
6 IT Pro January/February 2010 P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 1520-9202/10/$26.00 © 2010 IEEE

IT WORKFORCE

Luiz Fernando Capretz, University of Western Ontario

Faheem Ahmed, United Arab Emirates University

By mapping soft skills and psychological traits to the main stages of
the software life cycle, the authors claim that assigning people with
personality types best suited to a particular stage increases the chances
of the project’s successful outcome.

S oftware	 is	 a	 product	 of	 such	 human	
activities	as	problem	solving,	cognitive	
information	processing,	and	social	 in-
teraction.	 However,	 people	 are	 more	

complicated	and	less	predictable	than	computers,	
thus	the	complexity	of	personality	entails	intricate	
dynamics	that	ultimately	become	an	integral,	yet	
often	overlooked,	part	of	 software	development.	
Sooner	or	later,	major	issues	relevant	to	software	
engineering	boil	down	to	the	people	involved	with	
software	production	and	their	personality	traits.	

Over	the	past	three	decades,	software	engineer-
ing	has	become	a	very	broad	 field;	consequently,	
the	skills	necessary	to	successfully	work	in	this	area	
30	years	ago	might	no	longer	apply.	For	instance,	
software	design	has	become	much	more	than	ma-
nipulating	 formal	 or	 rigorous	 notations—it	 now	
revolves	 around	 the	 interaction	 between	 design-
ers	and	users	(primarily,	the	designer’s	perception	
of	what	the	user	wants,	and	the	user’s	perception	
of	what	he	or	she	really	needs).	Today,	successful	
software	is	developed	after	a	tremendous	amount	
of	time	is	spent	with	the	user	in	the	form	of	pro-
totyping,	 experimentation,	 and	 feedback.	 In	 fact,	
these	 three	 processes	 represent	 the	 de	 facto	 life	
cycle	of	many	useful	software	systems.

Research	relating	personality	styles	to	software	
engineering	has	been	scattered	and	difficult	to	in-

terpret	uniformly.	This	paucity	could	indicate	that	
the	relationship	between	software	engineering	and	
personality	styles	is	too	complex	to	investigate.	For	
instance,	certain	personality	 traits	such	as	 intro-
version/extroversion	might	have	a	significant	 im-
pact	on	system	analysis,	but	they	might	not	affect	
the	other	 software	 life	 cycle	phases.	Thus,	 stud-
ies	to	determine	which	personality	types	are	more	
suitable	for	certain	software	development	activities	
are	of	paramount	importance.

A	major	rationale	behind	this	article	is	to	discern	
connections	between	personality	traits	and	the	pro-
cess	of	 software	development.	This	 interdisciplin-
ary	human-centered	research	incorporates	theories	
about	psychological	types,	human	factors,	and	soft-
ware	engineering.	It	contributes	toward	a	bridge	that	
links	software	engineering	and	software	psycholo-
gy,	and	it	attempts	to	shed	light	on	several	outstand-
ing	problems	that	plague	the	software	industry.

Myers-Briggs Type Indicator
The	 Myers-Briggs	 Type	 Indicator	 (MBTI)	 is	 a	
well-known	instrument	for	measuring	and	under-
standing	individual	personality	types.1	It	current-
ly	ranks	among	the	most	popular	indicators	used	
in	 the	 workplace,	 establishing	 four	 dimensional	
pairs	for	assessing	personality	types:	extroversion	
(E)	and	introversion	(I),	sensing	(S)	and	intuition	

Luiz Fernando Capretz, University of Western Ontario

Making Sense
of Software
Development and
Personality Types

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on February 15,2010 at 15:46:04 EST from IEEE Xplore. Restrictions apply.

 computer.org/ITPro 7

(N),	thinking	(T)	and	feeling	(F),	and	judging	(J)	
and	perceiving	(P).	We	can	use	these	four	sets	of	
preferences,	selecting	one	trait	from	each	pair,	to	
delineate	a	person’s	preferred	type.	Table	1	shows	
the	 16	 possible	 configurations,	 along	 with	 per-
centages	of	 the	various	types	 in	a	representative	
sample	of	the	US	adult	population.1

Extroversion (E) and Introversion (I)
While	Es	prefer	 looking	outward,	 Is	have	 an	 in-
ward	view.	Es	are	talkative,	outgoing,	conversation	
initiators.	 Is,	 in	contrast,	are	quiet,	reserved,	and	
tend	to	respond	to	conversation	rather	than	start	it.	

Sensing (S) and Intuition (N)
Although	an	S	 individual	might	need	 to	absorb	a	
whole	series	of	facts	in	a	linear	fashion,	an	N	person	
can	take	in	the	same	information	through	abstrac-
tion	and	establish	meaning	beyond	the	information	
captured	only	by	 the	 senses.	S	 individuals	dislike	
new	problems	unless	prior	experience	shows	how	to	
solve	them;	conversely,	N	people	enjoy	solving	new	
problems	and	dislike	performing	trivial	tasks.

Thinking (T) and Feeling (F)
The	terms	 thinking	and	 feeling	 in	this	context	re-
fer	to	the	process	of	decision-making.	The	MTBI	
scale	 identifies	 thinking	 as	 the	 logical	 way	 of	
making	a	decision,	whereas	feeling	describes	the	
tendency	to	rely	on	emotional	values	as	a	basis	for	
making	decisions.	T	people	are	principle-orient-
ed	and	firm,	whereas	F	people	are	subjective	and	
have	strong	interpersonal	skills.

Judging (J) and Perceiving (P)
Judging	identifies	the	tendency	to	be	extremely	or-
ganized.	At	the	other	extreme,	a	P	individual	prefers	
delaying,	appears	to	be	disorganized,	and	seems	to	
be	 distracted	 from	 completing	 a	 task	 until	 some	
little	bell	 goes	off	 at	 the	 last	minute	and	propels	
this	individual	to	get	the	job	done.	The	adherence	
to	deadlines,	punctuality,	and	closure	describes	J	
personalities,	while	the	terms	open-ended,	adapt-
able	and	spontaneous	apply	to	P	types.

Previous Studies
To	 date,	 only	 a	 handful	 of	 studies	 have	 inves-
tigated	 the	 relationship	 between	 human	 skills	
and	 software	 development	 life	 cycle	 phases2,3	

or	 attempted	 to	 identify	 the	 characteristics	 of	
top-performing	 software	 developers.4,5	 In	 fact,	
Norman	 Kerth	 and	 his	 colleagues6	 are	 skepti-
cal	about	the	MBTI’s	ability	to	predict	who	will	
make	a	good	software	engineer	because	the	met-

ric	doesn’t	consider	variables	such	as	passion,	ex-
perience,	or	financial	rewards.	Although	they’re	
correct	about	a	single	personality	test’s	inability	
to	predict	success	in	a	field	as	broad	as	software	
engineering,	 they	 contradict	 themselves	 when	
they	 state,	 “We	 see	 zero	 indication	 that	 MBTI	
preference	correlates	with	job	success,”	but	later	
affirm,	 “systematically	 excluding	 certain	 types	
from	a	team	produces	an	imbalance	that	is	likely	
to	have	a	poor	performance.”6

This	debate	is	far	from	over.	Although	research-
ers	 have	 questioned	 MBTI	 measures	 in	 other	
contexts,7	the	tool	is	still	one	of	the	most	popu-
lar	 for	 ascertaining	 personality	 types,	 especially	
because	extensive	data	supports	its	findings.	The	
instrument	itself	doesn’t	predict	career	success—
it	 merely	 identifies	 occupational	 preferences—
but	personality	has	a	great	impact	on	a	worker’s	
motivation,	 performance,	 and	 retention	 in	 the	
field.8–11	A	common	thread	running	through	the	
results	of	 these	 and	other	 similar	 studies	 is	not	
only	the	prevalence	of	I,	T,	and	J	types,	as	opposed	
to	fewer	E,	F,	and	P	types,	but	also	almost	as	many	
S	as	N	types	among	software	professionals.	

Although	 empirical	 studies	 suggest	 that	 the	
MBTI	 poles	 are	 related	 to	 software	 engineering,	
they	don’t	specify	at	which	phase	of	the	software	
life	cycle	they	occur	or	how	they’re	related.	Despite	
early	interests	in	the	importance	of	human	factors	
in	 software	 development—in	 particular,	 the	 per-
sonal	characteristics	of	humans	 involved	 in	soft-
ware	 engineering	 processes—such	 factors	 have	
been	neglected,	 thus	hindering	process	 improve-
ments.	A	more	focused	approach	might	help	iden-
tify	at	which	software	life	cycle	phase	a	particular	
personality	type	has	the	most	significant	impact.

Mapping Job Requirements and
Soft Skills to Personality Types
Software	 engineering	 is	 roughly	 characterized	as	
a	set	of	activities	comprising	system	analysis,	de-
sign,	 programming,	 testing,	 and	 maintenance.	
Logically,	these	different	tasks	combine	to	achieve	

Table 1. The 16 Myers-Briggs Type Indicator (MBTI)
types and their distribution among the US adult
population.*

ISTJ = 11.6% ISFJ = 13.8% INFJ = 1.5% INTJ = 2.1%

ISTP = 5.4% ISFP = 8.8% INFP = 4.4% INTP = 3.3%

ESTP = 4.3% ESFP = 8.5% ENFP = 8.1% ENTP = 3.2%

ESTJ = 8.7% ESFJ = 12.3% ENFJ = 2.5% ENTJ = 1.8%

* E = extroversion, I = introversion, S = sensing, N = intuition,
 T = thinking, F = feeling, J = judging, and P = perceiving

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on February 15,2010 at 15:46:04 EST from IEEE Xplore. Restrictions apply.

8	 IT Pro January/February 2010

IT WORKFORCE

Extroversion (E)

Personality types

Introversion (I)

Sensing (S)

Intuition (N)

Thinking (T)

Feeling (F)

Judging (J)

Perceiving (P)

Communication skills

Interpersonal skills

Ability to work
independently

Active listener

Strong analytical and
problem-solving skills

Open and adaptable
to changes

Innovative

Organization skills

Pay thorough and acute
attention to details

Fast learner

Team player

Soft skills requirementsSystem analyst job requirements

Liasing extensively with external or internal clients

Analyzing clients’ existing systems

Translating client requirements into highly specified
project briefs

Identifying options for potential solutions, assessing them
for both technical and business suitability

Creating logical and innovative solutions to complex
problems

Drawing up specific proposals for modified or replacement
systems

Producing project feasibility reports

Working closely with developers and a variety of end users
to ensure technical compatability and user satisfaction

Overseeing the implementation of a new system

Planning ahead and working flexibly to a deadline

Keeping up to date with technical and industry sector
development

Figure 1. Mapping system analysts and their skills to personality types. When appointing a system
analyst, it’s preferable to look for people possessing extrovert (E) and feeling (F) traits.

the	 objectives	 of	 software	 construction	 and	 op-
eration.	 The	 micro-level	 interpretation	 demands	
a	set	of	abilities	to	carry	them	out	effectively—for	
example,	 the	 skills	 required	 to	design	a	 software	
system	are	quite	different	from	those	needed	to	test	
it.	The	hypothesis	that	not	everyone	can	perform	
all	tasks	effectively	suggests	that	personality	traits	
play	a	critical	role;	thus,	if	we	can	map	job	and	skill	
requirements	with	personality	characteristics,	we	
could	establish	a	link	between	software	life	cycle	
phases	and	corresponding	personality	types.

After	 analyzing	 job	 descriptions	 for	 software	
engineers	running	in	newspapers	and	magazines,	
posted	on	monster.com,	and	described	in	various	
texts,12	we	determined	the	preferable	skills	and	re-
lated	 them	 to	 skills	 requirements.	 Subsequently,	
we	mapped	the	skills	rated	as	desirable	and	highly	
desirable	 for	 effectively	 performing	 the	 tasks	 in	
each	 phase	 to	 MBTI	 dimensions.	 Job	 advertise-
ments	generally	divide	software	engineering	skill	
requirements	 into	 two	 categories:	 hard	 and	 soft	
skills.	Hard	skills	are	 the	 technical	 requirements	
and	knowledge	a	person	should	possess	to	perform	
a	 task;	 they	 include	 the	 theoretical	 foundations	
and	practical	experience	a	person	should	have	to	
comfortably	execute	the	planned	task.	

Although	 soft	 skills	 incorporate	 the	 psycho-
logical	phenomena	that	include	personality	traits,	
social	 interaction	 abilities,	 communication,	 and	

personal	 habits,	 potential	 employers	 tend	 to	 im-
ply	that	soft	skills	should	complement	hard	skills.	
Consequently,	 we	 related	 job	 requirements	 (or	
hard	 skills)	 to	 personality	 requirements	 (or	 soft	
skills)	for	different	positions	that	reflect	the	various	
software	life	cycle	phases,	such	as	system	analysts,	
designers,	programmers,	testers,	and	maintainers.	
Moreover,	we	also	mapped	the	different	soft	skills	
to	 an	 individual’s	 personality	 characteristics	 by	
rating	them	as	highly	desirable	or	desirable.

System Analysis
The	 system	 analysis	 phase	 emphasizes	 the	
identification	 of	 high-level	 components	 in	 a	
real-world	application	and	involves	the	software	
system’s	 decomposition	 into	 its	 main	 modules.	
In	addition	to	other	minor	skills,	this	phase	re-
quires	 that	 the	 system	 analyst	 determine	 user	
needs,	consider	the	system’s	client	requirements,	
understand	 the	 system’s	essential	 features,	 and	
create	an	abstract	application	model	that	meets	
these	requirements.	

System	 analysis	 demands	 a	 great	 deal	 of	 hu-
man	interaction	with	users	and	clients.	To	com-
municate	with	users,	Es	are	better	at	talking	and	
getting	responses	than	Is	because	the	latter	have	
a	difficult	time	working	with	users	to	accurately	
represent	a	problem	due	to	their	internal	orienta-
tion.	 Thus,	 it	 seems	 reasonable	 to	 assume	 that	

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on February 15,2010 at 15:46:04 EST from IEEE Xplore. Restrictions apply.

 computer.org/ITPro 9

extroversion	 would	 affect	 this	 phase	 positively.	
Additionally,	system	analysts	must	be	able	to	em-
pathize	with	users’	problems	to	fully	understand	
their	needs,	hence	interpersonal	skills	are	highly	
desirable.	Recognizing	this	fact	can	offer	a	criti-
cal	insight	to	software	professionals,	who	are	of-
ten	viewed	as	being	disconnected	from	users.

In	 general,	 software	 engineers	 tend	 to	 assume	
that	because	they	possess	more	technical	expertise	
than	most	users,	their	solutions	are	more	appro-
priate,	but	users	don’t	always	agree	with	 this	as-
sessment.	Es	and	Fs	interact	with	users	better	than	
Is	and	Ts;	in	particular,	Fs	excel	at	making	people	
feel	comfortable,	whereas	Ts	aren’t	attuned	to	user	
feelings.	Therefore,	when	appointing	system	ana-
lysts,	it’s	preferable	to	look	for	EFs	(see	Figure	1).	

Software Design
“Design”	 is	 an	 ambiguous	 word:	 although	 there	
are	 great	 variations	 among	 design	 principles,	 it’s	
possible	to	find	a	common	set	of	features	that	ap-
ply	 to	 any	 artifact’s	design,	whether	 it’s	 a	poster,	
a	household	appliance,	or	a	housing	development.	
Although	software	design	 is	 still	 a	 relatively	new	
field	 and	 far	 from	 a	 consensus	 on	 its	 relevant	
principles,	 it	 requires	 the	 human	 creativity	 evi-
dent	 in	 other	 disciplines	 such	 as	 architecture,	
marketing,	 and	 graphic	 design,	 rather	 than	 the	

hard-edged	 formulaic	 construction	 of	 other		
engineering	 fields.	 Software	 design	 is	 an	 explor-
atory	 process:	 the	 designer	 searches	 for	 compo-
nents	by	trying	out	a	variety	of	schemes	to	discover	
the	most	natural	 and	 reasonable	way	of	 refining	
a	solution.	Although	software	design	might	seem	
like	an	easy	task,	in	the	design	of	large	and	com-
plex	software,	the	identification	of	key	components	
is	an	arduous	and	time-consuming	endeavor.	Rep-
etitions	aren’t	unusual,	since	a	good	design	usually	
takes	several	iterations.	Furthermore,	the	number	
of	iterations	also	depends	on	the	designer’s	insight	
and	experience	in	the	application	domain.

Software	designers	should	have	 the	ability	 to	
see	the	big	picture.	They	should	be	able	to	isolate	
relevant	items	from	large	quantities	of	fuzzy	and	
imprecise	 data,	 which	 requires	 the	 intuition	 to	
discern	patterns.	Naturally,	designers	should	be	
intuitive,	 as	 those	who	are	 imaginative	 and	 in-
novative	 thrive	at	designing,	especially	 in	com-
parison	to	their	fact-oriented,	black-and-white	S	
counterparts.	Software	designers	perform	a	wide	
range	of	tasks,	which	include	prototyping,	elabo-
rating	processing	functions,	and	defining	inputs	
and	outputs.	The	 first	 part	 of	 the	design	 stage	
might	require	skills	similar	to	those	needed	for	
analysis,	as	designing	involves	team	discussions	
and	interaction	with	the	user.	As	Figure	2	shows,	

Extroversion (E)

Personality types

Introversion (I)

Sensing (S)

Intuition (N)

Thinking (T)

Feeling (F)

Judging (J)

Perceiving (P)

Communication skills

Interpersonal skills

Ability to work
independently

Active listener

Strong analytical and
problem-solving skills

Open and adaptable
to changes

Innovative

Organization skills

Pay thorough and acute
attention to details

Fast learner

Team player

Soft skills requirements
Software designer job requirements

Having the ability to craft scenarios, storyboards,
information architecture, features, and interfaces

Collaborating closely with management, engineers, and
fellow designers to evaluate and iterate on ideas and
designs

Prototyping user experience and design ideas

Keeping up to date with technical and industry sector
developments

Understanding business opportunities and assisting project
team with respect to architecture of the technical solution

Creating an architectural design with the necessary
specifications for the hardware, software, and data

Working closely with system users to ensure that
implementation meets customer requirements and is
aligned to the system’s technical architecture

Developing, documenting, and revising system design
procedures

Participating in testing and evaluating system
functionality to ensure successful integration

Determining hardware, software, and network
requirements of the software system

Assisting with system analyses; cost and bidding activities

Figure 2. Mapping software designers and their skills to personality types. A combination of
intuition (N) and thinking (T) are paramount to thrive in design.

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on February 15,2010 at 15:46:04 EST from IEEE Xplore. Restrictions apply.

10	 IT Pro January/February 2010

IT WORKFORCE

N	and	T	types	are	highly	desirable	for	software	
designers,	 whereas	 perceiving	 and	 feeling	 are	
only	 somewhat	 desirable.	 Ps	 would	 help	 reach	
the	 best,	 rather	 than	 the	 first,	 design	 solution.	
Also	 important	 is	 the	 capacity	 to	 predict	 how		
users	will	feel	about	the	design.

Programming
Programming	 involves	 translating	 a	 refined	
version	of	the	design	into	programs.	This	phase	
entails	 the	 identification	of	control	structures,	
relevant	variables,	 and	data	 structures,	as	well	
as	a	detailed	understanding	of	a	programming	
language’s	 syntax	 and	 specifics.	 Programmers	
must	 follow	 an	 iterative	 stepwise	 refinement	
process	 that’s	 mostly	 top-down,	 breadth	 first.	
Thus,	 programmers	 should	 attend	 to	 details	
and	keep	a	logical	and	analytical	thinking	style.

The	 thinking	 dimension	 of	 the	 MBTI	 de-
scribes	the	way	in	which	someone	makes	logical	
decisions.	The	problem	of	interpreting	and	giv-
ing	meaning	 to	 variables	might	be	 a	headache,	
especially	 for	 F	 types	 rather	 than	 for	 detached	
analytical,	T	types,	suggesting	that	the	program-
ming	 stage	 is	 more	 suitable	 for	 Ts.	 Moreover,	
programming	tasks	such	as	determining	the	de-
tails	of	module	logic,	establishing	file	layout,	and	
coding	 programs	 demand	 little	 interpersonal	
contact	and	reveal	the	programmer’s	work	life	as	
essentially	a	solitary	one.

Programming	is	an	activity	that	demands	logi-
cal,	impersonal	analysis.	As	Figure	3	shows,	pro-
grammers	working	with	the	specifications	from	
designers	need	to	be	logical	(Ts),	pay	attention	to	
details	(Ss),	and	have	the	capacity	to	work	inde-
pendently	 (Is).	They	might	sometimes	program	
in	pairs	or	even	within	a	 team,	but	 the	core	of	
programming	requires	the	ability	to	concentrate	
and	 work	 alone	 for	 many	 hours.	 Given	 these	
characteristics,	 it	 isn’t	 surprising	 that	 so	 many	
software	engineers	are	ISTs.

Testing
Testing	involves	finding	defects	in	software.	The	
testing	stage	isn’t	the	first	time	that	defects	are	
found—they	can	emerge	in	system	analysis	and	
design	 phases—but	 testing’s	 main	 focus	 is	 to	
find	 as	 many	 defects	 as	 possible.	 Several	 tech-
niques	 can	 make	 testing	 more	 effective.	 First,	
each	module	is	isolated	from	other	components	
in	the	system	and	tested	individually.	Such	test-
ing,	known	as	unit	testing,	verifies	that	a	module	
functions	 properly	 with	 the	 various	 input	 ex-
pected	(and	unexpected!)	based	on	the	module’s	
specification.	 After	 collections	 of	 modules	 are	
unit-tested,	 the	 next	 step	 is	 to	 ensure	 that	 the	
interfaces	among	them	are	well-defined—this	is	
called	integration	testing.	Finally,	system	testing	
is	the	process	of	verifying	and	validating	whether	
the	whole	software	works	properly.

Extroversion (E)

Personality types

Introversion (I)

Sensing (S)

Intuition (N)

Thinking (T)

Feeling (F)

Judging (J)

Perceiving (P)

Communication skills

Interpersonal skills

Ability to work
independently

Active listener

Strong analytical and
problem-solving skills

Open and adaptable
to changes

Innovative

Organization skills

Pay thorough and acute
attention to details

Fast learner

Team player

Soft skills requirements
Software programmer job requirements

Participates in development efforts; elaborates and
documents all business-related applications

Analyzes business requirements for system
subcomponents and prepares detailed programming
specifications for assigned system applications

Formulates test cases to test application software in
development, to ensure a program’s functionality
matches its specification’s business requirements and to
ensure the company’s programming standards are
followed

Analyzes technical specifications; builds and implements
functionally accurate and modular application programs
according to approved design specifications

Coordinates programming tasks, team members, and
projects within the department

Determines forms, procedures, and other documentation
needed for installation and maintenance of application
programs

Translates detailed flow charts into coded machine
instructions and confers with technical personnel in
planning programs

Selects and incorporates available software programs

Figure 3. Mapping programmers and their skills to personality types. Most programmers are
introvert (I), sensing (S), thinking (T) types.

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on February 15,2010 at 15:46:04 EST from IEEE Xplore. Restrictions apply.

 computer.org/ITPro 11

Testing	strategies	are	neither	random	nor	hap-
hazard;	rather,	they	should	be	approached	in	a	me-
thodical	and	systematic	manner.	After	a	defect	is	
detected,	debugging	can	be	a	frustrating	and	emo-
tionally	challenging	activity	that	can	lead	software	
engineers	to	restructure	their	 thinking	and	deci-
sions.	Testing	requires	attention	to	details	and	is	
often	performed	by	individuals	working	indepen-
dently,	and	the	pressure	to	meet	deadlines	and	de-
liver	the	product	is	enormous.	Thus,	precision	(S)	
and	order	(J)	are	highly	desirable	traits.	The	pro-
cess	of	testing	demands	a	great	amount	of	persis-
tence,	especially	the	task	of	choosing	from	a	wide	
range	of	possibilities	and	keeping	an	incredible	de-
gree	of	attention	to	detail.	In	theory,	S	and	J	people	
would	be	more	successful	in	the	testing	phase,	as	
illustrated	in	Figure	4.

Maintenance
Software	is	normally	subject	to	continual	change	
after	it’s	written	and	while	it’s	operational,	thus	
indicating	 the	 necessity	 of	 maintaining	 an		
evolving	 system.	 Projects	 involving	 research	
and	state-of-the-art	development	tend	to	attract	
more	N	people,	whereas	those	having	tasks	con-
cerned	 with	 maintaining	 and	 enhancing	 soft-
ware	systems	tend	to	attract	more	S	types,	who	
tend	to	be	practical,	realistic,	and	observant.

In	general,	an	S	person	prefers	to	perform	a	
task	 in	a	particular	way	because	 it	has	proven	
to	be	successful	in	the	past.	Conversely,	the	N	
person	prefers	 to	perform	the	 task	 in	a	 totally	
different	way	because	it	has	never	been	done	in	
that	manner	before.	Thus,	Ns	 are	 likely	 to	be	
bored	with	the	incremental	 improvements	and	
small	 fixes	 that	 software	 maintenance	 entails	
because	they	put	more	emphasis	on	new	proj-
ects.	S	people	prefer	jobs	that	require	the	use	of	
well-learned	knowledge,	rather	than	the	devel-
opment	of	new	solutions;	they’re	also	very	good	
observers	 and	 tend	 to	 focus	on	details.	Main-
tenance	 compels	 a	 thorough	 understanding	
of	 the	 software	 system,	 especially	 in	 terms	 of	
how	one	part	can	affect	the	other,	thus	S	people	
would	excel	at	maintenance	because	they	like	to	
figure	out	how	things	work.

Ps	like	to	explore	every	possibility,	and,	conse-
quently,	they	have	difficulty	making	decisions,	
whereas	 Js	 seek	 closure.	 Ps	 should	 therefore	
also	 enjoy	 maintenance	 because	 they’re	 more	
open	 to	 changes	 and	 adaptations,	 and	 they’re	
more	 sympathetic	 to	 the	constant	 changes	 re-
quested	 by	 users.	 SPs’	 problem-solving	 ability	
and	hands-on	approach	are	an	asset	for	mainte-
nance	because	such	people	like	to	solve	practi-
cal	problems	and	enjoy	the	challenge	of	 fixing	

Extroversion (E)

Personality types

Introversion (I)

Sensing (S)

Intuition (N)

Thinking (T)

Feeling (F)

Judging (J)

Perceiving (P)

Communication skills

Interpersonal skills

Ability to work
independently

Active listener

Strong analytical and
problem-solving skills

Open and adaptable
to changes

Innovative

Organization skills

Pay thorough and acute
attention to details

Fast learner

Team player

Soft skills requirements
Software tester job requirements

Coordinates necessary testing resources to ensure
completion by deadlines

Gathers test requirements and produces test
specifications

Performs manual execution of tests, records results, and
investigates and logs results

Manages and supports the team in creating usable test
assets for both manual and automated test scripts

Demonstrates ability to define and implement medium-to-
large-scale test plans and strategies according to quality
objectives, project timelines, and resources

Manages defects, including the identification, logging,
tracking, triaging, and verification of issues

Identifies and mitigates business and technical risks in the
developement and execution of the test strategy

Analyzes and evaluates, documents, and communicates
testing progress for stakeholders

Ensures test progress, methodologies, and tools are applied
appropriately and that test phase entry/exit criteria are
agreed to by stakeholders and applied by the test team

Maintains relevant test results databases

Communicates and negotiates testing timelines, budget,
staffing, scope, and critical milestones with project
managers

Figure 4. Mapping testers and their skills to personality types. In theory, sensing (S) and judging (J)
people would be more successful in the testing phase.

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on February 15,2010 at 15:46:04 EST from IEEE Xplore. Restrictions apply.

12	 IT Pro January/February 2010

IT WORKFORCE

programs	and	systems.	Figure	5	displays	these	
relationships,	highlighting	the	qualities	of	soft-
ware	maintainers.

Software Life Cycle plus Personality Types
Table	 2	 shows	 the	 five	 main	 stages	 of	 a	 soft-
ware	life	cycle	model	and	proposes	a	framework	
to	 conceptualize	 the	points	 at	which	 a	particu-
lar	personality	type	could	have	more	effect.	We	
assume	 that	 system	 analysis,	 design,	 program-
ming,	 testing,	 and	 maintenance	 are	 the	 stages	
occurring	most	often	 in	well-accepted	 software	
life	cycle	models,	despite	some	models	not	con-
sidering	a	 few	of	 these	 stages	or	 including	oth-
ers.	 Regardless	 of	 the	 model	 used,	 a	 particular	
personality	dimension	influences	each	of	the	five	
stages	 to	 some	 extent.	 The	 theory	 behind	 per-
sonality	 types	 implies	 that	 each	one	 is	 likely	 to	
affect	some	phases	of	the	software	life	cycle	more	
than	others.	Table	2	shows	the	personality	types	
that	appear	most	relevant	to	each	stage;	we’ve	al-
ready	explained	the	rationale	for	each	selection.	

It’s	time	to	recognize	that	no	single	personality	
type	fits	the	wide	spectrum	of	tasks	that	encom-
pass	the	engineering	of	software.	The	software	

industry	 can’t	 afford	 to	 lose	 professionals	 who	
might	come	from	a	diverse	group	of	people.	

A	 broad	 range	 of	 personality	 types	 is	 benefi-
cial	to	software	engineering.13	Most	software	or-
ganizations	don’t	have	 solo	performers	because	
better	 software	 results	 from	 the	 combined	 ef-
forts	of	a	variety	of	mental	processes,	outlooks,	
and	values.	It	might	be	advantageous	for	software	
organizations	 to	 consider	 employee	 strengths	
when	 assigning	 project	 tasks.	 More	 than	 ever,	
software	 engineering	 needs	 a	 diversity	 of	 per-
sonality	types.	Putting	it	in	a	software	context,	a	
diversity	of	skills	and	personality	traits	can	solve	
the	 myriad	 problems	 associated	 with	 software	
development	 and	 maintenance.	 Organizations	
would	benefit	from	a	conscious	attempt	to	diver-
sify	 the	 styles	or	personalities	of	 their	 software	
engineers	because	the	strongest	 teams	have	the	
most	diverse	perspectives.	Exposure	to	software	
psychology	can	help	this	diversity	flourish.	

References
	 1.	 I.B.	Myers	et	al.,	MBTI Manual: A Guide to the Develop-

ment and Use of the Myers-Briggs Type Indicator,	Consult-
ing	Psychologists	Press,	1998.

	 2.	 S.T.	Acuna,	N.	Juristo,	and	A.M.	Moreno,	“Empha-
sizing	 Human	 Capabilities	 in	 Software	 Develop-
ment,”	IEEE Software,	vol.	23,	no.	2,	2006,	pp.	94–101.

	 3.	 R.	Feldt	et	al.,	“Towards	Individualized	Software	En-
gineering:	Empirical	Studies	Should	Collect	Psycho-

Extroversion (E)

Personality types

Introversion (I)

Sensing (S)

Intuition (N)

Thinking (T)

Feeling (F)

Judging (J)

Perceiving (P)

Communication skills

Interpersonal skills

Ability to work
independently

Active listener

Strong analytical and
problem-solving skills

Open and adaptable
to changes

Innovative

Organization skills

Pay thorough and acute
attention to details

Fast learner

Team player

Soft skills requirementsMaintenance engineer job requirements

Provide, maintain, or update systems documentation to
reflect new applications or enhancements to existing
applications

Provide skills transfer or assistance to junior development
team members to improve product quality and
performance and to ensure standards are implemented

Regularly coordinate or take part in discussions with users
and system analysts in developing and maintaining
applications or enhancements to meet business needs

Contribute to process-improvement initiatives, especially
with regard to programming and IT

Manage and support the maintenance of systems
developed in-house as directed by the system analyst or
the manager, including trouble-shooting, reporting
problems, and recommending, designing, and
implementing sound solutions

Comply with mandated policies and procedures and
contribute to procedural improvements

Coordinate system integration testing and participate in
user acceptance testing

Be willing to learn new technologies and keep on top of
emerging trends in application development; have an
open mind to consider different approaches to solving
technical problems

Figure 5. Mapping maintainers and skills to personality types. Sensing (S) and perceiving (P) types
are best suited to the detail-oriented tasks and constant changes inherent to software maintenance.

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on February 15,2010 at 15:46:04 EST from IEEE Xplore. Restrictions apply.

 computer.org/ITPro 13

metrics,”	Proc. Workshop Cooperative and Human Aspect
of Software Eng.	(CHASE),	ACM	Press,	2008,	pp.	49–
52.

	 4.	 D.B.	Walz	and	J.L.	Wynekoop,	“Identifying	and	Cul-
tivating	Exceptional	Software	Developers,”	J. Comput-
er Information Systems,	vol.	37,	no.	4,	1997,	pp.	82–87.

	 5.	 E.A.	Turley	and	J.M.	Bieman	“Competencies	of	Ex-
ceptional	and	Non-Exceptional	Software	Engineers,”	
J. Systems and Software,	vol.	28,	no.	1,	1995,	pp.	19–38.

	 6.	 N.L.	Kerth,	J.	Coplien,	and	J.	Weinberg,	“Call	for	the	
Rational	Use	of	Personality	Indicators,”	Computer,	vol.	
31,	no.	1,	1998,	pp.	146–147.

	 7.	 D.J.	Pittenger,	“The	Utility	of	the	Myers-Briggs	Type	
Indicator,”	 Rev. Educational Research,	 vol.	 63,	 no.	 4,	
1993,	pp.	467–488.

	 8.	 E.	Kaluzniacky,	Managing Psychological Factors in Infor-
mation Systems Work,	Information	Science	Publishing,	
2004.

	 9.	 L.T.	Hardiman,	“Personality	Types	and	Software	En-
gineers,”	Computer,	vol.	30,	no.	10,	1997,	p.	10.

	10.	 L.F.	 Capretz,	 “Personality	 Types	 in	 Software	 Engi-
neering,”	Int’l J. Human-Computer Studies,	vol.	58,	no.	
2,	2003,	pp.	207–214.

	11.	 G.J.	 Teague,	 “Personality	 Type,	 Career	 Preference	
and	Implications	for	Computer	Science	Recruitment	
and	Teaching,”	Proc. 3rd Australian Conf. Computer Sci-
ence Education,	ACM	Press,	1998,	pp.	155–163.

	12.	 J.	Dolney,	“Designing	Job	Descriptions	for	Software	
Development,”	C.	Barry,	ed.,	 Information Systems De-
velopment Challenges in Practice, Theory and Education,	
Springer,	2009,	pp.	447–460.

	13.	 L.F.	Capretz,	“Implications	of	MBTI	in	Software	En-
gineering	Education,”	ACM SIGCSE Bull.,	vol.	34,	no.	
4,	2002,	pp.	134–137.

Luiz Fernando Capretz is an associate professor and the
director of the software engineering program at the Uni-
versity of Western Ontario, Canada. His research interests
include software engineering, human factors in software
engineering, software estimation, software product lines,

and software engineering education. Capretz has a PhD in
computing science from the University of Newcastle upon
Tyne. He is a senior member of the IEEE, a distinguished
member of the ACM, an MBTI certified practitioner, and
a Professional Engineer in Ontario (Canada). Contact him
at lcapretz@eng.uwo.ca.

Faheem Ahmed is an assistant professor at the College
of Information Technology, United Arab Emirates Uni-
versity. His research interests are software product lines,
software process modeling, software process assessment,
and empirical software engineering. Ahmed has a PhD
in electrical engineering from the University of Western
Ontario. He is a member of the IEEE. Contact him at
f.ahmed@uaeu.ac.ae.

	 Selected	CS	articles	and	columns	are	available		
	 for	free	at	http://ComputingNow.computer.org.

Table 2. The personality types with the strongest impact on the software life cycle.

 Software life cycle stages

Personality types System analysis Software design Programming Testing Maintenance

Extroversion (E) √

Introversion (I) √

Sensing (S) √ √ √

Intuition (N) √

Thinking (T) √ √

Feeling (F) √

Judging (J) √

Perceiving (P) √

Authorized licensed use limited to: UNIVERSITY OF WESTERN ONTARIO. Downloaded on February 15,2010 at 15:46:04 EST from IEEE Xplore. Restrictions apply.

