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Buildings are major contributors to global carbon emissions, accounting for a substantial portion of energy 
consumption and environmental impact. This situation presents a critical opportunity for energy conservation 
through strategic interventions in both building design and operational phases. Artificial Intelligence (AI) 
has emerged as a transformative approach in this context, enhancing the efficiency and precision of energy 
management efforts. In the operational phase, AI is extensively utilized as smart controllers for Heating, 
Ventilation, and Air Conditioning (HVAC) systems and passive energy gains, as well as for fault detection. 
In the design phase, AI is pivotal as a surrogate model, enabling rapid and accurate evaluation of design 
options and allowing designers to optimize building performance with minimal computational resources. As the 
early-stage optimization is more cost-effective than post-construction modifications, design phase optimization 
has a great potential. Consequently, this paper examines recent advancements in surrogate-assisted design 
optimization for sustainable buildings, providing a comprehensive overview of the entire optimization process, 
from data preparation and surrogate model training to final optimization. The review categorizes studies based on 
experimental approaches and methodologies, identifying trends, gaps, and opportunities in the field. Notably, it 
highlights how modern AI techniques can incorporate previously unexplored dimensions into surrogate-assisted 
optimization, broadening the scope and potential of surrogate models. Therefore, this study provides guidance 
for future research and practical applications of AI-driven strategies in sustainable building practices.
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1. Introduction

Buildings consume a significant amount of energy and contribute 
substantially to CO2 emissions. According to the United Nations Envi-

ronment Programme’s (UNEP’s) 2023 report [1], 37% of global green-

house emissions come from buildings. These emissions are primarily 
due to the materials used in construction and the energy required for 
building operation, highlighting the need to reduce operational and em-

bodied carbon through sustainability measures.

Norbert Lechner proposed a 3-tier approach presented in Fig. 1 for 
integrating sustainable measures into buildings [2]. Tier 1 focuses on 
fundamental aspects of building design, such as orientation, insulation, 
compactness, and other early design decisions. Tier 2 involves strategies 
that leverage natural energies, including daylight, natural ventilation, 
and passive solar heating. Finally, Tier 3 addresses the selection and 
optimization of mechanical and electrical systems. As shown in Fig. 1, 
according to Lechner, strategic design decisions in Tier 1 have the po-

tential to reduce energy consumption by 60%, with further reductions 
achieved through passive systems in Tier 2 (20%) and optimized equip-

ment in Tier 3 (5%). Together, these measures can achieve up to an 85% 
reduction in energy consumption.

Fig. 1. Norbert Lechner’s 3-tier approach for building sustainability outlining 
three levels of sustainable building measures [2]. According to Lechner, integrat-

ing measures from all three tiers can cumulatively reduce energy consumption 
by 85%. Notably, decisions made during the fundamental design stage alone can 
achieve up to a 60% reduction in energy use.

Design stage optimizations involve exploring the potential solu-

tion space early in the building lifecycle to identify the most suitable 
options, balancing performance, cost, and other relevant constraints. 
These early-stage optimizations are crucial because they are more cost-

effective than post-construction modifications and have the greatest po-

tential impact on the building’s performance [3]. Therefore, integrating 
Tier 1 elements, in conjunction with strategies from Tiers 2 and 3, into 
the design stage optimization process is essential for achieving optimal 
sustainability outcomes.

Given the complexity inherent in building design and the need for 
comprehensive optimization exploration during the design stage, AI 
plays a crucial role in these processes. Machine Learning (ML) models 
automate complex simulations—such as energy modeling and daylight 
analysis—and enable the exploration of extensive design spaces, allow-

ing for the identification of the most sustainable building designs within 
a constrained timeframe. ML models that replicate the outcomes of 
physics-based simulations are commonly known as surrogate models, as 
they approximate the performance of these traditional simulation meth-

ods.

Recognizing AI’s role, specifically surrogate models, in sustainable 
building practices, our review focuses on building design optimiza-

tion using surrogate models, with an emphasis on sustainability. While 
Westermann et al. [4] provided a comprehensive review of surrogate 
modeling approaches, their work encompassed a broader range of ap-

plications, including sensitivity analysis, uncertainty analysis, design 
optimization, and conceptual design, while we focus solely on design 
optimization.

More recently, Elwy et al. [5] and Cruz et al. [6] conducted reviews 
to identify trends in building performance optimization using surro-

gate models, providing an overview of applications and methodological 
advancements. We also review performance optimization focusing on 
sustainability; however, unlike the studies by Elwy et al. and Cruz et 
al. [5,6], we define the surrogate modeling process by breaking it into 
components and reviewing each component individually. By doing this, 
we provide researchers and practitioners with a way to select each com-

ponent according to their specific use case scenario. Additionally, our 
study emphasizes advanced ML and deep learning (DL) techniques, pro-

viding the ML perspective as well as incorporates a guidance framework 
for practitioners throughout the modeling process while offering re-

searchers directions for future advancements.

Consequently, this paper provides a systematic examination of re-

cent studies that have advanced surrogate-assisted design optimization 
methods in the context of sustainability. This offers a structured syn-

thesis, emphasizing experimental approaches and key methodological 
strategies from a computer engineering and ML perspective. The review 
spans the entire optimization workflow, encompassing data prepara-

tion, surrogate model selection, training and validation, and final design 
optimization, while identifying and discussing methodologies and tech-

niques at each stage. By analyzing nuances in these studies, this review 
not only highlights the current research landscape but also identifies 
gaps and opportunities for further advancement in the field.

The remainder of the paper is organized as follows: Section 2 ex-

plores AI applications in building sustainability and details the system-

atic review process. Section 3 introduces surrogate models in design 
optimization, while Section 4 reviews the modeling process. Section 5

examines key focus areas, and Section 6 identifies gaps and opportu-

nities in the field. Finally, Section 7 concludes with a summary of the 
findings.



Energy & Buildings 332 (2025) 115440

3

P. Manmatharasan, G. Bitsuamlak and K. Grolinger

Fig. 2. AI integration in building sustainability. AI is applied during both the design and operational stages. The design stage focuses on optimizing decisions from 
the three tiers, while the operational stage includes smart control, fault detection, and load prediction.

2. AI in building sustainability

This section first explores the applications of AI in building sus-

tainability, highlighting its multifaceted roles in this domain, before 
focusing on the specific areas selected for this review. Next, the sys-

tematic review process used to identify the relevant studies is detailed.

2.1. AI applications

AI is increasingly being used across various domains to improve ef-

ficiency and precision, particularly in the realm of sustainability. Fig. 2

illustrates our categorization of AI applications in building sustainabil-

ity, encompassing the three tiers across both design and operational 
phases.

Tier 3 which involves the selection and optimization of mechanical 
and electrical systems, has seen substantial AI applications including 
equipment selection during design optimization [7–9], smart control of 
HVAC systems [10–21], fault detection of electronic devices [22–30], 
and load prediction [31,32]. AI’s ability to optimize these systems en-

sures that mechanical and electrical components are not only efficiently 
selected, but also dynamically tuned during operation for peak perfor-

mance.

Tier 2 focuses on optimizing passive design strategies to efficiently 
use natural energy sources, such as daylight, ventilation, and solar 
heating. AI augments these strategies by providing precise optimiza-

tion of passive elements during the design process [33–36,9]. Addition-

ally, AI serves as a smart controller for systems that influence passive 
gains—such as shades, mechanical ventilation systems, and operable 
windows—ensuring these strategies are dynamically optimized to main-

tain sustainability [37–39].

Tier 1, which covers fundamental design considerations including 
orientation and insulation, is integrated into the broader design opti-

mization processes [4,5,40–44]. Here, AI facilitates the exploration of 
optimal design configurations that maximize energy efficiency.

AI-driven design stage optimization leveraging surrogate models, 
which integrates elements from all three tiers, plays a pivotal role in 
achieving comprehensive sustainability in building design. By enabling 
the incorporation of strategic sustainable measures during the design 
stage, AI enhances the sustainability of modern buildings early in the 
building life cycle avoiding expensive post-construction retrofits. Ac-

cordingly, our review focuses on surrogate-assisted design optimization 
for sustainable buildings.

2.2. Review process

Our review process employs the Preferred Reporting Items for Sys-

tematic reviews and Meta-Analyses (PRISMA) [45] methodology to sys-

tematically identify relevant papers for this review, ensuring a compre-

hensive and unbiased selection process. Fig. 3 illustrates the step-by-step 
approach for identifying, screening, and selecting studies for analysis.

Fig. 3. Literature review process. The initial search through Scopus yielded 158 
publications, with 9 additional records identified through other sources, totaling 
167. After screening, 61 publications were excluded. Out of 106 full-text articles 
assessed for eligibility, 36 were excluded, resulting in 70 included papers.

The literature search began with a search of publications indexed 
in the Scopus database, focusing on the domain of building design op-

timization with surrogate models. The primary search terms included 
“building design optimization”, “building performance and design optimiza-

tion”, and “building energy and design optimization”. To further refine the 
search and specifically target studies employing surrogate ML models, 
additional keywords were added: “machine learning”, “artificial intelli-

gence”, “surrogate model”, “meta model”, “deep learning”, and “neural net-

work”. The final search query applied was as follows:
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Fig. 4. Keyword frequency analysis for the titles and abstracts of the reviewed studies. The chart showcases key research themes and trends within the surrogate 
modeling domain.

((“building design” AND “optimization”) OR

(“building performance” AND

“design optimization”) OR

“design optimization”)) AND

(“neural network” OR “artificial intelligence” OR

“machine learning” OR “surrogate model” OR

“meta model” OR “deep learning”)

Only peer-reviewed journal articles published in English within the 
last fifteen years were included, ensuring the currency of the method-

ologies and technologies discussed. This resulted in 158 publications. 
Nine more publications were identified through a manual search of ref-

erences and author’s knowledge, bringing the total to 167 publications 
for screening. There are numerous studies on surrogate models in other 
domains such as reliable design [46,47] but those are not included as 
they do not consider sustainable building design.

Each paper was evaluated based on its abstract and keywords to 
determine its relevance to the review’s focus on the surrogate model 
in building design optimization. Papers not related to design optimiza-

tion, such as those on load prediction, fault detection, and solar panel 
energy generation prediction, were removed. Papers focusing on opti-

mization for structural stability and reliability, pedestrian wind flow 
around buildings, or operational stage optimizations—such as HVAC 
control and energy consumption—were also not considered, as well as 
works based on statistical methods and other non-AI approaches. A to-

tal of 61 papers were excluded, leaving 106 papers selected for full-text 
review.

From the full-text article review, another 36 papers were removed 
due to the following reasons: the lack of model details, the use of non-ML 
meta-heuristic algorithms, insufficient information on data collection 
methods, and data collected from existing buildings using sensors and 
other measures. Studies that utilized data collected from existing build-

ings were excluded, as these data are gathered during the operational 
stage and are not fully available during the design stage, and our fo-

cus is on the design stage. Some papers that initially appeared to have 
a potential for sustainability considerations were found not to include 
any sustainability measures in their optimization. Additionally, five pa-

pers could not be fully accessed. After this screening, 70 papers were 
retained for review and analysis.

To highlight the emerging trends in these studies, a keyword fre-

quency analysis is presented in Fig. 4. As expected, building, optimiza-

tion, energy, and design, dominate, followed by performance and objec-

tives.

3. Surrogate models in sustainable design optimization

We analyzed the selected papers to identify the methodologies, tech-

niques, and algorithms employed in building design optimization and 
understand how these approaches contribute to achieving sustainable 
designs. The insights gained from this analysis not only shed light on 
current trends but also highlight the evolving role of advanced compu-

tational methods in enhancing sustainability in building practices.

Fig. 5 illustrates the core process of building design optimization 
using surrogate models, which can be divided into two main stages: sur-

rogate model development and optimization using the surrogate model. 
In the first stage, a surrogate model is developed to replicate the task 
of a physics-based model, which reduces the computational burden of 
physics-based models. Once validated, the model is employed in the sec-

ond stage, where it facilitates the design optimization process to derive 
optimal parameters.

The core steps in surrogate model development include the identifi-

cation of objectives, design variable selection and parameter combina-

tion generation, design and simulation of building performance, and, fi-

nally, surrogate ML model selection, training and validation. Optionally, 
the model training step may include performance tuning techniques, 
such as hyperparameter tuning or adaptive sampling, to enhance model 
accuracy. Once the model is built, it is utilized in an optimization pro-

cess with a suitable optimization algorithm to find the optimal values 
for the selected design parameters.

Based on the part of the surrogate model-driven optimization pro-

cess they address, the studies can be divided into four categories as seen 
in Table 1: model development only, model development with perfor-

mance tuning, model development and design optimization, and design 
optimization with the tuned model. Within each of these categories, 
the works are further grouped based on their primary focus. While the 
studies share a common surrogate modeling process, they emphasize 
different aspects of this process.

Model development with performance tuning: This category in-

cludes studies that focused on both developing a surrogate model and 
implementing performance-tuning techniques to improve model accu-

racy. This includes an optimization of the ML model’s hyperparameters 
which aims to improve the ML model accuracy. Note that this is the im-

provement of the ML model itself and does not involve building design 
optimization.

These cases involved optimizing the model’s hyperparameters

through various techniques to achieve higher accuracy. Techniques such 
as genetic algorithms (GAs), Bayesian optimization, and grid search 
were commonly employed for this [48–50].

Model development and design optimization: Falling into this 
category are works that developed a surrogate model and then used it 
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Fig. 5. Design optimization using surrogate model consists of surrogate model development and optimization with the surrogate model. First, objectives are identified 
and variables are determined. This follows by building design and simulation which create data for surrogate model training. This trained model is subsequently 
utilized in the building optimization process.

to derive optimal parameters for a selected building. These studies offer 
a complete process for design optimization.

These papers are further classified based on the specific factors 
they focused on: climate change [51,35], ensemble models [52,53,22], 
meta-heuristic optimization [54–56], systematic sampling [57], Python 
framework [58], renovation [59,41], feature selection (e.g., [60,61]), 
passive energy elements (e.g., [34,35]), active energy elements (e.g., 
[9,8]), and case studies (e.g., [36,62]).

Model Development Only: This group encompasses works that fo-

cused exclusively on surrogate model development. These studies ad-

dressed all the necessary steps involved in building and evaluating a 
surrogate model but did not include a case study demonstrating the op-

timization process related to design variable selection.

The studies in this category are further grouped based on the key 
aspects they emphasize: DL-aided models [63,40,43,42], data genera-

tion [44], feature selection [64,65], occupant behavior [66], explainable 
AI [67], shape descriptors [68], ventilation [69], and optimized FFNN 
[70].

Design optimization with tuned model: This group contains the 
publications that developed a ML model, tuned its performance, and 
then used it for deriving sustainable designs. The key difference from the 
previous category is that these studies involved a two-stage optimization 
process, where the ML model itself is optimized before being used for 
parameter derivation.

The works in this category are further categorized based on the dis-

tinct elements they used in the two-stage optimization process. This 
includes Reinforcement Learning (RL) optimization [92] in the second 
stage, and parameter optimization (e.g., [99,98,97]) and adaptive sam-

pling (e.g., [100,101]) in the first stage.

4. Review of the surrogate modeling process

This section provides a comprehensive review of the core method-

ologies essential to the surrogate-assisted design optimization process. It 
covers key stages, including data preparation, surrogate model develop-

ment, and optimization techniques, highlighting the methods and tools 
used at each step.

4.1. Identification of objectives

Through the review of the selected literature, we identified three 
primary sustainability objectives commonly addressed in optimization 
studies: reducing operational energy demand, enhancing daylight per-

formance levels, and reducing carbon emissions. As seen in Table 1, each 
study included at least one of these objectives in the optimization, with 
some addressing multiple sustainability objectives simultaneously as a 
part of a multi-objective optimization approach.

Operational Energy Demand (OED): Buildings consume a substan-

tial amount of energy during operation for heating, cooling, lighting, 

and equipment operation. Therefore, minimizing this energy consump-

tion is a common objective in the sustainability domain and is widely 
addressed in the literature on sustainable buildings. In our review, 56 
studies identified the reduction of operational energy as one of the pri-

mary objectives.

Daylight Performance Level (DPL): Another common objective in 
design optimization is to increase DPLs within buildings. This approach 
reduces the need for artificial lighting, lowering energy consumption 
and enhancing indoor environmental quality. In the analyzed litera-

ture, 12 studies identified DPLs as one of their objectives. Among these, 
except for three studies [49,42,87], all others (e.g., [51,76,77]) had mul-

tiple sustainability objectives.

Carbon Emissions (CE): Several studies aim to minimize total car-

bon emissions by addressing both embedded carbon and OED. Em-

bedded carbon refers to the carbon content in the materials used for 
constructing the building, including emissions from material extraction, 
manufacturing, and transportation. In our review, 11 studies specifi-

cally targeted the reduction of both embedded and operational carbon 
[63,44,53,74].

4.2. Design variable selection and parameter combination generation

Once the objectives are identified, the next step is to determine the 
building design variables that should be optimized to achieve these 
objectives. This is followed by a parameter combination generation pro-

cess, which creates input datasets for the surrogate ML model.

4.2.1. Design variable selection

Certain design variables have a greater influence on the optimiza-

tion process than others, and their importance can vary depending on 
the specific objectives selected. The selection of these influential vari-

ables can be informed by domain expertise or determined through tech-

niques such as sensitivity analysis. This subsection examines the most 
frequently employed variables in the current literature on surrogate 
models for building design optimization. Fig. 6 provides a summary of 
commonly used variables, indicating the percentage of reviewed studies 
that utilized each feature.

For a comprehensive list of the parameters used in each reviewed 
study, refer to the Appendix. Table A.1 provides an exhaustive list of 
studies and the specific wall and roof parameters they utilized, while 
Table A.2 lists the remaining parameters employed in the studies. Some 
parameters that were used in specific studies but are not widely adopted 
are not included in these tables. The main categories of the design pa-

rameters are as follows:

Windows: Windows serve as a conduit for sunlight and airflow while 
providing connectivity to the outdoors. Increasing the glazing area can 
enhance solar gains and natural lighting, but it may also reduce in-

sulation effectiveness. As a result, window parameters are among the 
most frequently optimized variables in sustainable design studies. The 
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Table 1

Classification of studies based on the part of the surrogate model optimization process they address and the primary focus. The table also highlights 
the objectives, ML models, and optimization algorithms employed.

Category
Primary 
Focus

Author Year Ref
Objectives ML Models

Optimization
OED DPL CE FFNN Tree Other

Model 
development 
only

DL aided 
models

Mateusz 2020 [63] ✗ CNN & FFNN -

He 2021 [42] ✗ CNN & GAN -

Westermann 2022 [40] ✗ TCN & FFNN -

Yue 2023 [43] ✗ RDPG -

Data generation Venkatraj 2023 [44] ✗ ✗ -

Feature 
selection

Didwania 2023 [64] ✗ ✗ -

Seyedzadeh 2019 [65] ✗ ✗ -

Occupant behavior Li 2020 [66] ✗ SVR -

Explainable AI Barbaresi 2022 [67] ✗ ✗ -

Shape descriptors Storcz 2023 [68] ✗ ✗ -

Ventilation Alghamdi 2024 [69] ✗ ✗ -

Optimized FFNN Himmetoglu 2021 [70] ✗ ✗ -

Model development 
with performance 
tuning

Parameter 
Optimization

Garcia 2020 [48] ✗ ✗ -

Han 2021 [49] ✗ ✗ -

Cai 2023 [50] ✗ SVR -

Model development 
and design 
optimization

Climate change
Zou 2021 [51] ✗ ✗ ✗ GA

Li 2023 [35] ✗ ✗ NSGA-ii

Ensemble 
models

Chen 2023 [53] ✗ Ensemble NSGA-iii

Yang 2023 [71] ✗ Ensemble NSGA-iii

Shen 2024 [52] ✗ ✗ Ensemble NSGA-iii

Metaheuristic 
optimization

Yu 2015 [54] ✗ ✗ NSGA-ii

Chegari 2021 [55] ✗ ✗ MOPSO

Chegari 2022 [72] ✗ ✗ MOPSO

Systematic sampling Zheng 2024 [57] ✗ ✗ GA

Python framework Hocine 2023 [58] ✗ ✗ GA

Renovation
Arjomandnia 2023 [59] ✗ ✗ PSO

Asadi 2014 [41] ✗ ✗ GA

Feature 
selection

Chen 2018 [37] ✗ SVR NSGA-ii

Li 2019 [73] ✗ ✗ NSGA-ii

Serbouti 2021 [74] ✗ ✗ NSGA-ii

Wang 2021 [75] ✗ ✗ NSGA-ii

Chen 2022 [61] ✗ ✗ NSGA-iii

Razmi 2022 [76] ✗ ✗ ✗ NSGA-iii

Zhan 2024 [60] ✗ ✗ ✗ NSGA-iii

Passive 
energy 
elements

Gou 2018 [33] ✗ ✗ NSGA-ii

Lin 2021 [77] ✗ ✗ ✗ Antlion

Li 2023 [78] ✗ SVR PSO

Alsharif 2023 [34] ✗ ✗ Manta-Ray

Active 
energy 
elements

Magnier 2010 [79] ✗ ✗ ✗ NSGA-ii

Xu 2021 [80] ✗ ✗ ✗ NSGA-ii

Amini 2022 [7] ✗ GPR NSGA-ii

Li 2024 [8] ✗ ✗ DE

Zong 2024 [9] ✗ ✗ NSGA-iii

Case studies

Gossard 2013 [81] ✗ ✗ NSGA-ii

Li 2017 [82] ✗ ✗ MODE

Prada 2018 [83] ✗ ✗ MARS NSGA-ii

Xu 2018 [84] ✗ ✗ Iterative

Si 2019 [85] ✗ ✗ NSGA-ii

Zhao 2021 [86] ✗ ✗ ✗ NSGA-ii

Wang 2021 [87] ✗ ✗ NSGA-ii

Xue 2022 [88] ✗ ✗ NSGA-ii

Wu 2022 [89] ✗ ✗ NSGA-iii

Saryazdi 2022 [90] ✗ ✗ GA

Elbeltagi 2022 [91] ✗ ✗ GA

Kubwimana 2023 [62] ✗ ✗ GA

Ji 2024 [36] ✗ ✗ NSGA-iii

Design optimization 
with tuned model

RL optimization Pan 2024 [92] ✗ ✗ DDPG

Parameter 
optimization

Sun 2020 [93] ✗ ✗ ✗ SPEA2

Garcia 2022 [94] ✗ ✗ GA

Liu 2023 [95] ✗ ✗ NSGA-ii

Shen 2023 [96] ✗ ✗ AGE-MOEA

Wu 2023 [97] ✗ ✗ NSGA-iii

Khan 2024 [98] ✗ ✗ AGE-MOEA

Si 2024 [99] ✗ ✗ GA

Adaptive 
sampling

Bre 2020 [100] ✗ ✗ NSGA-ii

Bamdad 2020 [101] ✗ ✗ Ant Colony

Yue 2021 [102] ✗ ✗ NSGA-ii

Batres 2023 [103] ✗ ✗ PSO

You 2023 [104] ✗ ✗ MCOA
6

Lahmar 2024 [105] ✗ ✗ GA
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Fig. 6. Parameters commonly optimized using surrogate models for sustainability. Optimization is performed to obtain the optimal values for selected design variables, 
which are chosen based on their impact on the defined objectives.

Window-to-Wall Ratio (WWR), which is the ratio of window area to the 
total wall surface area, is the most commonly optimized window de-

sign variable. This parameter was employed in 35 (50%) of the studies, 
where strategic window placement maximized passive solar gains and 
day lighting levels (e.g., [53,52]).

Beyond WWR, optimizing window specifications—such as U-value, 
Solar Heat Gain Coefficient (SHGC), transmittance, and glazing type—

is essential for enhancing energy efficiency (e.g., [53,99]). Additionally, 
some studies explored the optimization of window dimensions to further 
improve sustainability (e.g., [104]).

Wall specifications: Wall characteristics are a common focus in the 
optimization studies reviewed. As illustrated in Fig. 6, 34 (48.6%) of 
the literature incorporated wall insulation-related features. Some stud-

ies concentrated on optimizing the type of insulation (e.g., [41,94,44]), 
while others focused on insulation thickness (e.g., [35,88,40]), with a 
subset addressing both parameters in tandem (e.g., [33,51,70]).

Thermal properties of wall materials were targeted in 28 (40%) of 
the literature: key metrics include thermal conductivity (e.g., [81,62,

96]), specific heat capacity (e.g., [81,37]), heat inertia [54], and heat 
transfer coefficient (e.g., [72,95,97]). Additionally, surface properties 
such as solar absorptance (e.g., [35,53]) and reflectance (e.g., [49,77]) 
were optimized in 17 of the papers. Wall dimensions (e.g., [50,92]) also 
received attention in 5 of the studies.

Orientation: The orientation of a building relative to the cardinal 
directions influences solar gain, natural lighting, and wind flow. Also 
referred to as azimuth, this design variable was optimized in 30 (42.9%) 
of the reviewed studies (e.g., [91,78])

Roof specifications: Roofs, together with walls, form the build-

ing’s enclosure and serve as a barrier against environmental conditions. 
Design variables related to roofs found in the literature mirror those op-

timized for walls and include insulation characteristics (e.g., [99,43]), 
thermal properties (e.g., [81,54]), surface characteristics (e.g., [72,95]), 
and dimensions (e.g., [50,35]). Roof thermal properties were optimized 
in 24 (34.3%) of the studies reviewed, while insulation characteristics 
and surface characteristics were optimized in 21 and 11 studied, re-

spectively. In 5 of the publications, roof dimensions were among the 
optimized design variables.

Air tightness: Air tightness and infiltration rate significantly influ-

ence internal temperature and are crucial for maintaining indoor air 
quality. In 24 (34.3%) of the studies reviewed, parameters related to 
air movement, such as air gaps and infiltration, were included in the 
optimization process (e.g., [94,97]).

Equipment selection and setpoints: In 6 of the reviewed stud-

ies, equipment selection was also incorporated into the optimization 
process. Common equipment selections identified in the literature in-

clude decisions on HVAC system types [41,94,9,83] and lighting system 
[102,43]. In 21 (30%) of the studies, HVAC set points were also used 
as parameters. This gives optimal set point configuration for the design 
(e.g., [89,85]).

Compactness: Compactness is typically assessed by the volume-to-

surface area ratio, where a higher ratio reduces the potential for heat loss 
through the building’s envelope. In the reviewed studies, parameters 
such as the number of floors and floor dimensions (e.g., [86,54]) were 
optimized to improve compactness.

Shading: Shading can be used for controlling passive heat gain 
through windows, and optimizing shading parameters can reduce exces-

sive heat gain during summer. In 20 (28.6%) of the reviewed studies, 
the type of shading elements was optimized (e.g., [51,77]). Addition-

ally, 6 of the reviewed studies focused on optimizing shading element 
dimensions (e.g., [34,100]) to further manage passive solar gains.

Internal gains: Internal energy gains can affect the internal tem-

perature and contribute to the total energy consumption of a building. 
Internal gains from equipment were used as a variable in 13 (18.6%) 
of the studies reviewed (e.g., [90,53]). Additionally, Shen et al. [96]

included occupancy density as one of the parameters.

Ventilation: Ventilation is an essential passive cooling element in 
certain weather conditions, and the optimization of ventilation open-

ings was addressed during the design stage in 8 (11.4%) of the studies 
(e.g., [78,43]), while the ventilation rate was specifically optimized in 
5 (7.1%) of the studies (e.g., [90,61]).

In addition to the discussed commonly used variables, some studies 
have explored other variables. Two of these important yet underutilized 
variables, which are particularly relevant for enhancing the reusability 
of models across different sites are weather-related features and urban 
area effect. Weather-related features are rarely used as inputs for surro-
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gate models; however, incorporating these features is essential for en-

suring that surrogate models perform accurately under different climate 
conditions. Westermann et al. [40] utilized a deep Temporal Convo-

lutional Network (TCN) to process hourly weather data, automatically 
extracting temporal patterns and key climatic features. These extracted 
features, combined with building design parameters, were used to pre-

dict energy demands for different locations. Similarly, Zheng et al. [57]

incorporated weather-related data into their feature engineering pro-

cess by deriving aggregated metrics such as annual solar irradiance and 
average ambient temperature. These engineered features, integrated 
with building-specific parameters, allowed the surrogate model to gen-

eralize across diverse climate zones without requiring retraining. Both 
approaches demonstrated the critical role of weather variables in en-

hancing the accuracy and generalizability of surrogate models.

Similarly micro-climate effects caused by adjacent structures are sel-

dom considered, although they play a major role in energy consumption. 
Mateusz et al. [63] proposed Convolutional Neural Networks (CNNs) to 
identify urban effects from image data, and incorporated this informa-

tion into performance predictions. Similarly, Wang et al. [87] demon-

strated the importance of optimizing the layout of residential buildings 
to enhance daylight levels, taking into account the urban effects from 
adjacent structures.

4.2.2. Parameter combination generation

After selecting the parameters to be optimized, the next step is to 
establish a range of values for each parameter, which will be used in 
creating the training dataset for the surrogate model. These ranges vary 
based on the nature of each parameter. Some parameters are numerical 
and may have continuous or discrete values, while others are categori-

cal. To adequately train the surrogate model, a comprehensive training 
set with combinations of these parameters must be generated. Various 
sampling techniques are employed to select parameter values, with com-

monly used sampling techniques including:

• Latin Hypercube Sampling (LHS): This technique ensures that 
samples are evenly distributed across the entire range of each pa-

rameter, providing better coverage of the input space compared to 
random sampling [106]. LHS reduces redundant sampling and guar-

antees representation across all areas of the design space, making 
it especially suitable for high-dimensional problems. These charac-

teristics made LHS the most commonly used sampling approach in 
the reviewed papers.

• Monte Carlo Sampling: This technique is simple to implement and 
useful for approximating complex distributions. Four of the studies 
reviewed used Monte Carlo methods for sampling [35,53,37,60].

• Sobol Sequences: The Sobol technique provides low-discrepancy 
sequences that cover the parameter space uniformly. In the re-

viewed literature, five of the studies employed this technique for 
the sampling process [74,43,64,61,83].

• Orthogonal Sampling: The Orthogonal method ensures that the 
sampled points are orthogonal in the parameter space, leading to 
wider coverage and reliable results. Only four studies employed this 
method in their surrogate modeling process [95,97,98,92].

• Random Sampling: In this approach, samples are selected ran-

domly from the parameter space, which can be effective for a wide 
variety of problems but may require a large number of samples to 
achieve good coverage. It was preferred by three studies for the pa-

rameter generation [63,78,8].

• Adaptive Sampling: Adaptive methods dynamically adjust the 
sampling strategy based on model performance, improving effi-

ciency. In five of the very recent studies, adaptive strategies were 
employed [100,101,103–105].

Since the goal of a surrogate model is to reduce the number of 
physics-based simulations, it is essential to employ a representative but 
limited training set. These techniques aim to create the training dataset 

which is both representative and robust, allowing the surrogate model to 
accurately learn and predict building performance across a wide range 
of design variables.

4.3. Design and simulation of building performance

The subsequent step in the surrogate modeling process entails gen-

erating building designs for selected design parameters using advanced 
design tools. These designs are then imported into simulation software 
to evaluate the performance metrics for each parameter combination. 
This process yields a comprehensive assessment of how different design 
variables influence the building’s overall performance.

In the literature, tools such as SketchUp, Revit, Rhino, Grasshopper, 
and Dynamo are frequently utilized for generating building designs due 
to their ability to create detailed and precise models. These tools output 
a design file—typically in formats such as IFC, gbXML, or DXF—which 
represents the building model that can be modified for parameterized 
simulations. To streamline this process, these design files are modified 
parametrically, allowing for efficient adjustments to key variables. This 
parametric modification enables the systematic alteration of specific 
design aspects, such as insulation levels or window properties, within 
predefined ranges.

After the design phase, the next step is to simulate the building to 
obtain performance metrics. Fig. 7 shows the range of simulation tools 
frequently used across different studies to assess various aspects of build-

ing performance, along with the percentage of studies that employed 
each tool. These tools include:

EnergyPlus: EnergyPlus utilizes weather data and building at-

tributes to perform simulations, providing assessments of heating, cool-

ing, ventilation, lighting, water use, and other energy flows within 
buildings. Its large user community and robust features make Ener-

gyPlus a reliable choice for researchers and practitioners. As shown in 
Fig. 7, 53 (75.7%) of the reviewed studies employed EnergyPlus, ei-

ther directly or in combination with other tools, to evaluate the energy 
performance of building designs.

Fig. 7. Distribution of simulation tool usage in literature. EnergyPlus is the most 
frequently used tool, either alone or in combination with other tools such as 
DesignBuilder and Ladybug.

Radiance: Radiance is used to perform daylight simulations that de-

termine how light interacts with building surfaces [107]. It offers high 
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Table 2

Comparison of commonly used ML algorithms in surrogate modeling, focusing on their data requirements, training complexity, learning 
methodologies, and main use cases.

Algorithm Data Need Training 
Complexity

Learning Methodology Main Use Cases

FFNN High High Backpropagation with 
gradient descent

Complex nonlinear relationships

SVR Moderate Moderate Quadratic programming 
(optimization)

Small to medium datasets, simple nonlinear 
problems

CNN Very High Very High Backpropagation with 
convolutional filters

Image data, spatiotemporal patterns

Tree-Based Models Low Low Recursive partitioning and 
ensemble methods (e.g., 
boosting, bagging)

Explainability, tabular data, handling categorical 
data

precision in predicting visual comfort and lighting levels within build-

ings: it is used for optimizing artificial lighting and window openings. 
Radiance was utilized directly or through plugins in six of the reviewed 
studies to assess lighting levels.

Daysim: Daysim utilizes advanced ray tracing algorithms from Radi-

ance, as it is built on the Radiance engine [108]. Compared to Radiance, 
Daysim offers a more user-friendly platform, making it easier for users 
to perform detailed daylight analyses. It was employed in five of the re-

viewed studies to assess the daylight levels in selected building designs.

Transient System Simulation Tool (TRNSYS): TRNSYS is another 
commonly used simulation tool for assessing the energy performance 
of buildings. It offers high flexibility, allowing users to create custom 
components and adapt simulations to meet specific requirements [109]. 
In 10 of the reviewed studies, TRNSYS was used as the performance 
evaluator.

Ladybug and Honeybee: Ladybug and its extension Honeybee serve 
as a bridge between powerful parametric modeling performed with 
Rhino/Grasshopper and robust simulation engines like EnergyPlus, Ra-

diance, and similar [110]. Fig. 7 includes the ladybug plugin in conjunc-

tion with the corresponding simulation engines. In 16 of the reviewed 
studies, these plugins were used to run simulations on EnergyPlus, Ra-

diance, or Daysim engines.

DesignBuilder: DesignBuilder is a comprehensive simulation tool 
widely used for building design optimization. It integrates EnergyPlus 
for energy simulation and offers a user-friendly interface for creating de-

tailed building models. In the reviewed literature, eight (11.4%) studies 
employed DesignBuilder to evaluate the energy performance of their de-

signs, as illustrated in Fig. 7.

Other simulation tools: In addition to these commonly used tools, a 
few studies also employed Ecotect and eQuest for performance analysis. 
Although Ecotect is not as widely used as other tools, it is valued for 
its ability to provide rapid feedback on design decisions, which aids in 
the iterative design process. On the other hand, eQuest is designed to 
facilitate detailed energy modeling with minimal input effort, making 
it a useful tool for quick energy performance assessments. These tools 
were preferred by 7.5% of the studies.

Carbon assessment tools are utilized when the objective is to reduce 
the embedded carbon in buildings, as calculating embedded carbon typ-

ically does not require simulations. As this is not a typical simulation 
tool, it has been excluded from Fig. 7. Serbouti et al. [74] incorporated 
the carbon cost of building materials by using data from the Koor-

dinationskonferenz der Bau- und Liegenschaftsorgane der öffentlichen 
Bauherren (KBOB) database [111], a Swiss repository containing life 
cycle assessment data. Similarly, Zong et al. [9] utilized a knowledge-

based database to obtain carbon details of building materials. Zhan et 
al. [60] calculated the embedded carbon using carbon emission factors 
for materials and transport, sourced from various databases. Chen et al. 
[53] and Ji et al. [36] also used carbon emission factors in their life cy-

cle carbon emission assessments while Xue et al. [88] employed Carbon 
Emission Factors (CEFs) to determine the embedded carbon, sourcing 
these CEFs from the China Life Cycle Database.

Simulation time depends on factors such as granularity, duration, 
design complexity, and hardware. Most studies used hourly granular-

ity for a one-year period, though some adopted finer resolutions, such 
as 30-minute intervals [98,96] and 10-minute steps [93,33]. Zhan et al. 
[60] simulated an 8,276 m2, seven-story senior apartment building with 
EnergyPlus and Radiance on a standard laptop, requiring 2.4 minutes 
per design. Yue et al. [43] simulated four gymnasium buildings across 
different Chinese climate zones using EnergyPlus, completing hourly an-

nual data simulations in 24 hours with a quad-core laptop, averaging 
4.32 seconds per sample. These examples illustrate how simulation time 
is influenced by hardware, building complexity, and simulation tools. 
High-quality simulations can ensure accurate optimization results, as 
they provide reliable data for training surrogate models. Studies should 
address simulation quality to ensure the overall reliability of the opti-

mization process.

4.4. Surrogate model selection, training and validation

After generating performance metrics through simulations for se-

lected designs, the next step in the surrogate modeling process is model 
selection, training, and validation to develop an ML model that ap-

proximates the simulation task. This process ensures the chosen model 
provides accurate predictions and is suitable for optimization tasks.

4.4.1. Model selection

ML models approximate relationships between inputs and outputs, 
enabling predictive capabilities. However, each ML model offers dis-

tinct advantages and varying performance characteristics. The most suit-

able model for a task depends on specific requirements and constraints. 
Therefore, model selection is a critical step in the surrogate modeling 
process. Table 2 provides a summary of the key comparisons between 
commonly used algorithms in surrogate modeling.

Table 1 lists the ML models employed as surrogates in the reviewed 
studies, while Fig. 8 provides a summarized visualization of their usage. 
These models include:

Feed Forward Neural Networks (FFNN): FFNNs are the most com-

mon surrogate models in this domain due to their strong ability to 
recognize patterns. In an FFNN, neurons—the fundamental units of the 
network—are organized into interconnected layers: an input layer, one 
or more hidden layers, and an output layer, with information flowing 
in one direction from input to output. The nonlinear output functions 
of neurons enable the formation of complex nonlinear relationships be-

tween inputs and outputs [112]. FFNNs are typically trained using the 
backpropagation algorithm, where the gradients of the loss function are 
used to update the network weights [113]. However, training methods 
are not limited to backpropagation; the weights of a neural network can 
also be optimized using various optimization algorithms. In 46 out of 
the 70 studies reviewed, FFNN was the preferred surrogate model.

Support Vector Regression (SVR): SVR, a variant of Support Vector 
Machines (SVM) designed specifically for regression problems, has also 
been used as a surrogate model. SVR finds a function that deviates from 
the actual observed values by a small margin, effectively capturing the 
underlying relationship between input and output variables [114]. The 
training process involves solving a convex optimization problem. SVR 
was employed as a surrogate model in four reviewed studies.
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Fig. 8. ML models applied in design optimization across the reviewed studies. 
Among these, FFNN are the most common technique, with a growing integration 
of other DL models in the most recent studies.

Tree based models: Tree-based models, including decision trees, 
Random Forests (RFs), and Gradient Boosting Machines (GBMs), have 
become increasingly popular in recent studies involving surrogate mod-

els. A decision tree consists of multiple nodes, where the data are split 
at each node based on a feature that minimizes the error. RFs com-

bine multiple decision trees to enhance accuracy and robustness [115]. 
GBMs are ensemble models in which trees are sequentially cascaded, 
with each subsequent model attempting to correct the errors made by 
its predecessor [116]. Tree-based models are favored for their explain-

ability compared to most other ML models and were utilized in 12 recent 
studies.

CNNs: CNNs are a type of DL model particularly effective at captur-

ing information from image data. They consist of convolutional layers 
that extract local patterns such as edges, textures, and shapes [117]. 
While CNNs primarily use 2D filters to extract features from images; 
1D CNNs, which utilize 1D filters, are adept at capturing local patterns, 
such as trends or periodicity, in time series data [118]. For example, 
Mateusz et al. [63] utilized a CNN model to capture urban effects from 
image data, while Westermann et al. [40] applied a 1D CNN to extract 
information from weather data.

Other surrogate models: In addition to the models discussed, sev-

eral other approaches have been employed as surrogates in the reviewed 
studies. Yue et al. [43] demonstrated that RL models can also serve 
as surrogates. Gaussian Process Regression (GPR) was used as a meta-

model by Amini et al. [7], while Prada et al. [83] utilized Multivariate 
Adaptive Regression Splines (MARS) for the same purpose. Ensemble 
techniques were employed by Chen et al. [53], Yang et al. [71], and 
Shen et al. [52] to enhance model accuracy and robustness.

4.4.2. Model training and validation

Training is the process by which ML models learn the relationship be-

tween inputs and outputs. As highlighted in Table 2, FFNNs and CNNs 
are most suitable for addressing complex nonlinear relationships and 
spatiotemporal patterns, though they require significant data and com-

putational resources. In comparison, SVR and tree-based models utilize 
simpler techniques with lower resource demands, making them more ap-

propriate for smaller datasets and applications where model explainabil-

ity is important. Despite these differences, all training methodologies 
aim to minimize the discrepancy between actual and predicted values. 
This discrepancy is typically evaluated using metrics such as Root Mean 
Square Error (RMSE), Mean Squared Error (MSE), Mean Absolute Error 
(MAE), and Mean Absolute Percentage Error (MAPE), which capture 
different aspects of error magnitude. The Coefficient of Determination 

(𝑅2) which measures the variance explained by the model, is also a 
commonly used metric. Other metrics, such as Relative Error (RE), Nor-

malized Mean Bias Error (nMBE), and Huber Loss, are also used in some 
cases.

ML models generally perform well on training data but can become 
overly dependent on them, leading to poor generalization on unseen 
data. To evaluate generalization, all the reviewed studies used a separate 
test dataset from that used for training to evaluate model performance 
on unseen data. In most cases, the test data size ranged between 10% 
and 30% of the total dataset. Additionally, some studies included a val-

idation set, which allows for performance evaluation during training 
and aids in fine-tuning hyperparameters or preventing overfitting (e.g., 
[69,55,87,51,75]). A few studies also employed k-fold cross-validation, 
where the data are divided into k subsets, with the model trained on k-

1 subsets and tested on the remaining subset (e.g., [99,105,52,34,97]). 
This process is repeated k times, ensuring that each subset is used as test 
data exactly once.

ML models offer a significantly faster alternative to traditional simu-

lation tools for evaluating building designs. Ji et al. [36] demonstrated 
that a surrogate model reduced evaluation time from approximately 1.2 
minutes per design using the physics-based EnergyPlus model to nearly 
instantaneous, achieving over a 99% reduction in computational time. 
Similarly, Venkatraj et al. [44] reported that ML models provided re-

sults in under 1 second, compared to 2–3 minutes per run for EnergyPlus 
simulations. However, training these models and generating the training 
data can be computationally expensive, especially for DL models. West-

ermann et al. [40] noted that training a model with feature learning 
took approximately 8 hours using a Tesla K80 GPU but only 4 min-

utes with manually engineered features. Mateusz et al. [63] reported 
that training a CNN-based model required about 1 hour for 300 epochs 
with a batch size of 10 on a dataset of 3,000 samples. The efficiency of 
surrogate-assisted optimization also depends on training time, making 
training requirements a key factor in model selection.

4.5. Optimization

The final step in the surrogate model design process is optimization, 
where the goal is to identify the best design solutions based on prede-

fined objectives. The optimization process typically leverages advanced 
algorithms to explore a vast design space, ensuring that the best possible 
outcomes are identified within the project’s constraints.

Table 1 lists the optimization techniques identified in the reviewed 
studies, while Fig. 9 offers a summarized visualization of their usage. 
The remainder of this section examines the various optimization tech-

niques employed in the reviewed studies, highlighting their applications 
and effectiveness in achieving sustainability goals.

Genetic Algorithm (GA): GA is inspired by the natural process of 
biological evolution, specifically the Darwinian theory of survival of 
the fittest. It operates through the processes of selection, crossover, and 
mutation, which are applied to a population of candidate solutions, re-

ferred to as chromosomes, to evolve improved solutions over successive 
generations [119]. In 10 out of the 55 reviewed studies that involved 
optimization, GA was employed as the optimization technique.

Non-Sorted Genetic Algorithm - II (NSGA-II): Traditional GAs of-

ten struggle with issues such as clustered solutions or poor approxima-

tion of the Pareto-optimal front. NSGA-II addresses these limitations 
by combining effective convergence strategies with robust diversity 
maintenance, making it superior to traditional GAs for multi-objective 
optimization [120]. NSGA-II is the most frequently used optimization 
algorithm in the literature, employed in 19 of the reviewed studies. 
However, more recent works have shown a preference for NSGA-III over 
NSGA-II due to its enhanced capabilities in handling many-objectives 
optimization problems.

Non-Sorted Genetic Algorithm - III (NSGA-III): NSGA-III is an ex-

tension of NSGA-II, designed to introduce a more robust mechanism for 
addressing many-objectives optimization problems [121]. This feature 
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Fig. 9. Optimization algorithms applied in design optimization across the re-

viewed studies. NSGA-II emerges as the preferred optimization algorithm, while 
NSGA-III is increasingly being adopted in more recent studies.

is particularly crucial given the complexity and multitude of objectives 
typically encountered in building design optimization. Although NSGA-

III was found in 10 of the reviewed studies, it has become the most 
frequently used algorithm in recent years, surpassing others in popular-

ity.

Particle Swarm Optimization (PSO)/ Multi-Objective Particle 
Swarm Optimization (MOPSO): PSO is widely used due to its sim-

plicity and effectiveness in handling complex, non-linear optimization 
problems [122]. MOPSO extends PSO’s capabilities to address multi-

objective optimization challenges. In the studies reviewed, PSO and 
MOPSO were employed in five works.

Other optimization algorithms: In addition to the previously dis-

cussed algorithms, other optimization techniques have also been ap-

plied, albeit with less frequency. These include Differential Evolu-

tion (DE) [8], Antlion optimizer [77], Ant Colony Optimization (ACO) 
[101], Multi-Criteria Optimization Algorithm (MCOA) [104], and Multi-

Objective Evolutionary Algorithm (MOEA) [96,98]. The Strength Pareto 
Evolutionary Algorithm 2 (SPEA2) was employed by Sun et al. [93], 
while Pan et al. [92] utilized RL in the optimization process to deter-

mine the optimal parameters.

5. Analysis of papers based on their primary focus

In this section, the papers are discussed according to the approaches 
they followed. In Section 3, the main categories are listed, while here 
details are provided taking advantage of components discussed in that 
section. Table 1 provides a detailed categorization of each study consid-

ered in the review, aligning them with their primary focus.

5.1. Model development only

This section includes studies that focus exclusively on the devel-

opment of surrogate models, without addressing the design variable 
optimization. As seen from Table 1, the primarily focus of these studies 
includes:.

DL-aided models: Mateusz et al. [63] integrated traditional ML with 
CNNs, using urban layout images to account for overshadowing effects 
in surrogate modeling. Their architecture combined CNN-based image 
analysis with FFNN numerical inputs to predict operational and em-

bodied carbon footprints. Similarly, He et al. [42] trained ResNet (a 
CNN-based architecture) on residential floor plan images to predict DPL 
metrics and used a pix2pix GAN to visualize illuminance distributions.

Westermann et al. [40] proposed a location-independent surro-

gate model using a deep TCN to extract relevant features from high-

dimensional weather data. The extracted features, combined with build-

ing design parameters, trained an FFNN to address the retraining chal-

lenges of traditional surrogate models. Yue et al. [43] compared six 
surrogate modeling techniques, including DL approaches such as LSTM, 
CNN, and Recurrent Deterministic Policy Gradient (RDPG). The RDPG 
model, combining LSTM and RL, outperformed the others, showcasing 
the potential of DL to replace traditional surrogate models.

Overall, these studies introduced new dimensions to the optimization 
process and demonstrated the effective application of modern DL tech-

niques in this domain. However, such models often come with high data 
requirements and training demands. Their true potential lies in multi-

scenario use cases, where a trained model can be leveraged for multiple 
optimization tasks, making the investment in training more worthwhile.

Data generation: Venkatraj et al. [44] proposed a framework for 
generating building datasets that automate energy simulations. By lever-

aging a parametric approach, the framework ensures efficiency and 
flexibility, enabling the exploration of diverse building designs with-

out manual intervention. However, adapting it for varied optimization 
tasks remains a challenge.

Feature selection: Didwania et al. [64] proposed a surrogate model 
paradigm combined with the Morris method for feature selection. Sim-

ilarly, Seyedzadeh et al. [65] employed the Sobol method to assess 
the impact of each feature and eliminate less significant ones. Feature 
selection methods significantly reduce computational requirements by 
eliminating unnecessary features early in the process.

Occupant behavior: Occupant behavior significantly influences en-

ergy consumption. Li et al. [66] generated a comprehensive database 
incorporating various occupancy pattern scenarios, which they used as 
a feature in the optimization of building design alongside other design 
variables. Although optimizing based on occupancy patterns is benefi-

cial, modeling occupancy, particularly for medium or large-sized build-

ings, remains a significant challenge.

Explainable AI: Barbaresi et al. [67] employed SHapley Additive ex-

Planations (SHAP) to enhance the interpretability of predictions made 
by the eXtreme Gradient Boosting (XGB) model. Their objective was 
to improve the transparency of the model’s decision-making process 
by quantifying the impact of each input feature on the predicted en-

ergy consumption of the building. Broader perspectives on explainabil-

ity methods are discussed in comprehensive surveys, such as those by 
Mersha et al. [123] and Abusitta et al. [124], which provide detailed 
comparisons of interpretability techniques and their applications across 
various fields.

Shape descriptors: Storcz et al. [68] demonstrated shape-focused 
optimization potential by analyzing shape parameter impact on energy 
demand and comfort. Using a 3D Coordinates descriptor with 18 spatial 
points, they dynamically represented building layouts. However, adapt-

ing to complex or irregular designs may require advanced techniques 
such as GANs or DL models for better spatial pattern capture.

Ventilation: Alghamdi et al. [69] developed a simple FFNN surro-

gate model to predict energy consumption, incorporating mechanical 
ventilation to account for its impact on the optimization process.

Optimized FFNN: Himmetoglu et al. [70] introduced the Particle 
Swarm and Ant Colony Optimization Neural Network (PSACONN) ap-

proach, a hybrid method combining PSO and ACO to train a neural 
network. Instead of traditional backpropagation, this method employs 
optimization algorithms to determine the optimal weights. However, the 
absence of a direct comparison with traditional backpropagation limits 
the ability to evaluate its relative performance and efficiency.

5.2. Model development with performance tuning

Similar to the previous section, this section also focuses on studies 
that primarily develop surrogate models. However, these works incor-

porate an additional performance tuning step to further optimize the 
models’ accuracy.

Garcia et al. [48] applied a GA to optimize both the structure and 
hyperparameters of an FFNN, aiming to improve model performance. 
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Similarly, Han et al. [49] used Bayesian optimization to determine the 
optimal hyperparameters for an FFNN, including the number of hidden 
layers, neurons per layer, and batch size.

Cai et al. [50] conducted a comparative study, optimizing an 
SVR model for predicting heating and cooling loads. The SVR pa-

rameters were tuned using six different meta-heuristic algorithms: 
Artificial Ecosystem-based Optimization (AEO), Artificial Bee Colony 
(ABC), Slime Mold Algorithm (SMA), Arithmetic Optimization Algo-

rithm (AOA), Sparrow Search Algorithm (SSA), and Gray Wolf Opti-

mizer (GWO).

5.3. Model development and design optimization

In this section, we examine studies where a surrogate model is de-

veloped and subsequently utilized to derive optimal building design 
parameters for a specific building. This category comprises the majority 
of the literature reviewed. Moreover, we analyze the approaches em-

ployed in the optimization process across these studies, highlighting key 
methodologies and their effectiveness in improving design outcomes.

Climate change: Using past weather data in optimization may over-

look future climate shifts. Several studies address this by incorporating 
future climate scenarios into the optimization process.

Zou et al. [51] employed General Circulation Models (GCM) and Rep-

resentative Concentration Pathways (RCP) to generate high-resolution 
future weather data through a morphing technique, which was then used 
in simulations to create training datasets. Similarly, Li et al. [35] applied 
GCM-based approach with future weather data for Huangshan, China, 
spanning 2020–2050. Uncertainties in future weather predictions can 
affect optimization accuracy and reliability, and should be carefully con-

sidered.

Ensemble models: In ensemble models, multiple ML models are 
combined to reduce variance, typically through bagging or boosting. 
Chen et al. [53] combined RF, GBRT, and FFNN models into an en-

semble to predict carbon emissions. Similarly, Shen et al. [52] used 
LightGBM, RF, SVR, naive Bayes, and LSTM as base models, with an 
XGBoost meta-model for final predictions. Yang et al. [71] integrated 
outputs from eight base models using a multiple linear regression meta-

model. While these methods enhance predictive performance, they also 
increase computational costs and complexity of training.

Metaheuristic optimization: In metaheuristic optimization, the 
surrogate model is trained using an optimization algorithm instead of 
traditional backpropagation. Yu et al. [54] used a GA to optimize the 
weights of an FFNN surrogate model. Chegari et al. [55] adopted a 
hybrid approach, applying Gradient Descent (GD) for initial weight es-

timates followed by PSO to refine them. A similar method was applied 
by Chegari et al. [72] in a different study. A detailed comparison of 
metaheuristic optimization and traditional backpropagation is essential 
to highlight the advantages of metaheuristic methods.

Systematic sampling: This approach samples data systematically 
to cover the relevant design space. Zheng et al. [57] performed sensi-

tivity analysis on an initial 900 samples to identify six key parameters 
affecting energy consumption, which were then varied to generate 2,160 
additional samples.

Python framework: Hocine et al. [58] demonstrated that a Python-

based framework can be employed to generate simulation data for build-

ing surrogate models.

Renovation: Asadi et al. [41] utilized a surrogate model to identify 
the most energy-efficient retrofitting measures for an old school build-

ing. Similarly, Arjomandnia et al. [59] employed a redesign approach 
aiming to minimize energy consumption through targeted renovations. 
When performing renovations, it is crucial to carefully calibrate the sim-

ulation tool to accurately represent the existing building.

Feature selection: Chen et al. [37] used relative weight analysis and 
FAST for prioritizing design parameters, while Li et al. [73] employed 
standardized regression coefficients. Chen et al. [61] combined meth-

ods such as FAST, Sobol, and correlation coefficients to identify critical 

parameters. Wang et al. [75] ranked the impact of design variables on 
housing thermal loads using sensitivity analysis. Similarly, Serbouti et 
al. [74] introduced SAMOT, integrating sensitivity analysis with opti-

mization.

Razmi et al. [76] applied Principal Component Analysis (PCA) to 
reduce dimensionality of design variables while Zhan et al. [60] used 
Least Absolute Shrinkage and Selection operator (LASSO) to select rele-

vant features.

Passive energy elements: Passive heating and cooling elements are 
essential for reducing energy consumption and are commonly included 
in optimization processes. Gou et al. [33] covered shading and ventila-

tion parameters during optimization. Specifically, they used dimensions 
of shades and fins, window opening factor, opening control type, and 
air mass flow coefficient to control the passive gains. Similarly, Li et 
al. [78] emphasized natural ventilation, focusing on parameters such as 
window structure, opening factor, and effective opening area.

Lin et al. [77] focused on green roofs, optimizing parameters such 
as vegetation height, leaf area index, reflectivity, substrate dimensions, 
and thermal conductivity. Alsharif et al. [34], on the other hand, focused 
solely on optimizing shading elements, using parameters exclusively re-

lated to shading dimensions.

Active energy elements: Like passive elements, active electri-

cal equipment influences energy consumption. Studies reviewed here 
demonstrate how Tier 3 components can be selected or optimized at 
the design stage. Magnier et al. [79] incorporated various active el-

ement features, such as HVAC set points, relative humidity settings, 
supply airflow rates for heating and cooling, and thermostat delays, in 
their optimization process. Amini et al. [7] optimized the battery capac-

ity and the sizes of thermal/electrical energy storage systems used for 
heating and cooling at the design stage.

Li et al. [8] compared two AC operation strategies to determine the 
optimal approach for energy efficiency, while Zong et al. [9] included 
parameters such as heater type, control system type, and heat generator 
type as inputs to the surrogate model. On the other hand, Xu et al. [80]

included PhotoVoltaic (PV) system parameters, optimizing the tilt and 
azimuth angles of the PV system alongside the building envelope design.

Case studies: The studies in this category primarily focus on apply-

ing standard methodologies to address case-specific challenges, offering 
valuable insights for those particular contexts. To enhance readability, 
the studies are grouped by the type of building or scenario they address:

Residential Buildings: Gossard [81] analyzed optimal building de-

signs for a single-story residential building under two French climates, 
Nancy (continental) and Nice (Mediterranean), demonstrating the need 
for climate-specific designs to meet distinct thermal performance re-

quirements. Elbeltagi et al. [91] optimized energy performance for a 
single-family home in New Cairo, Egypt, using a Visual Basic interface 
to simplify the input of key design parameters.

Office or High-Rise Buildings: Zhao et al. [86] developed a web-based 
tool using WebGL and Three.js to visualize optimized windows for 
high-rise office buildings with box-like geometries, employing an FFNN 
model with a GA.

Educational and Institutional Buildings: Xu et al. [80] applied FFNN for 
energy load optimization tailored to a school building in China’s cold 
climate. Wu et al. [89] conducted a case study on a university teaching 
building in Wuhan, China, using an RF-NSGA-III algorithm to explore 
energy-efficient design options.

Multi-Building Scenarios: Wang et al. [87] optimized the layout for 
12 structures on a Beijing site, improving indoor visual comfort and 
outdoor thermal performance. Si et al. [85] utilized surrogate models 
to streamline computational demands in a complex multi-building sce-

nario, focusing on the tourist center at Niushou Mountain Park.

Prefabricated and Retrofit Buildings: Ji et al. [36] examined the opti-

mization process for a prefabricated house, focusing on how optimiza-

tion can be tailored to construction using pre-manufactured compo-

nents. Prada et al. [83] applied surrogate modeling to optimize retrofit 
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configurations for existing buildings, addressing the unique require-

ments of retrofitting scenarios.

General Optimization Frameworks: Li et al. [82] implemented an opti-

mization framework with NSGA-II and MOPSO algorithms in MATLAB, 
demonstrating its application across various scenarios. Saryazdi et al. 
[90] combined GA coded in MATLAB with an ANN model for ANN-

based optimization, showcasing its adaptability to diverse case studies.

In addition to serving as references for specific use cases, these stud-

ies offer insights applicable to similar climatic conditions and building 
designs. While these studies considered real-world scenarios and carried 
out extensive analysis, they did not follow through with the implemen-

tation and analysis of the studied cases.

5.4. Design optimization with tuned model

In this section, we review studies that integrate surrogate models 
with performance tuning techniques to enhance accuracy and then em-

ploy the model for design optimization. These studies can also be seen as 
two-stage optimization processes: first, the surrogate model itself is op-

timized through techniques such as hyperparameter tuning or adaptive 
sampling, and second, the optimized model is used to derive optimal 
building design parameters. The three main categories here are:

RL optimization: Pan et al. [92] trained an FFNN surrogate model, 
employing Bayesian optimization to tune its hyperparameters. They 
then used RL to optimize design variables, where the RL agent adjusted 
parameters based on building performance and received rewards for im-

provements predicted by the surrogate model.

Parameter optimization: Here, we review works that emphasize 
advanced tuning strategies to enhance model accuracy in the design 
optimization process. Sun et al. [93] used the Octopus plug-in, which ap-

plies an evolutionary algorithm to refine FFNN hyperparameters, while 
Garcia et al. [94] applied a GA to optimize the FFNN hyperparam-

eters. Liu et al. [95] and Wu et al. [97] utilized GWO to tune key 
hyperparameters—specifically, the number of trees and the number of 
random features—in a RF model. Following a similar strategy, Shen 
et al. [96] and Khan et al. [98] employed Bayesian optimization to 
fine-tune the LightGBM hyperparameters. Six ML models-ridge regres-

sion, RF, XGBoost, SVR, K-NN regression, and MLP-were optimized in 
the study by Si et al. [99] using various tuning techniques including 
Bayesian optimization, random search, GA, and PSO. XGBoost, opti-

mized using PSO achieved the highest model precision.

Adaptive sampling: Determining the optimal sample set for sur-

rogate model training is challenging, so adaptive sampling iteratively 
expands the dataset, focusing on regions needing refinement to improve 
performance efficiently. An adaptive sampling based on Augmented LHS 
was used to train an FFNN-based surrogate model for multi-objective 
building performance optimization [100]. Starting with an initial LHS 
sample, authors progressively expanded samples using the augmentLHS 
technique. Similarly, augmentLHS method was used by Yue et al. [125]

and You et al. [104].

Work by Bamdad et al. [101] carried out initial sampling with LHS, 
followed by a committee of surrogate models to predict not simulated 
cases. High-variance predictions were selected for further simulation, 
with a focus on low-energy cases. Lahmar et al. [105] tested four adap-

tive sampling methods including error-based sampling, Lola-Voronoi, 
sample minimum strategy, and expected improvements: error-based and 
sample minimum methods showed faster convergence and better accu-

racy. An active learning-based adaptive sampling approach for building 
energy optimization, using a metamodel called MEVO, was employed 
by Batres et al. [103]. This approach iteratively selects new sampling 
points based on model optimization needs.

6. Challenges and opportunities

The previous sections reviewed the surrogate modeling process and 
methodologies used to enhance the efficiency and accuracy of surrogate-

assisted design optimization. This section identifies and discusses the 
trends and opportunities related to surrogate model-assisted design op-

timization studies.

Limited reusability: One of the major challenges with surrogate 
models is their limited reusability. In most studies, surrogate models 
were developed for specific sites and often discarded after optimization. 
In contrast, Westermann et al. [40] enhanced their surrogate model by 
incorporating features extracted from weather data, making it applica-

ble across different geographical locations. Similarly, Zheng et al. [57]

and Himmetoglu [70] included weather-related features to generalize 
the model for various climate conditions. However, there remains an 
opportunity for further research to develop models that are reusable 
across diverse climate conditions and building types, requiring minimal 
retraining with only a few additional simulations.

Wind modeling: Wind significantly affects a building’s energy con-

sumption, and the wind patterns around a building are influenced by 
external factors such as surrounding trees and neighboring structures. 
These external factors, such as thees, also impact the direct sunlight and 
further affect energy use. Mateusz et al. [63] employed a CNN model to 
capture the impact of surrounding buildings on the energy consumption 
of the main building. Further research is needed for modeling the effects 
of wind blockers, such as nearby buildings and vegetation, and inte-

grating these factors into the optimization process. Emerging techniques 
from the generative AI category, including Generative Adversarial Net-

works (GANs) and diffusion models, are gaining prominence across a 
diversity of domains and could be beneficial for this purpose.

Building shape: The shape of a building influences its aerodynamics 
and the wind flow around it, affecting the building’s energy consump-

tion. However, making substantial changes to the building shape be-

tween simulations can be time-consuming and remains underexplored. 
Storcz et al. [68] utilized building geometry descriptors in their model 
to approximate energy simulations, which captures the impact of shape. 
Compactness, a commonly used feature in many studies, also implicitly 
accounts for shape effects. Recent advancements in DL could be lever-

aged to modify building shapes more efficiently between simulations, 
allowing the shape to be directly included as a feature in the optimiza-

tion process.

Model explainability: FFNNs remain the most dominant models for 
surrogate modeling. However, tree-based models are gaining popularity 
due to their explainability, which has become increasingly important in 
recent studies. Shen et al. [96] utilized SHAP to provide insights into 
how the models arrive at their predictions, addressing the black-box 
nature of ML models. Similarly, Khan et al. [98] employed Local In-

terpretable Model-Agnostic Explanations (LIME) to explain the model’s 
predictions. As explainability becomes more important in ML applica-

tions, adopting better explainable practices in surrogate modeling is 
becoming a must.

Active learning and selective sampling: LHS is commonly used for 
generating samples in surrogate modeling. However, adaptive sampling 
methods have also proven effective in determining the optimal num-

ber of samples required for model training, improving both efficiency 
and accuracy. Further exploration of active learning techniques could 
improve the model’s performance by selectively acquiring additional 
samples where the model is uncertain, thereby refining predictions and 
optimizing resource use.

Ethical impact: When employing AI and ML in surrogate-assisted 
optimization, it is important to consider challenges such as potential bi-

ases in algorithms, data privacy, and the impact on employment within 
the building design and construction sectors. Future studies should also 
consider these ethical implications to ensure responsible and equitable 
adoption of optimization techniques.

To provide researchers and practitioners with the guidance to select 
appropriate methodologies for specific use cases, we present a guidance 
framework in Fig. 10. The first step is to determine if the intention of 
modeling is for a single-use case or multi-scenario adaptability. Based 
on that, the process continues to the core aim of the case study such 
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Fig. 10. Framework providing guidance for researchers and practitioners in selecting appropriate methodologies for specific use cases. Additionally, the research 
gaps are highlighted.

as high accuracy, efficiency, or explainability. Depending on this core 
objective, various techniques are available: the figure lists the suitable 
techniques with the main implementation options. Finally, the research 
gap column indicates the state of the research with respect to various 
techniques to provide researchers with insights into areas requiring fur-

ther investigation or where existing knowledge is limited.

In summary, while surrogate modeling has made significant strides, 
challenges and opportunities for advancement remain. Key needs in-

clude developing reusable models adaptable to diverse climates and 
building types, improving wind and shape modeling for precise environ-

mental impacts, and enhancing model explainability with interpretable 
models and tools. Additionally, active learning and adaptive sampling 
are promising methods for boosting model efficiency and accuracy. Ad-

dressing these areas can further refine surrogate-assisted design opti-

mization for sustainable building design.

7. Conclusion

This review examined recent advancements in AI-driven surrogate 
models for building design optimization, focusing on their role in en-

hancing sustainability. By integrating strategies from Lechner’s three-

tier approach—covering fundamental design decisions, passive energy 
strategies, and mechanical and electrical system optimizations—AI tech-

nologies, particularly surrogate models, offer opportunities to improve 
sustainable building design processes. Our analysis highlighted method-

ologies, such as DL models, data generation frameworks, feature selec-

tion methods, and advanced sampling techniques, that have been em-

ployed to enhance the accuracy and applicability of surrogate-assisted 
optimization.

While surrogate models present promising advantages in reducing 
computational costs and expanding design exploration, challenges such 
as model reusability across different climates and contexts, and the need 
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for improved interpretability, remain. Future research directions could 
focus on developing more generalizable models, leveraging advanced 
DL techniques to better account for factors such as building shape and 
external conditions, and integrating explainable AI practices to address 
the black-box nature of these models.

Overall, surrogate modeling represents a transformative approach 
in the field of sustainable building design, with continued innovation 
needed to maximize its potential. By focusing on these emerging op-

portunities and challenges, researchers and practitioners can further 
advance the application of AI to create more sustainable, efficient, and 
resilient buildings.
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Appendix A

Table A.1

Design variables related to wall and roof, along with their usage in the reviewed literature.

P
u
b
li

ca
ti

o
n

W
a
ll

th
e
rm

a
l

co
n
d
.

W
a
ll

sp
e
ci

fi
c

h
e
a
t

W
a
ll

h
e
a
t

in
e
rt

ia

W
a
ll

h
e
a
t

tr
a
n
sf

e
r

co
e
f.

W
a
ll

in
su

la
ti

o
n

th
ic

k
.

W
a
ll

in
su

la
ti

o
n

ty
p
e

W
a
ll

so
la

r
re

fl
e
ct

a
n
ce

W
a
ll

so
la

r
a
b
so

rb
ta

n
ce

W
a
ll

a
re

a

W
a
ll

w
id

th

R
o
o
f

th
e
rm

a
l

co
n
d
.

R
o
o
f

sp
e
ci

fi
c

h
e
a
t

R
o
o
f

h
e
a
t

in
e
rt

ia

R
o
o
f

h
e
a
t

tr
a
n
sf

e
r

co
e
f.

R
o
o
f

in
su

la
ti

o
n

th
ic

k
.

R
o
o
f

in
su

la
ti

o
n

ty
p
e

R
o
o
f

so
la

r
re

fl
e
ct

a
n
ce

R
o
o
f

so
la

r
a
b
so

rb
ta

n
ce

R
o
o
f

a
re

a

R
o
o
f

w
id

th

[81] ✗ ✗ ✗ ✗

[41] ✗ ✗

[54] ✗ ✗ ✗ ✗

[33] ✗ ✗ ✗ ✗ ✗

[48] ✗ ✗

[40] ✗ ✗ ✗

[93] ✗ ✗

[100] ✗ ✗ ✗

[101] ✗ ✗ ✗

[51] ✗ ✗ ✗

[102] ✗ ✗

[49] ✗ ✗

[77] ✗ ✗ ✗ ✗

[55] ✗ ✗ ✗ ✗

[94] ✗ ✗

[72] ✗ ✗ ✗ ✗

[7] ✗ ✗

[88] ✗ ✗

[35] ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

[95] ✗ ✗ ✗ ✗

[44] ✗

[50] ✗ ✗

[97] ✗ ✗ ✗ ✗

[78] ✗

[96] ✗ ✗

[91] ✗ ✗

[53] ✗ ✗ ✗ ✗

[103] ✗ ✗

[62] ✗ ✗

[8] ✗

[52] ✗

[36] ✗ ✗

[105] ✗ ✗

[99] ✗ ✗ ✗ ✗

[9] ✗ ✗

[60] ✗ ✗
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Wall thermal cond.

Wall specific heat

Wall heat inertia

Wall heat transfer coef.

Wall insulation thick.

Wall insulation type

Wall solar reflectance

Wall solar absorbtance

Wall area

Wall width

Roof thermal cond.

Roof specific heat

Roof heat inertia

Roof heat transfer coef.

Roof insulation thick.

Roof insulation type

Roof solar reflectance

Roof solar absorbtance

Roof area

Roof width

[9
2
]

✗
✗

✗
✗

[7
1
]

✗
✗

[4
3
]

✗
✗

✗
✗

[6
4
]

✗
✗

[1
0
4
]

✗
✗

✗

[9
0
]

✗

[6
1
]

✗
✗

[7
0
]

✗
✗

[6
6
]

✗
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3
]

✗
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7
]

✗
✗
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]

✗
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9
]

✗
✗
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7
]

✗
✗

[5
8
]

✗
✗

✗
✗

[5
9
]

✗
✗

[8
9
]

✗
✗

✗
✗

[6
7
]

✗
✗

✗
✗

[8
0
]

✗
✗

✗

[8
5
]

✗
✗

✗
✗

[6
5
]

✗
✗
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]

✗
✗
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✗
✗
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✗
✗
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Publication

Orientation

Window Dimensions

Glazing type

Window to wall ratio

U value

SHGC

Window transmitivity

Number of floors

Floor dimensions

Shading transmittance

shading device dimension

Window area ventilation

Window opening factor

Ventilation flow rate

Infiltration

People activity

Equipment load

HVAC set points

Equipment selection

[7
9
]

✗
✗

[4
1
]

✗
✗

[5
4
]

✗
✗

✗
✗

✗

[3
3
]

✗
✗

✗
✗

✗
✗

[7
3
]

[4
8
]

✗
✗

✗
✗

✗
✗

[4
0
]

✗
✗

✗
✗

✗
✗

✗
✗

[6
3
]

[9
3
]

✗
✗

✗

[1
0
0
]

✗
✗

✗
✗

✗
✗

✗

[1
0
1
]

✗
✗

✗
✗

[5
1
]

✗
✗

✗
✗

[1
0
2
]

✗
✗

✗
✗

✗
✗

✗
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6
]

✗
✗

✗
✗

[4
9
]

✗
✗

✗
✗

[7
7
]

✗
✗

✗

[5
5
]

✗
✗

✗

[9
4
]

✗
✗

✗
✗

✗
✗

✗

[7
2
]

✗
✗

✗

[7
]

✗
✗

✗
✗

[7
6
]

✗
✗

✗

[8
8
]

✗
✗

✗

[3
5
]

✗
✗

✗
✗

[9
5
]

✗
✗

✗

[4
4
]

✗
✗

✗
✗

✗

[5
0
]

✗
✗

✗
✗

[9
7
]

✗
✗

✗
✗

[7
8
]

✗
✗

✗
✗
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Table A.2 (continued)
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[96] ✗ ✗ ✗ ✗ ✗ ✗ ✗

[91] ✗ ✗ ✗ ✗ ✗ ✗ ✗

[53] ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

[103] ✗ ✗

[62] ✗ ✗ ✗ ✗

[34] ✗

[8] ✗ ✗ ✗ ✗

[52] ✗ ✗ ✗ ✗

[36] ✗ ✗ ✗

[105] ✗ ✗ ✗

[99] ✗ ✗ ✗ ✗ ✗ ✗

[9] ✗ ✗

[60] ✗ ✗

[92] ✗ ✗ ✗ ✗ ✗ ✗

[71] ✗ ✗ ✗

[43] ✗ ✗ ✗ ✗ ✗ ✗

[64] ✗ ✗ ✗ ✗ ✗ ✗

[104] ✗ ✗ ✗ ✗ ✗ ✗

[90] ✗ ✗ ✗ ✗

[61] ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

[66] ✗ ✗ ✗ ✗

[83] ✗ ✗

[37] ✗ ✗ ✗ ✗ ✗ ✗ ✗

[98] ✗ ✗ ✗ ✗ ✗ ✗ ✗

[69] ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

[57] ✗ ✗ ✗ ✗ ✗ ✗

[58] ✗ ✗

[89] ✗ ✗ ✗ ✗ ✗

[67] ✗ ✗ ✗

[80] ✗ ✗ ✗ ✗ ✗

[85] ✗ ✗ ✗

[65] ✗ ✗ ✗ ✗

[84] ✗ ✗ ✗ ✗ ✗

[82] ✗ ✗ ✗

[68] ✗ ✗ ✗ ✗

Data availability

No data was used for the research described in the article.
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