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Abstract

Accurate software development cost estimation is important for effective project management such as budgeting, project

planning and control. So far, no model has proved to be successful at effectively and consistently predicting software

development cost. A novel neuro-fuzzy Constructive Cost Model (COCOMO) is proposed for software cost estimation. This

model carries some of the desirable features of a neuro-fuzzy approach, such as learning ability and good interpretability, while

maintaining the merits of the COCOMO model. Unlike the standard neural network approach, the proposed model can be

interpreted and validated by experts, and has good generalization capability. The model deals effectively with imprecise and

uncertain input and enhances the reliability of software cost estimates. In addition, it allows input to have continuous rating

values and linguistic values, thus avoiding the problem of similar projects having large different estimated costs. A detailed

learning algorithm is also presented in this work. The validation using industry project data shows that the model greatly

improves estimation accuracy in comparison with the well-known COCOMO model.

# 2005 Elsevier B.V. All rights reserved.

Keywords: Software cost estimation; Neural network; Fuzzy set; COCOMO; Soft computing

1. Introduction

As software development has become an essential

investment for many organizations, software estimation

is gaining an ever-increasing importance in effective

software project management. In practice, software

estimation includes cost estimation, quality estimation,

risk analysis, etc. Accurate software estimation can

provide powerful assistance when software manage-

ment decisions are being made; for instance, accurate

cost estimation can help an organization to better

analyze the feasibility of a project and to effectively

manage the software development process, therefore,

greatly reducing the risk.

Good software estimation is inherently a daunting

task. Although many attempts [1,2,3,9,10,11,13] have

been made to solve the problem in the last few

decades, no approach has proven to be successful in
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effectively and consistently predicting software output

metrics. The principal challenges are: (1) the relation-

ships between software output metrics and contribut-

ing factors exhibit strong complex nonlinear

characteristics; (2) measurements of software metrics

are often imprecise and uncertain; (3) there is

difficulty in utilizing both expert knowledge and

numerical project data in one model. Out of several

current approaches to solve that problem, the neuro-

fuzzy technique is a promising strategy. The neuro-

fuzzy approach is a suitable solution due to its built-in

learning ability, its robustness when faced with

uncertain input and ease of utilizing different

information from multiple sources [4].

We have taken into consideration the features of the

cost estimation problem and various techniques and

have proposed a novel neuro-fuzzy COCOMO model.

The major difference between our work and previous

works lies in that we have combined the COCOMO

model [2], neural network techniques and fuzzy logic

techniques into one scheme and have validated our

approach with industry data.

Neural networks are used in our neuro-fuzzy

COCOMO model to automatically tune the fuzzy

rules from the numerical project data; fuzzy logic

encodes expert knowledge directly using fuzzy rules

with linguistic terms and neuro-fuzzy sub-models are

used to calibrate the parameters of the COCOMO

model. The parameters of standard COCOMO models

are used to initialize the neuro-fuzzy model and

therefore accelerate the learning process. The resultant

model can be easily interpreted and has good

generalization capability. First, the learning para-

meters in our model have concrete physical meaning

and the whole decision process is clear to the users. As

a result, our model can be interpreted and validated

straightforwardly by experts and overcomes the

‘‘black box’’ problem that is common in neural

network approaches. Second, as we choose triangular

membership functions and use monotonic constraints

for our model, our model can achieve good general-

ization. Another feature of our model is that it allows

for continuous rating values and therefore avoids the

problem of similar projects having large variances in

cost estimations. Validation by industry project data

shows that the proposed model can greatly improve

cost estimation accuracy when compared with the

COCOMO model.

2. Background

Because our neuro-fuzzy COCOMO model is

based on the standard COCOMO model, the fuzzy

logic model and neural network models, we briefly

review these techniques.

The COCOMO cost and schedule estimation model

originally published by Boehm [2] is one of most

popular parametric cost estimation models of the

1980s. However, COCOMO’81 along with its 1987

Ada update experienced difficulties in estimating the

costs of software developed according to new life-

cycle processes and capabilities. Thus, the COCOMO

II [1] research effort was started in 1994 at University

of Southern California to address issues on non-

sequential and rapid development process models,

reengineering, reuse driven approaches, object-

oriented approaches, etc.

COCOMO II Post Architecture Model is defined as:

Effort ¼ A� ðSizeÞBþ0:01�
P5

i¼1
SFi �

Y17

i¼1

EMi

where A and B are baseline calibration constants, Size

refers to the size of the software project measured in

terms of thousands of Source Lines of Code (kSLOC),

SF the scale factor, and EM is the effort multiplier.

2.1. Neural network models

Significant effort has been put into the research of

developing software estimation models using neural

networks [5,7,15]. Neural networks are based on the

principle of learning from example with no prior

information being specified. Neural networks are

characterized in terms of three entities: neurons,

interconnection structure and learning algorithms.

Most of the software models developed using neural

networks use multilayer feed-forward networks. The

development of such a neural network model starts with

an appropriate layout of neurons, or connections

between network nodes. This includes defining the

number of layers of neurons, the number of neurons

within each layer, and the manner in which they are

linked. The activation functions of the nodes and the

specific training algorithm to be used must also be

determined. Once the network has been built, the model

must be trained by providing it with a set of historical

X. Huang et al. / Applied Soft Computing 7 (2007) 29–4030
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project data input and the corresponding known

actual values for project effort. The model then

iterates on its training algorithm, automatically adjust-

ing the weights (parameters) until the model weights

converge. Once the training is complete and the

appropriate weights for the network links are deter-

mined, new input can be presented to the neural network

to predict the corresponding project effort. In general,

large data sets are needed to accurately train neural

networks.

2.2. Fuzzy logic models

A fuzzy system is a mapping between linguistic

terms, such as ‘‘medium complexity’’ and ‘‘high cost’’

that are attached to variables. Thus an input into a

fuzzy system can be either numerical or linguistic with

the same applying to the output. A typical fuzzy

system is made up of three major components:

fuzzifier, fuzzy inference engine (fuzzy rules) and

defuzzifier. The fuzzifier transforms the input into

linguistic terms using membership functions that

represent how much a given numerical value of a

particular variable fits the linguistic term being

considered. The fuzzy inference engine performs

the mapping between the input membership functions

and the output membership functions using fuzzy rules

that can be obtained from expert knowledge of the

relationships being modeled. The greater the input

membership degree, the stronger the rule fires, thus the

stronger the pull towards the output membership

function. Since several different output membership

functions can be contained in the consequents of rules

triggered, a defuzzifier carries out the defuzzification

process to combine the output into a single label or

numerical value as required.

3. A novel neuro-fuzzy model

Our novel neuro-fuzzy model for software devel-

opment effort estimation is shown in Fig. 1. The input

for this model is the software size and ratings of 22

cost drivers including 5 scale factors (SFRi) and 17

effort multipliers (EMRi). The output is the software

development effort estimation. Ratings of cost drivers

can be continuous numerical values or linguistic terms

such as ‘‘low’’, ‘‘nominal’’ and ‘‘high’’. The para-

meters in this model are calibrated by learning from

industry project data.

There are two major components in our neuro-

fuzzy model:

� Twenty-two sub-models NFi: for each sub-model,

the input is the rating value of a cost driver, and the

output is the corresponding multiplier value, which

is used as the input of the COCOMO model.

� COCOMO model: the input is the size of software

and the output of NFi. The output is software effort

estimation.

3.1. Sub-model NFi

There are 22 cost drivers in our neuro-fuzzy

model. Each cost driver represents one factor that

contributes to the development effort, such as

application domain experience and product com-

plexity. We use six qualitative rating levels to

evaluate the contribution. When expressed in

linguistic terms, these six rating levels are very

low (VL), low (L), nominal (N), high (H), very high

(VH) and extra high (XH). Each rating level of every

cost driver relates to a value called a multiplier value,

which is a quantitative value used in the COCOMO

model.

Sub-model NFi is used to translate the qualitative

rating of a cost driver into a quantitative multiplier

value and to calibrate these relations using industry

project data. It should be noted that not all six rating

levels are valid for all cost drivers.

A natural way to represent linguistic terms is to use

fuzzy sets. We define a fuzzy set for each linguistic

X. Huang et al. / Applied Soft Computing 7 (2007) 29–40 31
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term of every cost driver, i.e. ‘‘very low’’, ‘‘low’’,

‘‘nominal’’, ‘‘high’’, ‘‘very high’’, ‘‘extra high’’. The

membership functions are either triangular functions or

other functions, and the universe of discourse is the

interval. We use fuzzy numbers ‘‘about 1’’, ‘‘about 2’’,

. . ., ‘‘about 6’’ to represent linguistic terms ‘‘very low’’,

‘‘low’’, ‘‘nominal’’, ‘‘high’’, ‘‘very high’’, ‘‘extra

high’’, respectively.

The Adaptive Neuro-Fuzzy Inference System

(ANFIS) [8] is adopted for each NFi. We denote

CDi = SFi, i = 1, 2, . . ., 5 and CDi+5 = EMi, i = 1, 2,

. . ., 17. The input of NFi is the rating value CDRik of

the ith cost driver CDi, and the output is the

corresponding multiplier value CDi. Fig. 2 shows

the ANFIS structure of sub-model NFi for a 1-input–1-

output system that is functionally equivalent to a

Takaki and Sugeno’s [14] type of fuzzy system having

the rule base:

Fuzzy rule k: If CDRi is Aik, then fk = CDik, k = 1, 2,

. . ., 6

where the fuzzy set Aik represents a rating level that

ranges from ‘‘very low’’ to ‘‘extra high’’, where CDik is

thecorrespondingmultipliervalueofthecostdriverCDi.

The node functions in the same layer are of the same

function family as described below:

Layer 1: Every node k in this layer is a square node

with a node function:

O1
k ¼ mikðxÞ

where x is the input to the node k, and Aik is the

linguistic label (high, low, etc.) associated with this

node function. In other words, O1
k ¼ mikðxÞ is the

membership function of Aik and it specifies the degree

to which the given x satisfies the fuzzy set Aik. Any

continuous and piecewise differentiable functions,

such as triangular-shaped membership functions, are

qualified candidates for node functions in this layer.

Parameters in this layer are referred to as premise

parameters.

Layer 2: Every node in this layer is a circle node

labeled P which multiplies the incoming signals and

outputs the product. For instance,

wk ¼ mikðxÞ

Each node output represents the firing strength of a

rule. (In fact, other T-norm operators which perform

generalized AND can be used as the node function in

this layer.)

Layer 3: Every node in this layer is a circle node

labeled N. The kth node calculates the ratio of the kth

rule’s firing strength to the sum of all rules’ firing

strengths:

w̄k ¼
wkP6
j¼1 w j

; k ¼ 1; 2; . . . ; 6

For convenience, the output of this layer are called

normalized firing strengths.

Layer 4: Every node k in this layer is a square node

with a node function:

O4
k ¼ w̄k fk ¼ w̄kCDik

where w̄k is the output of layer 3, and {CDik} is the

parameter set. Parameters in this layer are referred to

as consequent parameters.

Layer 5: The single node in this layer is a circle node

labeled S that computes the overall output as the

summation of all incoming signals, i.e.,

O5
k ¼ overall output ¼

X
k

w̄k fk:

In summary, the overall output of sub-model NF

i

is:

CDi ¼
X

k

w̄k fk ¼
X

k

w̄kCDik (1)

where

wk ¼ mikðxÞ; w̄k ¼
wkP

j w j
(2)

X. Huang et al. / Applied Soft Computing 7 (2007) 29–4032
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3.2. Interpretation of sub-model NFi: linear

interpolation

Theorem 1. If membership functions are the follow-

ing triangular functions:

mikðxÞ

¼
x� ðk � 1Þ; k � 1 � x � k

ðk þ 1Þ � x; k � x � k þ 1; k ¼ 1; 2; . . . ; 6

0; otherwise

8><
>:

(3)

for any continuous rating value CDRi, the output CDi

of sub-model NFi is a piecewise linear interpolation

between the multiplier values CDi1, CDi2, . . ., CDi6 of

the ith cost driver CDi, i.e.

CDi ¼ CDik þ ðCDikþ1 � CDikÞðCDRi � kÞ;

k � CDRi � k þ 1; k ¼ 1; 2; . . . ; 6
(4)

Each sub-model NFi derived from this theorem

gives the same results as a linear interpolation in

mathematics when we select triangular membership

functions. This is a very intuitive interpretation of our

neuro-fuzzy model. In addition, linear interpolation

has good generalization capability that is an important

criterion for successful applications of neural net-

works and fuzzy logic techniques.

3.3. Learning algorithms

Here, we denote:

where N = 17, N1 = N + 5 is the total number of cost

drivers, xi the rating value or linguistic term

corresponding to the cost driver CDi, i = 1, 2, . . .,
N1, X the size of the software and rating values of the

cost drivers, and CD is the corresponding multiplier

values of cost drivers. If we choose triangular

functions defined by Eq. (3) to be the membership

functions, substituting Eq. (2) into Eq. (1), we have:

CDi ¼ fNFiðCDi1;CDi2; . . . ;CDi6Þ

¼
X6

k¼1

mikðxiÞCDik;

i ¼ 1; 2; . . . ;N1

(6)

For our neuro-fuzzy model,

Effort ¼ A� ðSizeÞBþ0:01�
P5

i¼1
SFi �

YN
i¼1

EMi

¼ A� ðSizeÞBþ0:01�
P5

i¼1
CDi �

YN1

i¼6

CDi (7)

From Eqs. (6) and (7), we can rewrite our neuro-

fuzzy model as follows:

Effort ¼ fNFðX;CDÞ (8)

Given NN project data points (Xn, Edn), n = 1, 2, . . .,
NN, the learning problem of parameters CD can be

formulated as the following optimizing problem:

E ¼
XNN

n¼1

1

2
wn

�
En � Edn

Edn

�2

(9)

X. Huang et al. / Applied Soft Computing 7 (2007) 29–40 33

CD�

SF11 SF12 � � � SF16

SF21 SF22 � � � SF26

..

. ..
. ..

. ..
.

SF51 SF52 � � � SF56

EM11 EM12 � � � EM16

EM21 EM22 � � � EM26

..

. ..
. ..

. ..
.

EMN1 EMN2 � � � EMN6

2
6666666666666664

3
7777777777777775

; X�

x1

x2

..

.

x5

x6

x7

..

.

xN1

xN1þ1

2
6666666666666666664

3
7777777777777777775

¼

SFR1

SFR2

..

.

SFR5

EMR1

EMR2

..

.

EMRN

Size

2
6666666666666666664

3
7777777777777777775

(5)
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subject to the following monotonic constraints:

CDi1 � CDi2 � CDi3 � CDi4 � CDi5 � CDi6;

i2 IINCðCDÞ (10)

CDi1�CDi2�CDi3�CDi4�CDi5�CDi6;

i2 IDECðCDÞ (11)

where Xn is the software size and ratings of cost drivers

for Project n, wn the weight of Project n, Edn the actual

effort for Project n, En = Effortn = fNF(Xn, CD) the

corresponding effort estimation by our neuro-fuzzy

model, IINC(CD) the set of increasing cost drivers

whose higher rating values correspond to higher devel-

opment effort, and IDBC(CD) is the set of decreasing

cost drivers whose higher rating values correspond to

lower development effort.

The learning algorithm for our neuro-fuzzy model

is as follows:

CDlþ1
ik ¼ CDl

ik � a
@E

@CDik
(12)

where a > 0 is the learning rate,

@E

@CDik
¼
XNN

n¼1

wn

E2
dn

ðEn � EdnÞ
@En

@CDik
(13)

@En

@CDik
¼ En lnðSizeÞ @CDi

@CDik
; for i ¼ 1; 2; . . . ; 5

(14)

@En

@CDik
¼ En

CDi
� @CDi

@CDik
; i ¼ 6; 7; . . . ;N1 (15)

@CDi

@CDik
¼ @ fNFi

@CDik
¼ mikðxiÞ: (16)

3.4. Distinguishing features of the neuro-fuzzy

model

� Learning ability: The proposed model has the

learning/adaptation capability to model highly

complex nonlinear relationships between software

development effort and cost drivers, i.e. it can

approximate any continuous nonlinear functions

on a compact domain to arbitrary accuracy by

learning.

� Robust to imprecise and uncertain input: The model

can effectively deal with imprecise and uncertain

input information, while remaining insensitive to

imprecise and uncertain input such as ratings of the

cost drivers. Because our model allows for

continuous rating values (e.g. between one and

six), it avoids the problem of similar projects with

large different effort estimations (e.g. for two

similar projects, COCOMO II produces estimates of

203 staff-months and 2886 staff-months, respec-

tively; our model gives around 809 staff-months for

both projects).

� Good interpretability: Although the neural network

approach provides a powerful tool to model

complex sets of relationships and learns from

previous data, it has an inherent shortcoming:

neither is it easy to understand nor is it easy to

explain its decision process. However, our neuro-

fuzzy model is clear to users during the whole

decision process and its learning parameters EMi

and SFi can be interpreted and validated by experts.

In addition, if the rating value is a continuously

variable value between one and six, the model

produces the same result as that using mathematical

linear interpolation; consequently, our neuro-fuzzy

model is more easily accepted for project manage-

ment.

� Knowledge integration: We can integrate expert

knowledge with concrete numerical project data in

our model using fuzzy rules. The model makes the

best use of information from different sources in

the decision-making process to achieve more

accurate and reasonable cost estimations than

conventional approaches. For example, we can

integrate monotonic constraints that reflect expert

knowledge of cost drivers into our model to

guarantee that the calibration results are reason-

able.

� Good generalization: Our model has good general-

ization by using linear interpolation and adding

monotonic constraints.

� Reduced number of learning parameters: The

parameters of membership functions in our model

are fixed. EMi and SFi are the only parameters that

need to be learned.

� Local learning: The learning models for the

parameters are decoupled in our model. This

feature allows the model to learn just some of the

parameters each time; in other words, our model can

accumulate knowledge locally.

X. Huang et al. / Applied Soft Computing 7 (2007) 29–4034
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3.4.1. Ratings: discrete values versus continuous

values

The COCOMO model can only take on discrete

ratings such as six linguistic terms: very low (VL), low

(L), nominal (N), high (H), very high (VH) and extra

high (XH), a constraint which may cause a problem in

that the model could produce two rather different cost

estimations for two similar projects. In order to

illustrate this problem, let us consider two similar

hypothetical projects P1 and P2:

� For cost drivers whose multiplier values are

increasing, P1 is just below the lower limit of a

linguistic value such as ‘‘high’’, and P2 is just above

this limit.

� For those whose multiplier values are decreasing,

P1 is just above the lower limit of a linguistic value

such as ‘high’’, and P2 is just below this limit.

If we select the limit between two contiguous

multiplier values with the largest difference for each

driver, and P1 and P2 have the same nominal effort,

say 100 staff-months, then for the COCOMO II 2000

model, the adjusted effort for P1 is 203 staff-months,

but for P2 it is 2886 staff-months! So the difference

between two estimations can be more than 14 times.

The above problem results from using discrete rating

values. Allowing continuously variable rating values

as input, this serious problem can be eliminated, due to

its gradual transition.

We use fuzzy sets in our neuro-fuzzy model rather

than discrete rating values to represent the linguistic

terms (‘‘very low’’, ‘‘low’’, etc.) for all cost drivers

and triangular member functions that have the

desirable linear interpolation property. As a result,

our neuro-fuzzy model allows for continuous input

and gives estimates of around 809 staff-months for

both projects P1 and P2.

3.4.2. Monotonic constraints

Monotonic constraints are derived from expert

knowledge and are critical for obtaining reasonable

learning results. The following example illustrates

their importance. The TURN cost driver represents

computer turnaround time. Experience dictates

that development effort should increase when the

rating of TURN becomes higher. But if we do not

use monotonic constraints on our model, we obtain

the following fuzzy rules for the TURN cost

driver:

If TURN is ‘‘very low’’, then f1 = 0.536;

If TURN is ‘‘low’’, then f2 = 1.037;

If TURN is ‘‘nominal’’, then f3 = 1;

If TURN is ‘‘high’’, then f4 = 1.105;

If TURN is ‘‘very high’’, then f5 = 1.019.

This result can be validated by experts. Obviously,

the second and fifth rules are not consistent. The

calibrated multiplier value f2 = 1.037 for the low

TURN rating is greater than f3 = 1 for the nominal

TURN rating, indicating that the low rating requires

more effort than the nominal rating. This result

contradicts the above common sense that the low

rating should need less effort than the nominal rating.

Similarly, the calibrated multiplier value f5 = 1.019

for the very high TURN rating is less than f4 = 1.105

for the high TURN rating, implying that the very high

rating requires less effort than the high rating. This

also contradicts the above statement that the very high

rating should require more effort than the high rating.

When we place monotonic constraints on our model,

we obtain the following reasonable rules:

If TURN is ‘‘very low’’, then f1 = 0.592;

If TURN is ‘‘low’’, then f2 = 0.989;

If TURN is ‘‘nominal’’, then f3 = 1;

If TURN is ‘‘high’’, then f4 = 1.095;

If TURN is ‘‘very high’’, then f5 = 1.095.

These rules are consistent with the above-men-

tioned statements.

4. Validation with industry project data

In this section, we use industry project data to

validate our neuro-fuzzy COCOMO model. There is

a total of 69 project data available, including six

project data from industry [6,12] and 63 project data

from the original COCOMO’81 database [2]. We

were not able to use the COCOMO II database due to

the absence of individual cost driver ratings for the

project data. Because most of the project data are

compatible only with the intermediate COCOMO’81

model, we use the COCOMO’81 model for our

X. Huang et al. / Applied Soft Computing 7 (2007) 29–40 35
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validation. The COCOMO’81 model contains only

15 effort multipliers, yet our neuro-fuzzy COCOMO

model is completely compatible with the COCOMO

II model.

Outliers are abnormal project data with large noise

and thus we need to preprocess the project data and

remove four outliers (with project data deviating from

over 50% of the COCOMO’81 model output) from the

original COCOMO’81 database. Hence, we use only

65 project data to train the neuro-fuzzy model, and use

all 69 project data to test our neuro-fuzzy model.

The detailed industrial project data are shown in

Table 1. Since all these six projects used a later

COCOMO’87 model, which is slightly different from

the original COCOMO’81 (e.g. three effort multipliers

namely RUSE, VMVH and VMVT are not used in the

COCOMO’81 model), the cost estimation that uses

the COCOMO’81 model must be adjusted by multi-

plying a constant of 0.94116, which reflects a common

rating of RUSE(H), VMVH(L), and VMVT(L) for

these projects. Note also that the actual effort refers to

the development effort adjusted so that it is compatible

with the definition of the COCOMO model.

4.1. Performance evaluation criteria

We employ the following criteria to assess and

compare the performance of cost estimation models. A

common criterion for the evaluation of cost estimation

models is the relative error (RE) or the magnitude of

relative error (MRE), which are defined as:

REi ¼
estimated efforti � actual efforti

actual efforti

MREi ¼
jestimated efforti � actual effortij

actual efforti

The RE and MRE values are calculated for each

project i whose effort is predicted.

For N multiple projects, we can also use the mean

magnitude of relative error (MMRE):

MMRE ¼ 1

N

XN

i¼1

jestimated efforti � actual effortij
actual efforti

¼ 1

N

XN

i¼1

MREi
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Table 1

Industrial project data

Project no. Size

(kESLOC)

Effort

(staff-month)

High EMs Low

EMs

Very low EMs

P1 196.6 638.0 ACAP, PCAP, VEXP, LEXP, CPLX,

TIME, STOR, TOOL, RUSE

DATA, VMVH, VMVT, SCED

P2 51.8 185.0 ACAP, PCAP, AEXP, VEXP,

LEXP, CPLX, STOR, TOOL, RUSE

DATA, VMVH, VMVT, SCED

P3 64.1 332.0 VEXP, CPLX, STOR, TOOL, RUSE DATA, VMVH, VMVT

P4 130.0 619.9 RELY, STOR, RUSE VEXP, LEXP, DATA, VMVH, VMVT TURN

P5 13.3 64.8 VEXP, RELY, CPLX, STOR, RUSE VMVH, VMVT, MODP

P6 19.9 76.6 CPLX, TOOL, RUSE AEXP, VEXP, LEXP, DATA,

VMVH, VMVT

TURN

Table 2

Effort estimation for all projects

RE (%) COCOMO’81 model Neuro-fuzzy model

PERC (%) Case I Case II Case III Case IV

PERC (%) IMPRV (%) PERC (%) IMPRV (%) PERC (%) IMPRV (%) PERC (%) IMPRV (%)

20 71 86 15 88 17 88 17 89 18

30 81 92 11 92 11 92 11 94 13

50 94 97 3 97 3 97 3 95 1
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Another criterion that is commonly used is the

prediction at level p,

PREDð pÞ ¼ k

N

where k is the number of projects where MRE is less

than or equal to p.

4.2. Case I: learning with all project data

We use the 65 project data points to calibrate the

neuro-fuzzy model. The results are shown in Case I of

Table 2 and Table 3. If we consider projects with

relative error within 20% of actual efforts, it is noticed

that cost estimation accuracy, using the neuro-fuzzy

model, has improved by about 15% when compared

with the COCOMO’81 model. If we are concerned

only with the estimation accuracy for the industrial

project data, there is an even larger improvement; that

is, a more accurate estimation is achieved for every

project, and MMRE improves from 15.7% to 7.1%.

4.3. Case II: learning with part of project data

In this case, we use 63 project data points to train

our neuro-fuzzy model, saving two industrial project

data points to test our model. The validation results are

shown in Case II of Tables 2 and 3. The neuro-fuzzy

model also gives better cost estimation than the

COCOMO’81 model; for example, the neuro-fuzzy

model predicts the effort more accurately for every

industrial project data, and MMRE is improved from

15.7% to 8.4%. For all project data, the projects within

20% of actual efforts increase by 17% using the neuro-

fuzzy model when compared with the COCOMO’81

model.

4.4. Case III: use larger weights for local

organization data

Local organization data refers to industrial project

data. We use the same 65 project data points here to train

our neuro-fuzzy model but place different weights

on project data from the COCOMO’81 database

(weights = 1) and industrial project data (weights = 2).

The validation results are shown in Case III of Tables 2

and 3. For local industrial project data, the results

are better than Case I using the same weights for all

projects, i.e. MMRE improves from 7.1% using the

same weights to 4.6% using larger weights. Thus, we

get a more accurate estimation for local project data

when we assign more weights on local data.

According to Boehm’s research [1], local calibra-

tion usually improves prediction accuracies because:

� The rating scale for COCOMO is subjective,

leading to inconsistencies among different organi-

zations.

� The life-cycle activities covered by COCOMO may

vary slightly from the life-cycle activities covered

by a particular organization.

� The definitions used by COCOMO may differ

slightly from those being used by a particular

organization.

Therefore, local project data are more accurate and

consistent than multi-organization project data as they

reflect the software development practice of one

X. Huang et al. / Applied Soft Computing 7 (2007) 29–40 37

Table 3

Effort estimation for industrial project data

Project no. Actual effort COCOMO’81

model

Neuro-fuzzy model

Estimate Error (%) Case I Case II Case III Case IV

Estimate Error (%) Estimate Error (%) Estimate Error (%) Estimate Error (%)

P1 638.0 827.0 29 745.0 16 739.7 15 728.6 14 697.2 9

P2 185.0 152.2 �17 167.3 �9 166.1 �10 163.6 �11 188.7 1

P3 332.0 279.8 �15 322.0 �3 306.8 �7 325.5 �1 338.5 1

P4 619.9 701.4 13 651.5 5 651.7 5 642.0 3 647.1 4

P5 64.8 71.1 9 60.8 �2 60.8 �6 64.1 �1 62.4 �3

P6 76.6 83.1 8 72.3 �5 72.3 �5 73.8 �3 72.9 �4

MMRE (%) 15.7 7.1 8.4 4.6 4.4
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particular organization. It is reasonable to assume that

weshouldgive largerweights for localprojectdatawhen

they are used to calibrate the cost estimation model.

4.5. Case IV. Learning without monotonic

constraints

This case does not use monotonic constraints on

multiplier values of cost drivers. The results are shown

in Case IV of Tables 2–4. It is noticed that the

estimated accuracy is higher in comparison with Case

I (with monotonic constraints). For example, there are

89% of the total projects within 20% of actual efforts

in this case versus 86% with monotonic constraints,

and MMRE is improved from 7.1% to 4.4% for local

industrial projects. However, some of the learned

multiplier values are counter-intuitive, and are

italicised in Table 4. For example, the multiplier

value 1.019 corresponding to the ‘‘very high’’ rating is

less than 1.105 of the ‘‘high’’ rating in the cost driver

TURN. This implies that a project with very high

computer turnaround time requires less effort than that

of high computer turnaround time, which contradicts a

common sense belief that development effort should

increase as TURN increases. The ability to determine

that the learned neuro-fuzzy model is not reasonable is

one of the advantages of our neuro-fuzzy model. In

order to overcome this counter-intuitive problem,

monotonic constraints should be added to our neuro-

fuzzy model to achieve a reasonable estimation.

5. Conclusion

Accurate software development cost estimation is

very important in the budgeting, project planning and

control, tradeoff and risk analysis of effective project

management. This paper first reviewed major software

cost estimation techniques such as model-based

techniques, neural network models and fuzzy logic

models. Each technique has its own advantages and

shortcomings, but as yet no model has proved to be

successful at effectively and consistently predicting

software development effort.

Why is it so difficult to predict software develop-

ment cost accurately? The principal reason is that

software development is a complex process with the

following characteristics: (1) there are highly complex

nonlinear relationships between software develop-

ment cost and cost drivers such as software size and

other attributes of software product and the develop-

ment process; (2) imprecise and uncertain measure-

ment of software metrics, for example, cost drivers in

the COCOMO model are usually measured qualita-

tively by selecting a fixed rating from a rating scale;

(3) software technology and processes change rapidly.

Soft computing provides software developers with

some promising techniques such as fuzzy logic,

artificial neural networks, and evolutionary computa-

tion for software modeling. In particular, a neuro-

fuzzy approach has been successfully used in many

fields, and has demonstrated great potential to predict

software cost more accurately. On the one hand, fuzzy

logic is powerful in solving real world problems with

imprecise and uncertain information and in dealing

with semantic knowledge, as well as fuzzy logic

models being easy to understand and interpret.

However, difficulty is encountered in determining

and fine-tuning fuzzy rules. On the other hand,

artificial neural networks have the learning and

adaptation ability to model complex nonlinear

relationships and are capable of approximating any

measurable functions; it can be difficult to understand

and hard to explain its decision process due to its

inherent ‘‘black box’’ nature.

The neuro-fuzzy approach that is based on these

two well-established theories undoubtedly provides

a promising tool to deal with many difficulties of

software estimation; thus, neuro-fuzzy models are

quite acceptable for project management. When we

X. Huang et al. / Applied Soft Computing 7 (2007) 29–4038

Table 4

Learned effort multipliers without monotonic constraints

EMi VL (1) L (2) N (3) H (4) VH (5) XH (6)

RELY 0.558 0.957 1.000 1.157 1.396

DATA 1.028 1.000 1.164 1.429

CPLX 0.695 0.739 1.000 1.173 1.493 1.868

TIME 1.000 0.808 1.076 1.383

STOR 1.000 0.997 1.113 1.544

VIRT 0.960 1.000 1.170 1.281

TURN 0.536 1.037 1.000 1.105 1.019

ACAP 2.754 1.575 1.000 0.885 0.714

AEXP 1.187 1.041 1.000 0.974 0.878

PCAP 2.582 0.998 1.000 0.700 0.646

VEXP 1.232 1.381 1.000 1.084

LEXP 1.164 1.120 1.000 0.782

MODP 0.788 0.830 1.000 0.875 0.604

TOOL 1.212 1.153 1.000 0.871 1.867 0.730

SCED 1.570 1.500 1.000 0.880 1.000

Note: italicised values are counter-intuitive ratings.
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combine the neuro-fuzzy approach with the standard

COCOMO models, we can take advantage of some

desirable features of a neuro-fuzzy approach such as

its learning/adaptation ability and good interpretabil-

ity. In addition, we choose fixed triangular member-

ship functions and put monotonic constraints on our

model. Consequently, our model is capable of

generalization, an important criterion for successful

applications of neural networks and fuzzy logic

techniques.

The learning parameters in our model have

concrete physical meaning and the entire decision

process is clear to the user. Therefore, this model

can be interpreted and validated by experts. Another

feature of our model is that it allows for continuous

rating values as input, which eliminates the

problem of similar projects with large different

cost estimations. Validation by industry project data

shows that our model can greatly improve cost

estimation accuracy when compared with the stan-

dard COCOMO model.

Finally, the neuro-fuzzy technique allows the

integration of numerical data and expert knowledge

and can be a powerful tool when tackling important

problems in software engineering such as cost and

quality prediction. Therefore, a promising line of

future work would be the extension of the neuro-fuzzy

approach to other cost and quality estimation models

and tools, such as COQUALMO, SLIM, SPR knowl-

edgePLAN, and CA-Estimacs, among others.
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