high-pass
filters. The signal is decomposed into a set of coef-
ficients, namely approximated and detailed coef-
ficients corresponding to low- and high-frequency
bands respectively. A wavelet is a function ψ ∈
L2(R) with a zero mean, thus

∫ +∞
−∞ ψ(t)dt = 0.

A Continuous Wavelet Transformation (CWT)
represents the continuous signal with two con-
tinuous parameters: scale and translation [36].
The scale parameter a defines how stretched/-
contracted is the wavelet, while the translation
parameter b describes the position in time [37].
The CWT of a signal x(t) at scale a and transla-
tion b, (a, b) ∈ R, is defined as follows:

CWT (a, b) =
1√
a

∫ +∞

−∞
x(t)ψ∗

(
t− b

a

)
dt (1)

where ψ(t) is the mother wavelet, and ∗ indicates
the complex conjugate operation.

In practical WT applications, Discrete WT
(DWT) and Stationary WT (SWT) are commonly
used because of CWT computational complexity
[28, 38]. For DWT, equation (1) can be rewritten
as:

DWT (j, k) =
1√
2j

+∞∑
−∞

x(t)ψ∗
(
t− k × 2j

2j

)
dt

(2)
where j and k are scale and time shifting, respec-
tively [39].

In DWT and inverse DWT, the critical
issues are signal decomposition and reconstruc-
tion, respectively. Fig. 1 illustrates N -level DWT
decomposition: the process is recursive with low-
pass Ai and high-pass Di filters applied at each
decomposition level i. At level L1, the signal X(t)
is decomposed into approximation A1 and detail
D1 components. Next, at level L2, approximation
A1 component is decomposed into approximation
A2 and detail D2 components, and so on. Upon
completion, there are one approximation and N
detail components.

Stationary Wavelet Transform (SWT) was
designed to overcome the lack of translation-
invariance of DWT. In SWT, as in DWT, the
signal is convolved with low- and high-pass filters,
but in SWT there is no decimation. Because of
this, in SWT, the signal length is not reduced:
the high-frequency and low-frequency components
have the same length as the original input. SWT
decomposition of a signal x(n) is represented as
follows:

x(n) = aj(n) +

j∑
k=1

dj(n) (3)

aj =
∑
k

Aj(n− k)aj−1(k) (4)

dj =
∑
k

Dj(n− k)dj−1(k) (5)

where j is the decomposition level, Aj and Dj are
the low-pass and high-pass filters at the level j, k

Fig. 1 N -level DWT decomposition based on a recursive
filter bank
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is the number of mother wavelet coefficients, and
n is the sample number [40].

2.2 Empirical Mode Decomposition
(EMD)

Huang et al. [41] introduced Empirical Mode
Decomposition (EMD), an adaptive time-
frequency data analysis technique that can
separate a time series into a finite number of com-
ponents, referred to as Intrinsic Mode Functions
(IMFs).

In contrast to wavelet analysis, EMD does not
rely on any given wavelet basis and is a more
flexible, data-driven approach. EMD iteratively
extracts IMFs by means of interpolation between
local maxima and minima, and therefore, is well
suited for the decomposition of non-linear and
non-stationary signals. The initial time series x(t)
is decomposed into K IMF components and the
final residue r:

x(t) =

K∑
k=1

IMFk + r (6)

A drawback of the EMD technique is a com-
mon occurrence of mode mixing, which refers to
the situation when a single IMF contains signals of
widely disparate scales or when similar scale sig-
nals are present in different IMF components [29].
To alleviate this problem, Ensemble Empirical
Mode Decomposition (EEMD) has been proposed
[29]; EEMD copes with the mode mixing problem
by adding white noise to the signal and ensembling
EMD trails from signals with different noise.

2.3 Convolutional Neural Network

Artificial Neural Networks (ANNs) mimic the
human brain to solve non-linear problems. Simi-
lar to the human mind, ANNs learn to perform a
task from examples without a need to be explic-
itly programmed. Convolutional Neural Networks
(CNNs), a type of neural networks originally
designed for images, are capable of capturing the
topology of images, and thus have been greatly
successful in image recognition tasks [42]. Later,
CNNs have been adapted for non-image appli-
cations that can represent data in a grid-like
topology; examples include HAR [8, 43] and hand
gesture recognition [44].

The CNN architecture consists of layers includ-
ing convolutional, pulling, and fully connected
layers. An example of a CNN with one convolu-
tional, one pooling, and two fully connected layers
is shown in Fig. 2. The convolutional layer pro-
duces the activation (feature) map by computing
the dot product between the learnable filters (ker-
nels) and the output of the previous layer. As the
kernel receptive field is small, the network learns
the filters that activate on special features present
in the input. Next, the pooling layer reduces the
data size by down-sampling neuron clusters from
the activation maps, consequently reducing CNN
computation. In the fully connected layers, sim-
ilar to Feed Froward Neural Networks (FFNNs),
neurons are connected to all nodes in the previous
layer. Finally, the output is obtained by applying
an activation function; for classification tasks, this
is commonly Softmax as it represents the output
as a probability distribution over classes [45]. Dur-
ing network training, the learnable filters and the
weights in fully connected layers are updated by
applying backpropagation.

3 Related Work

This section reviews recent works in human activ-
ity recognition, signal processing techniques in
HAR, and personalization approaches for HAR.

3.1 Human Activity Recognition

In HAR, especially successful are CNN architec-
tures. Ha et al. [46] proposed a CNN with a 2D
convolution kernel and a 2D pooling to capture
temporal dependencies over time as well as spacial
dependencies among sensors. The preprocessing
was done with the sliding window technique and
the evaluation with the hold-out technique. In
experiments with MHEALTH and Skoda datasets,

Fig. 2 Convolutional Neural Networks Architecture
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their CNN achieved better accuracy than CNN
with 1D kernel and k-nearest neighbor with statis-
tical and Fast Fourier Transform (FFT) features.

Uddin and Hassan [47] introduced an activ-
ity recognition approach for healthcare based on
body sensors and CNNs. Signals from sensors such
as ECG, magnetometer, accelerometer, and gyro-
scope were preprocessed with Gaussian kernel-
based Principal Component Analysis (PCA) and
Z-score normalization to extract features, and
then the CNN was trained with those extracted
features. The proposed CNN achieved better accu-
racy (93.9%) than ANN (87.99%) and Deep Belief
Network (90.01%).

Gholamiangonabadi et al. [33] investigated the
effectiveness of different preprocessing methods
and deep network architectures on HAR accuracy.
In experiments with MHEALTH dataset, CNN
with a vector magnitude and sliding window tech-
nique performed better than other approaches.
They compared Leave-One-Subject-Out Cross-
Validation (LOSOCV) with traditional k-fold
cross-validation and showed the importance of
LOSOCV evaluation in HAR. Also, they demon-
strated that with a general model, the accuracy
changes when activity recognition is done for dif-
ferent target subjects indicating the necessity of
personalized models.

Gjoreski et al. [16] proposed an ensemble
approach for HAR. First, they carried out a com-
plex preprocessing including windowing, virtual
sensor streams, feature engineering in the time-
and frequency-domain, and feature reduction.
Next, various classical machine learning models
such as KNN, SVM, random forest, and Näıve
Bayes, as well as deep learning models including
CNN and LSTM, were trained. Finally, the trained
models were fused into an ensemble with a Hidden
Markov Model to capture temporal dependencies.
The ensemble outperformed each individual model
including deep learning methods.

The main difference between the reviewed
studies [16, 33, 46, 47] and ours is that they
consider a general, single model for all subjects
while we propose a personalization technique to
improve HAR accuracy. Gholamiangonabadi et.
al. [33] considered different DL architectures for
improving HAR accuracy and examined evalua-
tion techniques, while our study uses signal pro-
cessing techniques with DL and proposes a novel
personalization approach to improve the accuracy.

3.2 Signal Processing Techniques in
Human Activity Recognition

Signal processing techniques can extract high-
quality features from time series data and there-
fore have been used in HAR. In the work of Hanai
et al. [48], the features were extracted from the sig-
nals with two one-dimensional Haar-like filtering
techniques, and then the decision tree (C4.5) was
used as a classifier. The evaluation was conducted
with data from four subjects and five physical
activities by applying 10-fold cross-validation. The
results showed that not only is the computational
cost for this feature extraction low but also, the
achieved accuracy is high.

Xu et al. [32] used Hilbert-Huang transform,
EMD, and a feedforward neural network for HAR
with PAMAP2 dataset. The features included
instantaneous amplitude and frequency derived
with EMD, as well as instantaneous energy den-
sity and marginal spectrum extracted with Hilbert
spectral analysis. They investigated the effect of
a multi-feature set versus a single-feature: the
results showed that using all four mentioned fea-
tures improves the performance.

He and Jin [49] presented a hybrid approach
based on Discrete Cosine Transform (DCT),
PCA, and Multi-class Support Vector Machine
(MSVM). First, useful features were extracted
from accelerometer data with DCT, then PCA
was applied to reduce the number of features, and
finally, MSVM was trained with reduced features.
The proposed feature extraction, DCT with PCA,
performed better than other methods such as
wavelet transform, FFT, and statistical features.

Assam and Seidl [50] combined dyadic
wavelets, Vector Quantization (VQ), and Hid-
den Markov Model (HMM) for human activity
recognition. The spectral features were extracted
from the smartphone’s accelerometer signals with
multi-resolution wavelet transform, and then the
VQ was applied to create codes for HMM. Tradi-
tional cross-validation reported 95% accuracy.

Wavelets were also used in several other stud-
ies [20, 28, 31]. He et al. [20] proposed a wavelet
tensor fuzzy clustering: the Discrete Wavelet
Packet Transform (DWPT) method first built fea-
ture tensors from activity signals, and then the
Multi-linear PCA (MPCA) reduced dimensional-
ity. Finally, activities were recognized with fuzzy
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clustering. On a dataset containing seven activi-
ties from eight subjects, their approach was better
than other fuzzy clustering techniques.

Abdu-Aguye and Gomaa [28] decomposed the
signal with wavelet transform and then applied
an adaptive pooling operator to obtain a compact
representation for training a deep CNN. In the
evaluation, three different levels of decompositions
were considered, namely, three, five, and seven.
Experiments with seven different datasets showed
that their approach works well on both small and
large datasets.

Tian et al. [31] first extracted wavelet energy
spectrum features for each activity, and then
selected features with an ensemble-based tech-
nique. Two classifiers were considered: k-nearest
neighbor and support vector machine. Experi-
ments with five subjects and nine activities showed
that wavelet energy spectrum features dramati-
cally improve the classifier accuracy.

While [32] used a non-linear method for feature
extraction, all other reviewed studies [20, 28, 31,
48–50] applied linear techniques. In contrast, we
consider both, linear and non-linear approaches,
and compare their performance. Moreover, none
of the reviewed studies investigated if there is a
statistically significant difference between results,
while we check the difference with a statistical
test. To further improve the accuracy, we also add
the personalization technique.

3.3 Personalization techniques for
Human Activity Recognition

In HAR, one model fits all approach suffers from
poor generalization as movements are greatly
affected by personal characteristics such as height
and physical abilities [51]. Personalization aims to
adjust the model to better fit the target subject
and, consequently, improve recognition accuracy.

Vu and Fujinami [52] proposed a
compatibility-based classifier for HAR personal-
ization. Several classifiers such as Random Forest
were trained on a set of subjects, and then the
most compatible classifier for the target subject
was selected. The compatibility was determined
by evaluating each of the trained classifiers on a
part of the target subject data and choosing the
one with the highest F-measure. Evaluation with
two public data sets, PAMAP2 and WISDM,

has shown that the proposed method improved
activity recognition.

To achieve personalization, Ferrari et al. [51]
determined the similarity between the target sub-
ject and those in the training set based on intrinsic
characteristics of signals and physical attributes
such as age and weight. Based on the calculated
similarities, they put more weight on data from
people more similar to the target person. Three
approaches for finding the similarity were consid-
ered: based on physical features, the signal dis-
tance, and the hybrid of the two. To classify activ-
ities, three methods were used: Adaboost classifier
with handcrafted features, Adaboost with deep
features, and SVM with deep features. The results
showed that, on average, using the personalized
models improves the accuracy.

Lin and Marculescu [53] proposed a person-
alized model and a training algorithm for HAR.
In the personalization model, they combined the
Nearest-Class Mean classifiers (NCM) and cosine
similarity distance. In the training algorithm,
feature extraction was designed based on an opti-
mization function. They evaluated the approach
on three public datasets, namely, Sport and
Daily Activity, Opportunity, and Sensor Activity.
The results showed that the personalized model
improved accuracy by only using some instances
from the test subject.

While the approach proposed by Ferrari et
al. [51] used users’ physical characteristics, our
approach does not need personal characteristics
and solely relies on sensor signals. Similar to Lin
and Marculescu [53], we use a part of the tar-
get subject data for model personalization. While
they update the pre-trained models with the tar-
get subject data, we use this data to dynamically
select the best model from the training phase. Vu
and Fujinami [52] had a similar idea of selecting
the best model based on the samples from the tar-
get; however, they select the best model from a
number of different trained models while we select
the best version (parameters) of the same model.
In addition to a different personalization technique
than those reviewed, our study also differs from
the aforementioned papers as it combines signal
processing, deep learning, and personalization.
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4 Methodology

This paper proposes an approach for personal-
ized HAR based on convolutional neural networks
and signal decomposition techniques. CNNs have
been selected because of their strong generaliza-
tion capabilities, abilities to extract features, and
recent success in HAR [51]. Signal decomposi-
tion techniques are added to extract frequency-
and time-domain features and improve accuracy.
Finally, personalization further improves accuracy
by selecting the model version best suited for the
target subject.

This section first describes data preprocessing
followed by the personalization approach and the
CNN architecture. Finally, the evaluation tech-
nique is described.

4.1 Data Preprocessing

For data preparation, two main categories of
decomposition approaches are considered: lin-
ear techniques (SWT) and non-linear techniques
(EMD and EEMD). Techniques are applied indi-
vidually for each sensor and each recorded feature
(e.g., independently for each axis of a 3-axis
accelerometer). Table 1 shows the considered tech-
niques while the details are described in the
following subsections.

4.1.1 Linear Techniques

Stationary Wavelet Transformation (SWT) is
a linear decomposition technique: the origi-
nal sequence is decomposed into two parts
detailed (high-frequency) sequence and approxi-
mated (low-frequency) sequence, both of the same
length. Then the process continues by decompos-
ing the approximated sequence from the previous
level. SWT was selected over DWT because it
overcomes the lack of translation invariance of the
DWT.

Table 1 Decomposition Techniques

Method Type Linear Non-linear
SWT db1 ✓
SWT db2 ✓
SWT db3 ✓
SWT db4 ✓
EMD Cubic Spline ✓
EMD Linear Spline ✓
EEMD ✓

The wavelet family derived by Daubechies
covers the field of orthonormal wavelets; it is
extensive and it includes members from extremely
localized to very smooth. This study considers
four different Mother Wavelets (MWs); db1, db2,
db3, and db4, and investigates their effect on
HAR. For each db, two scenarios and three decom-
position levels are explored as shown in Table
2. In this table, A, D, and LoD stand for the
approximation coefficients, detail coefficients, and
level of decomposition, respectively. Three lev-
els of decomposition (1, 3, and 5) are designed
to explore the effect of increasing decomposition
levels.

Scenario F (full) includes all extracted com-
ponents in the current level, plus previously
extracted detailed components while Scenario
R (reduced) only uses the approximation coef-
ficients from the current level and previously
extracted detailed components. The two scenarios
are designed to investigate if the high-frequency
component at the current level can be eliminated
without losing accuracy: this would simplify DDN
models and reduce computational cost.

4.1.2 Non-linear Techniques

Two non-linear decomposition techniques are con-
sidered: Empirical Mode Decomposition (EMD)
and Ensemble Empirical Mode Decomposition
(EEMD). In EMD, IMFs are extracted with a
sifting method as follows:

1. Identify all the local extrema and connect all
local maxima (minima) with a cubic or linear
spline to create the upper (lower) envelope.

2. Obtain the first component c by taking the dif-
ference between the signal and the local mean
of the two envelopes.

3. Consider c as the data. Repeat steps 1 and
2 until c becomes a monotonic function or a
function with only one extremum and no more
IMFs can be extracted. The final c is designated
as residual r.

In other words, EMD decomposes signal x(t)
into IMFs cj and a residual component rn. The
relationship between the original signal, its IMFs,
and a residual is expressed as follows:

x(t) =

n∑
j=1

cj + rn (7)
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Table 2 Wavelet Decomposition Scenarios

LoD Scenario F Scenario R
1 A1 and D1 A1
3 A3, D3, D2, D1 A3, D2, D1
5 A5, D5, D4, D3, D2, D1 A5, D4, D3, D2, D1

Table 3 Scenarios for EMD and EEMD

Ascending Scenario Descending Scenario
IMF 1 IMF 6
IMF 1 and 2 IMF 6 and 5
IMF 1, 2 and 3 IMF 6, 5 and 4
IMF 1, 2, 3 and 4 IMF 6, 5, 4 and 3
IMF 1, 2, 3, 4 and 5 IMF 6, 5, 4, 3 and 2
IMF 1, 2, 3, 4, 5 and 6 IMF 6, 5, 4, 3, 2 and 1

As the decomposition is based on the local
characteristics of data, this method can be applied
to non-stationary and non-linear processes.

Ensemble EMD (EEMD) has been introduced
to address the problem of mode mixing present in
EMD [29]. EEMD repeatedly adds Gaussian white
noises to the original signal and then applies EMD.
The process can be summarized with the following
steps:

1. Add white noise to the original signal.
2. Decompose the noise-added signal into IMFs

by applying the sifting process.
3. Repeat steps 1 and 2 several times, each time

with different white noise.
4. Obtain the final IMFs for the ensemble as a

mean of IMFs from all repetitions.

As shown in Table 3, for both EMD and
EEMD, up to six decomposed IMFs are consid-
ered for each original attribute. As with SWT, two
scenarios are designed to investigate the impact
of the IMF selection on the HAR performance.
In Ascending Scenario (AS), IMFs are added one
by one starting from IMF 1 to IMF 6 while in
Descending Scenario (DS), IMFs are added from
IMF 6 to IMF 1.

4.2 Deep Learning Model

The deep learning model used in this study is
CNN with the architecture shown in Fig. 3. The
sequence of layers is convolutional, max-pooling,
convolutional, max-pooling, and two fully con-
nected layers. Each convolutional layer has 64
feature maps, each max-pooling layer has 32 fea-
ture maps, and the two fully connected layers have
64 and 32 neurons, respectively. This is the same
architecture as CNN-2C-1D presented by [33]: 2C

indicates two convolutional layers and 1D refers
to a one-dimensional kernel. This architecture was
selected as it achieved better accuracy than other
CNN and FFNN architectures [33]. The proposed
signal processing and personalization techniques
could also be applied with other neural networks.

The number of features used for CNN depends
on the decomposition type. In the linear approach
(SWT), the decomposition level and scenario
determine the number of features. For example,
Scenario F decomposes 21 original features into 42
features when LoD is one and into 84 when LoD
is three.

For the non-linear decomposition, the number
of features used for CNN depends on the number
of IMF(s). For instance, IMF 1 ascending scenario
and IMF 6 descending scenario, both use only one
IMF, thus, with 21 original features, the number
of features after decomposition remains 21. With
two IMFs, IMFs 1 and 2 in ascending or IMFs 5
and 6 in the descending scenario, the number of
features is 42.

4.3 Personalization Approach

Natural differences between people’s motion pat-
terns can cause low performance of a generic
model when applied to different subjects. Per-
sonalization techniques aim to remedy this by
adapting the model to the specific subject. Here
we take advantage of the CNN characteristic to
carry out the personalization.

Fig. 4 shows CNN accuracy on the train and
test (target) sets with the test set consisting of
a single target subject whose data are not in the
training set. It can be seen that the training accu-
racy converges very fast to almost 100% accuracy,
but for the target (test) subject, the accuracy fluc-
tuates greatly through epochs. The reason for this
is that the CNN is being optimized for the sub-
jects in the training set causing the oscillations for
a subject not present in the training set. The main
idea is to select the CNN version corresponding to
the highest accuracy for the target subject.

The proposed personalization approach is illus-
trated in Fig. 5. Target subject data and training
subjects data undergo signal decomposition sep-
arately. The CNN is then trained on the decom-
posed training data for n epochs. While in tra-
ditional CNN training, only the final model is
retained, here the models corresponding to each
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Fig. 3 CNN Architecture

Fig. 4 Train and Test Set Accuracy through the Training
Process

epoch (iteration step) are retained for use in the
personalization.

The decomposed target subject data is divided
into two parts: the validation and the test dataset.
The validation set contains an equal number of
samples from each activity to ensure personaliza-
tion across all activities. The duration of activity
recording used as a validation set for model per-
sonalization is referred to as personalization time.
Personalization is inspired by the concept of early
stopping when the network is iteratively trained
on the training set until the error on the validation
set starts to increase. In our approach, the valida-
tion set is from the target person; therefore, the
validation set is used to select the CNN weights
from the set of models corresponding to epochs.

In the early stopping, the training terminates
when the validation error increases while in our
approach, all epochs are processed irrelevant of
the validation error. Then, as shown in Fig. 5, our
approach selects the best CNN epoch based on the

Fig. 5 Proposed Personalization Technique

accuracy achieved with the validation set contain-
ing the target subject data. This corresponds to
selecting the epoch with the highest accuracy in
Fig. 4. The weights from this best epoch make the
final model for the target subject, and then the
model is evaluated on the remaining data from the
target user (testing data).

An example of training on nine subjects and
personalizing the model for the tenth subject is
seen in Fig. 4. The train line indicates the accu-
racy obtained through epochs on the nine training
subjects. For personalization, a small fragment of
the target subject data is used to select the best
model. The models corresponding to each epoch
are evaluated with the piece of target subject data
as shown with the target line in the figure. In this
example, the best accuracy for the target subject
is achieved with the model from the third epoch;
thus, the model from the third epoch is used for
this target subject.
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4.4 Evaluation Process and
Performance Criteria

Traditional approaches for assessing machine
learning models such as hold-out validation and
k-fold cross-validation evaluate the model on the
samples that did not participate in training. In
these approaches, samples for both training and
testing come from the same dataset and the selec-
tion is typically random. In HAR, data from all
subjects are not available at the start of the train-
ing and, therefore, the models must be easily
adaptable for new subjects.

Leave-One-Subject-Out Cross-Validation
(LOSOCV) is an evaluation technique suitable for
assessing the performance of generic HAR models
on new subjects [33]. In LOSOCV, one subject,
referred to as the target subject, is reserved for
the evaluation, and the model is trained on the
remaining subjects. The process is repeated, each
time with a different target subject. However,
when the model is personalized with a part of the
target subject data, the samples used for the per-
sonalization cannot be included in the evaluation.
In other words, a small part of the target subject
data makes the validation set used for personal-
izing the model, and the remaining part makes
the test set for the final evaluation. This slightly
changes LOSOCV to accommodate the personal-
ization technique, but the main LOSOCV process
remains the same in that the test samples are not
employed in training and personalization.

Accuracy is used as a metric for comparison
among models: it assesses the proportion of the
samples correctly classified. When the dataset is
balanced or approximately balanced, as is the case
with our dataset, accuracy is a suitable metric for
evaluation [33]. Accuracy is calculated as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

where TP, TN, FP, and FN are True Positive,
True Negative, False Positive, and False Negative,
respectively.

The validation dataset serves the purpose
of model personalization and, therefore, its size
affects finding the best CNN weights for the tar-
get person. A large validation set could potentially
improve accuracy, but it also leads to an imprac-
tical solution as the majority of the target subject

data is then used for building/personalizing the
model. Therefore, we aim to employ as small as
possible validation set without significant reduc-
tion of accuracy. The validation set contains an
equal number of samples from all activities. To
examine the impact of the validation dataset size,
experiments conducted in this study examine the
validation sets containing samples from 2, 4, 6, 8,
and 10 seconds of recordings per activity.

4.5 Evaluation

This section introduces the dataset and experi-
ments.

4.5.1 Data

The proposed approach was evaluated with
MHEALTH (Mobile Health) dataset [54]. The
MHEALTH dataset comprises of body motion
and vital sign recordings from ten individuals
while performing twelve activities including walk-
ing, jogging, running, sitting, and others. Three
types of sensors, accelerometer, gyroscope, and
magnetometer, measured movements of different
body parts, namely, acceleration, rate of turn, and
magnetic field orientation. Each of the three sen-
sors was placed on the subjects’ right wrist and
left ankle with an additional accelerometer located
on the chest. EEG signal was also recorded in
MHEALTH dataset, but it is not used here as it is
not deemed to directly relate to short term motion
[55].

Each of the sensors records three values cor-
responding to three axes. Seven sensors used in
this study, one on the chest and three sensors on
the arm and leg, result in 21 recorded features for
each time step. The sampling rate for all sensing
modalities is 50 Hz. All 12 recorded activities are
used in experiments and reported results are for
all activities together.

4.5.2 Experiments

Different scenarios and levels of decomposition
were designed to assess the effects of various
preprocessing techniques.

For the linear decomposition, SWT method,
the following options were considered:

• Three Levels of Decomposition (LoD): 1, 3, and
5
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• Two scenarios as discussed in subsection 4.1.1:
Scenario Full (Scenario F/SF) and Scenario
Reduced (Scenario R/SR)

• Four Mother Wavelets (MWs): db1, db2, db3,
and db4

• Five time durations for the validation dataset:
2, 4, 6, 8, and 10 seconds

This makes a total of 3 ∗ 2 ∗ 4 ∗ 5 = 120 combi-
nations and corresponding experiments for SWT.
Table 4 shows the number of features for each
scenario and LoD. For example, in LoD 1 and Sce-
nario F, decomposition results in 42 features while
in Scenario R, it results in 21 features.

For the non-linear techniques, the following
options were considered:

• Three methods: EMD with cubic spline, EMD
with linear spline, and EEMD

• Two scenarios as discussed in subsection 4.1.2:
Ascending (AS) and Descending (DS) scenarios

• Six combinations of IMFs for each scenario as
shown in Table 3

• Five time durations for the validation dataset:
2, 4, 6, 8, and 10 seconds

This is a total of 3∗2∗6∗5 = 180 combinations,
but because ascending with IMFs 1 to 6 is the
same as descending with IMFs 6 to 1 (the same
IMFs just in a different order), there is a total
of 165 experiments. Table 5 shows the number of
features for each of the non-linear decomposition
methods. For instance, in AS 1− 5, five IMFs are
extracted for each original feature, IMFs 1 to 5;
therefore, there are 5 ∗ 21 = 105 features.

Considering both linear and non-linear tech-
niques, there is a total of 285 experiments. All
components were implemented in Python. The
preprocessing for all experiments was carried out
on a computer with Ubuntu OS, AMD Ryzen 4.20

Table 4 Number of Features: SWT

LoD Scenario F Scenario R
1 42 21
3 84 63
5 126 105

Table 5 Number of Features: Non-linear Decomposition

# IMFs AS (IMFs) DS (IMFs) # Features
1 1 6 21
2 1-2 6-5 42
3 1-3 6-4 63
4 1-4 6-3 84
5 1-5 6-2 105
6 1-6 6-1 126

GHz processor, 128 GB DIMM RAM, and four
NVIDIA GeForce RTX 2080 Ti 11GB graphics
cards. CNNs were implemented with ’scikit-learn’
library [56] and trained on Compute Canada
(Cedar Cluster) resources. GPU acceleration was
utilized to accelerate CNN training; neverthe-
less, the trained models do not require significant
resources.

4.6 Results

This section first presents accuracy, compares sce-
narios, analyzes the impact of personalization time
on linear techniques, and then carries the same
analysis for the non-linear ones. Next, linear and
non-linear techniques are compared with statisti-
cal significance tests and the effect of activity type
is examined. Finally, the proposed approach is
compared with other machine learning approaches
and the results are discussed.

4.6.1 Accuracy of Linear
Decomposition Techniques

Tables 6 to 9 show accuracy for db1, db2,
db3, and db4. Additionally, average and standard
deviation (STD) for all models with the same per-
sonalization time are included. For example, the
average of 85.77% for 2 s in Table 7 is the average
of different models with 2 s personalization.

With db1, Table 6, the best accuracy of 88.8%
was achieved with LoD 3, Scenario F, and 4 s vali-
dation set. Accuracy increases when LoD changes
from 1 to 3 or from 1 to 5. For all experiments but
two, the accuracy slightly decreases from Scenario
F to Scenario R. In terms of the personaliza-
tion time, there is no notable accuracy difference
between durations.

Results for SWT with db2 are presented in
Table 7: the best accuracy of 87.7% is achieved
with LoD 5, Scenario F, and 6 s validation.
Comparing Full (F) and Reduced (R) scenarios
with the same LoD and time duration, it can
be observed that the accuracy reduces in 10 out
of 15 cases, but the difference is mostly small.
Although the average accuracy 85.97% for 10 s
is higher than for other durations, the standard
deviation is higher indicating greater variability
among experiments with 10 s validation time.

Table 8 shows the results for SWT with db3:
the best value 87.4% is obtained with three differ-
ent experiments as indicated with bold letters. As
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Table 6 SWT: Accuracy for db1 Decomposition

LoD Scenario 2 Secs 4 Secs 6 Secs 8 Secs 10 Secs
1 F 84.7 84.8 86 85 84.8
1 R 83.6 82.9 83.8 84.9 84.7
3 F 85.9 88.8 87.2 88.7 87.9
3 R 88.4 88.2 87.1 87.3 87.3
5 F 88.2 88.3 88.1 88.4 88.1
5 R 87.3 86.4 88.3 87.3 87.5

Avg. 86.34 86.56 86.75 86.94 86.72
STD 1.8 2.14 1.51 1.5 1.4

Table 7 SWT: Accuracy for db2 Decomposition

LoD Scenario 2 Secs 4 Secs 6 Secs 8 Secs 10 Secs
1 F 85 84.2 84.4 85.6 85.6
1 R 84 85.3 83.9 84.3 82.5
3 F 86.1 86.8 86 85.5 87.4
3 R 86.4 86.4 87 86.1 86.7
5 F 86.9 84.6 87.7 87.4 87.2
5 R 86.1 85.7 86 86.8 86.4

Avg. 85.77 85.5 85.83 85.95 85.97
STD 0.95 0.93 1.3 0.98 1.64

Table 8 SWT: Accuracy for db3 Decomposition

LoD Scenario 2 Secs 4 Secs 6 Secs 8 Secs 10 Secs
1 F 85.3 85.6 85.4 85.3 86
1 R 84.6 84.4 84 82.8 83.5
3 F 86.3 84.9 86.2 85.1 87.4
3 R 84.9 86.2 85.5 86.3 87.4
5 F 86.4 86.9 87.1 86.4 86.7
5 R 85.9 86.3 85.7 87.4 86.5

Avg. 85.56 85.71 85.64 85.56 86.24
STD 0.67 0.87 0.94 1.45 1.34

Table 9 SWT: Accuracy for db4 Decomposition

LoD Scenario 2 Secs 4 Secs 6 Secs 8 Secs 10 Secs
1 F 85.1 86 85.7 85.6 84.7
1 R 82.3 84 82.5 83.1 84.2
3 F 85.8 87.6 87.3 87.3 86.7
3 R 84.7 85.7 85.9 84.7 86.4
5 F 86.6 87.2 87.1 86.6 87.3
5 R 87 84.6 86.3 87.7 85.7

Avg. 85.24 85.83 85.79 85.86 86.24
STD 1.52 1.29 1.6 1.56 1.1

LoD 3 scenario R has fewer features (63 features)
than the other two (84 and 105 features), LoD 3
scenario can be considered better than the other
two that achieved the same accuracy. The average
accuracy for all validation set durations are simi-
lar, but shorter ones, 2-6 s have smaller standard
deviation indicating more consistent results across
experiments.

Finally, Table 9 displays the results for SWT
with db4: the highest accuracy 87.7% is achieved
with LoD 5, scenario R, and 8 s. The 10 s valida-
tion shows slightly better average accuracy than
others while the standard deviation is high (over
one) for all durations.

As seen from Tables 6 to 9, among linear tech-
niques (Stationary Wavelet Transform), the best

accuracy of 88.8% was achieved with db1, Scenario
F, LoD 3, and 4 s personalization.

4.6.2 Comparison of Linear
Decomposition Scenarios

This subsection compares linear decomposition
scenarios F and R. Graphs in Fig. 6 show the accu-
racy for the two scenarios with respect to the four
dbs and three LoDs: left column shows results for
2 s and the right column for 10 s validation set.
The remaining durations are omitted as they fol-
low similar patterns. Overall, scenario F performs
better than scenario R. With LoD 1, scenario F
outperforms scenario R for all dbs while for LoD
3 and LoD 5, scenario F has higher accuracy for
most dbs.

Although for most dbs and validation set
durations, scenario R has a lower accuracy than
scenario F, the difference is small: the average dif-
ferences between scenarios R and F for LoD 1, 3,
and 5 are 1.48%, 0.32%, and 0.62%, respectively.
Because the difference is so small, scenario R may
be more desirable because of a fewer number of
features, and thus, reduced training time.

4.6.3 Effect of Personalization Time on
Linear Decomposition Techniques

Having a large validation set could poten-
tially lead to improved personalization and thus,
increased accuracy. On the other side, this dataset
should be as small as possible to achieve ease of
personalization.

Fig. 7 examines how the accuracy changes for
each LoD and scenario as the duration of the per-
sonalization time increases. Only the graphs for
db1 and db4 are shown as other dbs follow a sim-
ilar pattern. From this figure, there are no easily
observable and consistent patterns across all sce-
narios, dbs, and LoDs. If we compare validation
time of 2 s with 8 s or with 10 s, most LoDs
and scenarios exhibit an increase in accuracy, but
not all. Overall, 8 and 10 s personalization time
is achieving slightly better results than the other
durations.

4.6.4 Accuracy of Non-linear
Decomposition Techniques

Table 10 shows results for EMD with the lin-
ear spline while Table 11 presents the results of
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Fig. 6 SWT: Comparison of Scenarios F and R

Fig. 7 Effect of Personalization Time on SWT Accuracy

EMD with the cubic spline. Average and STD
accuracy obtained with different models with the
same personalization time are also included.

For the linear spline, the best accuracy of
82.8% is achieved with all six IMFs and 8 s valida-
tion, irrelevant of the scenario. STD for descending
scenario, for each validation duration, is higher
than 18% while for ascending scenario, it is lower
than 13%, which indicates that the ascending sce-
narios are achieving more consistent results. The
best average accuracy of 72.13% is achieved with
ascending scenario and 10 s validation.

With the cubic spline, as seen from Table 11,
the highest accuracy of 91.2% is achieved with
all IMFs and 6 s validation. For both, ascending
and descending scenarios, accuracy increases as
IMFs are added. STD for both scenarios is high,
larger for the descending scenario, indicating high
variability in obtained classifications. The average
accuracy for descending scenarios is slightly lower
than for ascending scenarios.

Table 12 presents the accuracy for EEMD
methods including the average and STD for each
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Table 10 EMD: Accuracy for Linear Spline

IMFs 2 Secs 4 Secs 6 Secs 8 Secs 10 Secs

A
sc
en

d
in
g
S
ce
n
a
ri
o 1 45.9 46 44.5 45.1 45.4

1-2 65.8 67 68.1 68.9 69.1
1-3 69.2 70.9 75.2 68.4 78
1-4 71.6 70.3 71.9 77.2 78.9
1-5 75.3 76 78.7 76.9 79.6
1-6 77.8 80.6 80 82.8 81.8

Average 67.6 68.46 69.73 69.88 72.13
STD 10.45 10.95 11.97 12.15 12.6

D
es
ce
n
d
in
g
S
ce
n
a
ri
o 6 21 18.4 20.3 18.8 21

6-5 50.6 47.2 46.5 45 46.7
6-4 53.8 49 54.1 53.8 54.5
6-3 61 60.8 60.5 57.4 65.9
6-2 74.6 72.1 77.3 78.7 78.4
6-1 77.8 80.6 80 82.8 81.8

Average 56.46 54.68 56.45 56.1 58.1
STD 18.7 20.1 20.1 21.4 20.6

Table 11 EMD: Accuracy for Cubic Spline

IMFs 2 Secs 4 Secs 6 Secs 8 Secs 10 Secs

A
sc
en

d
in
g
S
ce
n
a
ri
o 1 45.7 45.4 45.9 46.1 44.8

1-2 54.6 52.4 54.2 52.7 53.1
1-3 60.1 58.3 61.8 59.5 59.4
1-4 76.3 78.5 77.2 77.9 78.5
1-5 84.2 84.7 86.3 87.7 86
1-6 86.8 89.1 91.2 86.1 87.6

Average 67.95 68.07 69.43 68.33 68.23
STD 15.4 16.74 16.6 16.3 16.6

D
es
ce
n
d
in
g
S
ce
n
a
ri
o 6 23.4 24.5 24.6 22.3 26

6-5 52.6 48.9 46.9 47 50.8
6-4 71 75.3 77.7 73.4 76.5
6-3 82.1 82.8 81.3 84.2 83.3
6-2 84.5 85.9 85.6 88.4 85.9
6-1 86.8 89.1 91.2 86.1 87.6

Average 66.73 67.75 67.88 66.9 68.35
STD 22.5 23.4 23.9 24.3 22.6

personalization time. The highest accuracy of
63.8% is achieved with all six IMFs and a per-
sonalization time of 10 s. AS outperforms DS for
the validation set of 2 and 4. In AS, the accu-
racy increases as the IMFs are added, while for
DS, accuracy mostly increases with the addition
of IMFs, but not always.

From Tables 10 to 12, it can be observed that
among non-linear techniques (EMD and EEMD),
the best accuracy of 91.2% was achieved with
EMD with cubic spline, Ascending/Descending
Scenario, and all 6 IMFs.

4.6.5 Comparison of Non-linear
Scenarios

Fig. 8 compares ascending and descending sce-
narios for 2 and 10 s personalization time. Graphs
for 4, 6, and 8 s exhibit similar patterns and thus
are not included. Notice that the same number

Table 12 Accuracy for EEMD

IMFs 2 Secs 4 Secs 6 Secs 8 Secs 10 Secs

A
sc
en

d
in
g
S
ce
n
a
ri
o 1 28.2 25.9 27.9 28.3 29.2

1-2 37.2 35.6 33.9 34 33.6
1-3 37.2 37.5 38.6 38.3 37.9
1-4 46.6 51.5 44.1 46.9 48.2
1-5 51.1 53.3 52.2 53.7 54.6
1-6 54 54.1 63 58.4 63.8

Average 42.38 42.98 43.28 43.27 44.55
STD 8.98 10.63 11.65 10.68 12.14

D
es
ce
n
d
in
g
S
ce
n
a
ri
o 6 19.1 19 16.2 19.6 22

6-5 26.3 28.2 24.5 28.3 28.2
6-4 38.3 39.8 43.2 42.6 41.1
6-3 50.2 58.2 57 58.4 50.2
6-2 54.7 53.2 56.6 56.6 51.7
6-1 54 54.1 63 58.4 63.8

Average 40.43 42.08 43.41 43.98 42.83
STD 13.8 14.48 17.5 15.4 14.3

Fig. 8 Non-linear techniques: Ascending and Descending
Scenarios with 2 and 10 s personalization

of IMFs is used for the ascending and descend-
ing scenarios; however, the included components
are different. For example, for three IMFs, AS
includes IMFs 1, 2, and 3 while DS includes
IMFs 6, 5, and 4 as shown in Table 3. As seen
from Fig. 8, for all decomposition techniques and
all scenarios, the accuracy raises when the num-
ber of IMFs increases. For both personalization
durations, when only one IMF is used, ascending
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scenarios (solid lines) are better than descending
(dashed lines). When more IMFs are added, DS
is catching up with AS, and is even slightly bet-
ter for some numbers of IMFs. The same Fig. 8
compares EMD with two different splines, namely
linear (EMD-L) and cubic (EMD-C). With a fewer
number of IMFs, linear spline achieves better
accuracy, but when IMFs are added, the cubic
spline performs better. Overall, out of all non-
linear techniques, EMD with cubic spline and six
IMFs achieves the highest accuracy.

4.6.6 Effect of Personalization Time on
Non-Linear Decomposition
Techniques

Fig. 9 examines the effect of personalization time
on Cubic EMD technique. Only the graphs for
Cubic EMD with Ascending and Descending sce-
narios are included as other techniques, EMD with
linear spline and EEMD, follow a similar pattern.

The accuracy remains quite stable with the
increase in personalization time demonstrating
that the proposed personalization can work suc-
cessfully even with as little as 2 s of the target
subject data per activity. In both, ascending and

Fig. 9 Effect of Personalization Time on Cubic EMD
Technique

descending scenarios, accuracy is higher when
more IMFs are included, with six IMFs achieving
the best accuracy for almost all personalization
time durations.

4.6.7 Comparing the Best Linear and
Non-linear Techniques:
Statistical Significance Tests

In this subsection, we examine if the difference
between the best linear and the best non-linear
technique is significant. As seen from Tables 6 to
9, the highest accuracy of 88.8% among all linear
preprocessing techniques was achieved by SWT
with db1, LoD 3, Scenario F, and 4 s personaliza-
tion. From non-linear techniques (Tables 10 to 12),
the best accuracy of 91.2% was obtained by EMD
with cubic spline, six IMFs, and 6 s personaliza-
tion. Because the accuracy of the CNNs can vary
slightly depending on factors such as the initial
weights and the order of samples during training,
we repeat the process of training and testing the
CNN 100 times for each of the two best models,
linear and non-linear. Finally, we carry out the sta-
tistical tests to determine if there is a significant
difference between the two.

To determine which statistical test to use, his-
tograms of the accuracy are plotted first as shown
in Fig. 10. The distribution from those histograms
appears to follow the normal distribution, but to
confirm this, Shapiro-Wilk test is applied. The cri-
teria for accepting/rejecting the null hypothesis
”Samples are not from the normal distribution” is
as follows:

{
p <= α Reject H0; Distribution is Not Normal

p > α Fail to Reject H0; Distribution is Normal

(9)
where p is the statistic value and α is the signifi-
cance level.

The results of the Shapiro-Wilk test are shown
in Table 13. Because p-value for both, linear and
non-linear decomposition, is greater than α =
0.05, we conclude that they follow Gaussian dis-
tribution.

As the results of linear and non-linear decom-
position follow a normal distribution, a t-test can
be used to determine if there is a significant
difference between the two techniques. The null



Springer Nature 2021 LATEX template

16 Article Title

(a) Histogram for the CNN with the best linear model

(b) Histogram for the CNN with the best non-linear model

Fig. 10 Accuracy Histograms

Table 13 Results of Shapiro-Wilk test

Linear + CNNs Non-Lienar + CNNs
Statistics 0.987 0.995
P-value 0.439 0.971

Result
Gaussian Distribution

(fail to reject H0)
Gaussian Distribution

(fail to reject H0)

hypothesis is now:

H0: Ave (non-linear+CNN) = Ave (linear+CNN)

(10)
For the t-test, statistics value is 3.65 corre-

sponding to p− value = 2.48e− 30 at significance
level 0.05. Because the p-value is lower than 0.05,
we can reject the null hypothesis, which means
that the linear and non-linear techniques do not
have the same mean. Finally, we can infer that
CNN with non-linear decomposition is statisti-
cally better than CNN with linear decomposition.

4.6.8 Effect of Activity Type

Table 14 shows the combined confusion matrix for
all 10 people and the best model, EMD with 6
IMFs and 6 seconds for personalization. Each field
in the matrix is obtained by adding the numbers

from the corresponding fields in each person con-
fusion matrix. It can be observed that for some
activities the misclassification is much higher than
for others. The most frequently confused activi-
ties are jogging (activity 10) and running (activity
11) which is understandable as there is no firm
boundary between those two activities: 6069 times
jogging was detected as running and 2159 times
running was classified as jogging. Nevertheless,
the model was highly successful in detecting the
majority of the activities.

4.7 Comparison with other machine
learning techniques

This subsection compares the proposed approach
with other ML-based HAR approaches. Two algo-
rithms have been considered: K-Nearest Neigh-
bour (KNN) and SVM. Note that the work of [33]
has already shown that CNN outperforms FFNN
in HAR, in particular on the MHEALTH dataset.
With each of the two considered algorithms, two
data preprocessing strategies have been employed.
In the first strategy, referred here as raw data,
the sliding window technique is applied and the
raw data is used for the classification. In the
second strategy, referred to as extracted features,
the sliding window technique is applied, and then
the features are extracted from each individual
data window as in the work of Khatun and Mor-
shed [57]. For each original feature obtained from
sensors, nine features are extracted from created
windows: mean, min, max, standard deviation,
median, skewness, energy, kurtosis, and interquar-
tile range [57]. These features with corresponding
labels are then used for model training.

All experiments have been evaluated with the
LOSOCV technique. Table 15 shows the results of
KNN with the raw data strategy (CPU implemen-
tation). KNN does not have a separate training
stage; thus, the table shows activity detection
time for all folds of the LOSOCV. As seen from
the table, when the number of considered near-
est neighbors K increases, the processing time
increases with minor changes in the activity recog-
nition accuracy. However, when the window size
increases, so does the accuracy: the best accuracy
was achieved for window size 50 and K = 3.

Table 16 depicts results for KNN with
extracted features. The accuracy of this approach
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Table 14 Combined confusion matrix for all ten people (MHEALTH Dataset, EMD IMF1-6 and 6 s personalization)

Prediction
Activity 1 2 3 4 5 6 7 8 9 10 11 12

1 26220 869 0 0 0 0 631 0 0 0 0 0

2 49 25564 593 566 0 364 519 0 0 0 65 0

R
ea
l
C
la
ss
es

3 103 0 26816 7 0 0 745 0 0 0 0 49

4 1191 27 0 25682 113 70 132 75 0 107 323 0

5 2068 725 34 1455 22467 31 0 248 0 108 19 565

6 60 14 0 11 0 24909 295 19 7 0 0 0

7 0 1155 672 19 0 111 24325 19 2 138 0 0

8 0 0 0 0 0 1931 0 24080 67 254 0 5

9 11 0 0 0 1 0 116 67 27462 25 0 38

10 0 0 0 0 0 0 319 133 0 20972 6069 227

11 0 0 0 0 0 0 67 55 1 2159 25302 136

12 0 0 0 20 463 83 0 6 17 163 241 6349
1: Standing still, 2: Sitting and relaxing, 3: Lying down, 4: Walking, 5: Climbing stairs, 6: Waist bends forward,
7: Frontal elevation of arms, 8: Knees bending (crouching), 9: Cycling, 10: Jogging, 11: Running, 12: Jump front & back

is lower than when KNN is used with sliding win-
dows and raw data (Table 15). As the size of
the sliding window increases, so does the accu-
racy, while the impact of the considered nearest
neighbors K is minimal. Increasing the window
size results in a decreased number of samples (as
there is no window overlap) as well as in reduced
detection time.

For the SVM classifier, training with the slid-
ing windows and raw data was very slow, with a
training time of over 20 hours even for a single
fold of LOSCOCV; therefore, this was considered
an unfeasible approach, and further experiments
were not carried out. For extracted features, train-
ing SVM was faster but the overall accuracy
was below 60%; therefore further analysis is not
presented here.

Table 15 KNN with Sliding Windows and Raw Data

Window Size
(Other Details)

K Accuracy Time

5
(Samples: 342715
Features: 105)

3 81.6 1h, 40m, 20s
5 81.8 1h, 42m, 11s
7 81.8 1h, 44m, 36s
9 81.8 1h, 45m, 58s

10
(Samples: 342115
Features: 210)

3 83.5 4h, 10m, 13s
5 83.5 4h, 16m, 53s
7 83.6 4h, 20m, 38s
9 83.6 4h, 28m, 52s

50
(Samples: 337315
Features: 1050)

3 89.4 24h, 40m, 2s
5 89.3 25h, 26m, 10s
7 89.3 26h, 14m, 46s
9 89.2 27h, 25m, 40s

To compare these results with our approach,
Table 17 shows time obtained with our best per-
sonalized model: CNN with Cubic EMD with
6 IMFs, and 6 s for personalization. Time for
both, CPU and GPU-based implementations are
shown separately for training and testing. Pre-
sented time values include all ten folds (subjects)
of LOSOCV and all samples. Consequently, with
our approach, the activity cumulative detection
time for all 307,195 samples is 29s on CPU and 23s
on GPU. Thus, for a single sample, the detection
time is under 0.1 ms.

The accuracy of KNN with sliding window and
raw data (Table 15) reaches the accuracy of our
approach (Table 11) but KNN does not have a
separate training: to achieve comparable accuracy
to our approach, KNN needs a window size of 50
what results in over 24 hours for activity detection
for all test samples. As our approach carries out
activity recognition much faster, it is an overall
better approach.

5 Discussion

The presented experiments demonstrate that
CNN with signal processing techniques and the
proposed personalization approach achieves high
HAR accuracy. In both, linear and non-linear
decomposition techniques, the achieved accuracy
depends on the number of the created features
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Table 16 KNN with Features Extracted from Sliding
Windows

Window Size
(Other Details)

K Accuracy Time

5
(Samples: 68588
Features: 189)

3 68 56s
5 68.6 59s
7 68.9 1m, 1s
9 69 1m, 3s

10
(Samples: 34284
Features: 189)

3 69.5 14s
5 70.2 15s
7 70.2 16s
9 70.2 17s

50
(Samples: 6812
Features: 189)

3 83.3 1s
5 83.3 1s
7 83.3 1s
9 83.4 1s

Table 17 Personalized model: CNNs with 6 IMFs, Cubic
EMD, and 6 s personalization time

CNN+Personalization Time (train) Time (Test)
CPU

Samples: 307195
Features: 126

4h, 30m, 45s 29s

GPU
Samples: 307195
Features: 126

3h, 27m, 16s 23s

(levels of decomposition or IMFs) for CNN train-
ing.

For linear techniques, as observed from Fig.
7 and Tables 6 to 9, increasing the level of
decomposition for almost all personalization time
durations improves activity recognition. In most
cases, Scenario F outperforms Scenario R; how-
ever, Scenario R achieves very similar accuracy to
Scenario F but with a fewer number of features,
and therefore reduced training time.

Similarly, as seen in Fig. 8, the recognition
accuracy for non-linear techniques increases with
the number of features, in this case, the number of
IMFs. Adding features has a larger impact on non-
linear techniques than on linear techniques. For
example, EMD with cubic spline and ascending
scenario has accuracy below 50% with one IMF,
which increases to over 86% for six IMFs (Fig. 8).
For linear scenarios, the accuracy increase from
LoD 1 to LoD 5 is much smaller: in the range
of 82% to 88%. For a low number of IMFs, the
ascending scenario is better than descending sce-
nario (Fig. 8) but this pattern revertses when the
number of IMFs increases to five. With six IMFs,
the two scenarios become the same.

Finally, the proposed approach is compared
with the state-of-the-art CNN-based HAR tech-
nique [33]. Mentioned study [33] examined differ-
ent CNN and FFNN architectures with various
pre-processing techniques including the sliding
window and vector magnitude. In contrast, our
study employs the signal processing techniques
with CNNs and proposes a novel personalization
approach. Here we compare our approach with
the best architecture from that study [33]: CNN
(two convolutional, two pooling, and two fully-
connected layers) with sliding window and vec-
tor magnitude pre-processing. This architecture
is compared to the best linear model SWT-db1-
3LoD and the best non-linear model EMD-C-
AS/DS in Table 18.

The best accuracy of CNN with the sliding
window, vector magnitude, and without person-
alization [33] is 85.1% whereas the best accu-
racy achieved in our study is 91.2%. Even with-
out personalization, the best non-linear technique
EMD-C-AS/DS obtains better results than CNN
with the sliding window and vector magnitude.
Note that the scenario here is denoted as AS/DS
because with six IMFs, DS and AS scenarios are
the same.

This Table 18 also examines adding our per-
sonalization technique to the CNN with sliding
window and vector magnitude [33]: personaliza-
tion increases the accuracy to around 87 − 88%
depending on the personalization time. Compar-
ing the impact of personalization on each of
the considered techniques, CNN with the sliding
window and vector magnitude, linear (SWT-db1-
3LoD), and non-linear (EMD-C-AS/DS) decom-
position models, we can observe that adding per-
sonalization increase the accuracy for each of the
three models. With the non-linear approach, even
without personalization, the accuracy is already
high, which shows that this approach is capable of
extracting more valuable features than the other
two.

Table 18 shows that the proposed feature
extraction approach achieves better accuracy than
the sliding window technique with vector mag-
nitude. Another point to highlight is that with
window size 50 and vector magnitude, the number
of features is 350 [33] while for SWT-db1-3 LoDs
(Scenario F) and EMD-Cubic-AS/DS (IMFs 1-6),
the number of features is 84 and 126, respectively.
Consequently, the proposed approach is not only
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Table 18 Comparison of the proposed technique with
the state-of-the-art CNN-based approach

Without With Personalization

Pers. 2s 4s 6s 8s 10s
CNN with siding window
and vector magnitude [33]

85.1 88.4 88 87.8 87.7 88

SWT-db1-3 LoDs
(Scenario F)

84.96 85.9 88.8 87.2 88.7 87.9

EMD-Cubic-AS/DS
(IMFs 1-6)

86.98 86.8 89.1 91.2 86.1 87.6

able to achieve higher accuracy, but it also reduces
CNN training time due to the reduced number of
features.

Note that all results presented in this study
are obtained with LOSOCV evaluation and are
not comparable with values reported in literature
if a different evaluation technique is used. It has
been shown that differences between the evalua-
tion techniques can exceed 14% [33]. CNN with
sliding window and vector magnitude achieved
85.1% accuracy when evaluated with LOSOCV,
and 99.85% when evaluated with traditional 10-
fold cross-validation [33].

To examine the behavior of the proposed
approach on a larger activity-based dataset, we
have used WISDM dataset [58]. This dataset was
gathered from 51 volunteers as they executed 18
different activities for three minutes each. Data
from sensors is recorded for two devices, phone
and watch, and two sensor types, accelerometer,
and gyroscope, for each device. All sensor modali-
ties operated at a sampling rate of 20 Hz. Table 19
shows the results for WISDM dataset; accuracy of
our approach is compared to the CNN with slid-
ing window and vector magnitude [33] with and
without the personalization Note that the person-
alization approach with 2 seconds is not applicable
for the CNN with sliding window and vector mag-
nitude (window size: 50) because the size of the
validation dataset becomes 40 (2 sec with 20 Hz
sampling = 40 readings) which is less than the
window size.

As seen from Table 19, for the CNN with
sliding window and vector magnitude [33], the
accuracy increases as the personalization time
increases. For our best model, EMD with 6 IMFs,
the personalization produces better accuracy than
the model without the personalization, with the
best results achieved for 6 s. Nevertheless, the
personalization improves the results irrelevant of
the base model, and moreover, our signal-based

Table 19 Comparison of the proposed technique with the
state-of-the-art CNN-based approach for WISDM dataset

Without With Personalization

Pers. 2s 4s 6s 8s 10s
CNN with siding window
and vector magnitude [33]

50.17 – 52.57 52.59 53.63 53.9

EMD-Cubic-AS/DS
(IMFs 1-6)

52.14 53.43 53.47 57.6 55.2 54.84

solution achieves better accuracy than the state-
of-the-art CNN [33]. The accuracy for WISDM is
much lower than for MHEALTH dataset which is
to be expected due to the complexity and diversity
of the activities in WISDM dataset. The results
reported here cannot be compared directly with
other studies as they use a less strict evaluation
technique [59] or they only consider some of the
recorded activities [60, 61].

For all experiments, we have used the same
CNN architecture as shown in Fig. 3 because that
was the best CNN architecture obtained in the
previous study [33]. Moreover, the same hyper-
parameters have been used as in the mentioned
study [33]. Even without tuning this architec-
ture, in this paper we presented results from 285
models for MHEALTH dataset, which with 10
subjects equals 2850 experiments. A large num-
ber of alternatives makes comparing individually
tuned architectures difficult while further tuning
could result in increased accuracy of some variants
presented.

Note that data for HAR is collected in con-
trolled experiments, therefore, it leads to a bal-
anced dataset. In the case of imbalanced classes,
what is the expected scenario in real-world appli-
cations, using F1-measure instead of accuracy
would be a better way of selecting the best
model; however, this situation could also be reme-
died with under-sampling and over-sampling tech-
niques.

6 Conclusion

This paper proposes a personalized approach
for human activity recognition from wearable
sensors. The multi-modal sensor data from the
magnetometer, accelerometer, and gyroscope are
first processed by signal processing techniques to
extract features for machine learning. Next, the
convolutional neural network fuses the extracted
features to obtain the final activity classification.
A few seconds of the target subject data are used
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to personalize the model by selecting the model
version best suited to that subject.

Experiments examined linear techniques
including SWT variants with mother wavelets
db1, db2, db3, and db4 as well as non-linear
techniques such as EMD with a linear and cubic
spline. For linear techniques, one, three, and five
levels of decomposition were considered while for
non-linear techniques, different numbers of IMFs
were examined. Also, the paper examines how
much data from the target subject is required for
personalization.

The results show that EMD with cubic spline,
six IMFs, and 6 s personalization archives the best
accuracy of 91.2%. In comparison, the state-of-
the-art CNN-based technique achieves accuracy
around 85.1% [33]. Mostly, for all signal decompo-
sition techniques, adding more features increases
accuracy but those added features also increase
computational time for both, feature extraction
as well as CNN training. On the other hand,
personalization time does not have as strong an
impact on accuracy, and increasing personaliza-
tion time does not always result in increased accu-
racy. Finally, experiments demonstrated that the
proposed personalization technique can improve
the accuracy of existing CNN-based approaches
even when used without the signal processing
component.

Future work will evaluate the proposed
approach on different datasets and with a larger
number of subjects. Moreover, a hybrid of time-
and frequency-domain features will be examined.
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dre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel,
Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, et al. Scikit-learn: Machine learn-
ing in python. The Journal of Machine
Learning Research, 12:2825–2830, 2011.

[57] Saleha Khatun and Bashir I Morshed. Fully-
automated human activity recognition with
transition awareness from wearable sensor
data for mhealth. In 2018 IEEE Inter-
national Conference on Electro/Information
Technology, pages 0934–0938. IEEE, 2018.

[58] Gary M Weiss, Kenichi Yoneda, and Thaier
Hayajneh. Smartphone and smartwatch-
based biometrics using activities of daily
living. IEEE Access, 7:133190–133202, 2019.

[59] Seyed Ali Rokni, Marjan Nourollahi, and
Hassan Ghasemzadeh. Personalized human
activity recognition using convolutional neu-
ral networks. In Proceedings of the AAAI
Conference on Artificial Intelligence, vol-
ume 32, 2018.

[60] Hendrio Bragança, Juan G Colonna, Wes-
llen Sousa Lima, and Eduardo Souto. A
smartphone lightweight method for human
activity recognition based on information the-
ory. Sensors, 20(7), 2020.

[61] Artur Jordao, Antonio C Nazare Jr, Jessica
Sena, and William Robson Schwartz. Human
activity recognition based on wearable sensor
data: A standardization of the state-of-the-
art. 2019.


	Introduction
	Background
	Wavelet Transform
	Empirical Mode Decomposition (EMD)
	Convolutional Neural Network

	Related Work
	Human Activity Recognition
	Signal Processing Techniques in Human Activity Recognition
	Personalization techniques for Human Activity Recognition

	Methodology
	Data Preprocessing
	Linear Techniques
	Non-linear Techniques

	Deep Learning Model
	Personalization Approach
	Evaluation Process and Performance Criteria
	Evaluation
	Data
	Experiments

	Results
	Accuracy of Linear Decomposition Techniques
	Comparison of Linear Decomposition Scenarios
	Effect of Personalization Time on Linear Decomposition Techniques
	Accuracy of Non-linear Decomposition Techniques
	Comparison of Non-linear Scenarios
	Effect of Personalization Time on Non-Linear Decomposition Techniques
	Comparing the Best Linear and Non-linear Techniques: Statistical Significance Tests
	Effect of Activity Type 

	Comparison with other machine learning techniques

	Discussion
	Conclusion



