Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.

Volume 50, issue 11, October 2008 ISSN 0950-5849

INFORMATION
AND
SOFTWARE
TECHNOLOGY

Available online at

s %
=’ ScienceDirect
www.sciencedirect.com

This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution
and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Available online at www.sciencedirect.com

ScienceDirect

INFORMATION
AND
SOFTWARE
TECHNOLOGY

www.elsevier.com/locate/infsof

ELSEVIER Information and Software Technology 50 (2008) 1098-1113

The software product line architecture: An empirical
investigation of key process activities

Faheem Ahmed ®*, Luiz Fernando Capretz °

& College of Information Technology, P.O. Box 17555, United Arab Emirates University, Al Ain, United Arab Emirates
® Department of Electrical & Computer Engineering, Faculty of Engineering, University of Western Ontario, London, Ont., Canada N6A 5B9

Received 25 April 2007; received in revised form 18 October 2007; accepted 23 October 2007
Available online 30 October 2007

Abstract

Software architecture has been a key area of concern in software industry due to its profound impact on the productivity and quality
of software products. This is even more crucial in case of software product line, because it deals with the development of a line of prod-
ucts sharing common architecture and having controlled variability. The main contributions of this paper is to increase the understand-
ing of the influence of key software product line architecture process activities on the overall performance of software product line by
conducting a comprehensive empirical investigation covering a broad range of organizations currently involved in the business of soft-
ware product lines. This is the first study to empirically investigate and demonstrate the relationships between some of the software prod-
uct line architecture process activities and the overall software product line performance of an organization at the best of our knowledge.
The results of this investigation provide empirical evidence that software product line architecture process activities play a significant role
in successfully developing and managing a software product line.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Software product line; Software architecture; Empirical study; Software engineering; Domain engineering

1. Introduction

Software architecture has a history of evolution and over
a decade the software industry is observing and reporting
refinements and advancements. Now the trends in software
architecture for single product development have turned into
software product line architecture for line of resulting prod-
ucts. Software product line is a set of software-intensive sys-
tems sharing a common, managed set of features that satisfy
the specific needs of a particular market segment and are
developed from a common set of core assets in a prescribed
way [11]. The software product line is increasingly gaining
the attention of software development organizations
because of the promising results on cost reduction, quality
improvements and reduced delivery schedule. Clements
et al. [10] report that software product line engineering is a

* Corresponding author. Tel.: +971 50 9357086; fax: +971 3 762 6309.
E-mail addresses: f.ahmed@uaeu.ac.ae (F. Ahmed), lcapretz@eng.
uwo.ca (L.F. Capretz).

0950-5849/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.infsof.2007.10.013

growing software engineering sub-discipline, and many
organizations, including Philips®, Hewlett-Packard®,
Nokia®, Raytheon®, and Cummins®, are using it to achieve
extraordinary gains in productivity, time to market, and
product quality. The economic potentials of software prod-
uct line have been recognized in software industry [6,60].
There are other corresponding terminologies for soft-
ware product line, which have been widely used in Europe,
for example “product families”, “product population”,
and ‘“‘system families”. The acronym BAPO [61] (Busi-
ness-Architecture-Process-Organization) defines process
concerns associated with software product lines. Business,
architecture, process and organization are considered criti-
cal because they establish an infrastructure and manage the
way the products resulting from software product lines
make profits. The architecture dimension of the software
product line concept attained most of the attention of
researchers and the architecture aspects of software prod-
uct lines such as domain engineering, product line architec-
ture, commonality and variability management has been a

F. Ahmed, L.F. Capretz | Information and Software Technology 50 (2008) 1098-1113 1099

key area of research since the introduction of the concept
after mid nineties. Research has been reported on software
product line process methodology including, product line
architecture, commonality and variability management,
core assets management, business case engineering, appli-
cation and domain engineering [5,12,32,65].

This paper’s main contribution is to increase the under-
standing of the influence of some of the key architecture pro-
cess activities by showing empirically that they play an
imperative role in the better performance of software prod-
uct line within an organization. A quantitative survey of soft-
ware organizations currently applying the concept of
software product lines over a wide range of operations,
including consumer electronics, telecommunications, avion-
ics, and information technology, was designed to test the
conceptual model and hypotheses of this investigation. This
study provides empirical evidence that software product line
architecture process activities play a significant role in suc-
cessfully developing and managing a software product line.

1.1. Software product line architecture: related work

Software architecture has been a key research area in soft-
ware engineering due to its profound impact on the produc-
tivity and quality of software. Software architecture is the
structure of the components of a program or system, their
interrelationships, and the principles and guidelines govern-
ing their design and evolution [29]. Software architecture has
along history of evolution and in this modern age this trans-
formation leads towards software product line architecture,
where the concern is not a single product development rather
the focus is on multiple product development by sharing the
same architecture. Pronk [51] defines software product line
architecture as an ultimate reuse in which the same software
in reused for an entire class of products with only minimal
variations to support the diversity of individual product fam-
ily members. According to Jazayeri et al. [32] software prod-
uct line architecture defines the concepts, structure, and
texture necessary to achieve variation in features of variant
products while achieving maximum sharing parts in the
implementation. Mika and Tommi [46] further elaborate
that software product line architecture can be produced in
three different ways: from the scratch, from existing product
group, or it can be build from a single existing product. Soft-
ware product-line architecture is a powerful way to control
the risks and take advantage of the opportunities of complex
customer requirements, business constraints, and technol-
ogy, but its success depends on more than technical excel-
lence [21]. The software product line architecture captures
the central design of all products and allows for the expres-
sion of variability and commonalities of the product
instances, the products are instantiated by configuring the
architecture and customizing components in an asset library
[63]. The ‘““Architecture” in BAPO is considered critical
because it deals with the technical means to build an architec-
ture that is aimed to share by a number of products from the
same family. van der Linden et al. [61] identify some main

factors in evaluating the architecture dimension of software
product line such as: software product family architecture,
product quality, reuse levels and software variability man-
agement and classified the architecture maturity of software
product line into five levels in the ascending order: indepen-
dent product development, standardized infrastructure,
software platform, variant products and self-configurable
products. Birk et al. [4] conclude that explicit documentation
of the software product line architecture, platform features,
and generic interfaces is important for the product teams to
understand the reusable assets.

The methodologies developed for software product line
development either in general or specific to particular
application domain consider domain engineering as an
integral activity of the overall product line process and
has profound impact on building the architecture for the
product line. Bayer et al. [3] at Fraunhofer Institute of
Experimental Software Engineering (IESE) develop a
methodology called PuLSE (Product Line Software Engi-
neering) for the purpose of enabling the conception and
deployment of software product lines within a large variety
of enterprise contexts. PULSE-DSSA is a part of PuLSE
methodology, which deals with developing the reference
architecture for software product line. Knauber et al. [40]
further elaborates that the basic idea of PuLSE-DSSA is
to incrementally develop reference architecture guided by
generic scenarios that are applied in decreasing order of
architectural significance. Researchers at Philips® devel-
oped Component-Oriented Platform Architecting
(CoPAM) [1] method for the software product lines of elec-
tronics products. CoPAM assumes a strong correlation
among facts, stakeholder expectations, any existing archi-
tecture and the institutions about possible architects in
developing software product line architecture. Weiss and
Lai [65] discuss the development of Family-Oriented
Abstraction Specification and Translation (FAST) method
for software product line process and successful use at
Lucent Technologies®. FAST method covers a full soft-
ware product line engineering process with specific activi-
ties and targeted artifacts. It divides the overall process
of software product line into three major steps of domain
qualification, domain engineering and application engi-
neering. Researchers at IESE developed a methodology
called KobrA [2], which defines software product line engi-
neering process with activities and artifacts. The process of
software product line engineering is divided in to frame-
work engineering and application engineering with their
sub steps. These steps cover the implementation, releasing,
inspection and testing aspects of product line engineering
process. Kang et al. [36] propose a Feature Oriented Reuse
Method (FORM), which is an extension to the Feature-
Oriented Domain Analysis (FODA) method to cover the
aspects of software product lines. FORM provides a meth-
odology to use feature models in developing domain archi-
tectures and components reusability. VTT technical
research centre of Finland develop Quality-driven
Architecture Design and Quality Analysis (QADA)

1100 F. Ahmed, L.F. Capretz | Information and Software Technology 50 (2008) 1098-1113

method for developing and evaluation of software architec-
ture with emphasis on product line architecture. Matinlassi
[45] reported the comparison of software product line
architecture design methods including CoPAM, FAST,
FORM, KobrA and QADA, and concluded that these
methods do not seem to compete with each other, because
each of them has a special goal or ideology.

The concepts of commonality and variability manage-
ment inherently belongs to domain engineering are gaining
popularity over time due to extensive involvement in soft-
ware product line concept. According to Coplien et al.
[16] commonality, and variability analysis gives software
engineers a systematic way of thinking about and identify-
ing the product family they are creating. Commonality
management deals with the way features and characteristic
that are common across the products belong to same prod-
uct line whereas variability management is other way
round. Variability management handles the way the vari-
able features and characteristic are managed in different
product of the same product line. Software product line
requires systematic approaches to handle commonality
and variability and the core of successful software product
line management largely rely on effective commonality and
variability management. Kang et al. [36] discuss the use of
feature models to manage commonality and variability in
software product line. Lam [41] presents variability tem-
plates and variability hierarchy based variability manage-
ment process. Thompson and Heimdahl [57] propose a
set based approach to structure commonalities and vari-
ability in software product lines. Kim and Park [38]
describe the goal and scenario driven approach for manag-
ing commonality and variability on software product line.
Ommering [59] observes that the commonalities are
embodied in an overall architecture of software product
line, while the differences result in specifying variation
points and by filling those variation points, individual
products can be derived. Other researchers [40,44,65]
stressed that the software architecture for a product family
must address the variability and commonality of the entire
set of products.

Requirements modeling have always been a key archi-
tecture concern in software devolvement, because it pro-
vides a better understanding of the requirements of the
architecture and allows visualizing the interconnection of
various sub-units. Since the popularity of object oriented
design, Unified Modeling Language (UML) has become
an industry standard, many researchers attempt to intro-
duce UML in visual modeling of software product line
architecture by presenting enhancement in the current
state. Birk et al. [4] stress that the organization dealing with
software product line architecture should describe the
architecture using well-established notations such as the
UML and the architecture description should cover all rel-
evant architectural views and use clearly defined semantics.
Gomma and Shin [30] describe a multiple-view meta-mod-
eling approach for software product lines using the UML
notation, which defines the different aspects of a software

product line such as: the use case model, static model, col-
laboration model, state chart model, and feature model.
Zuo et al. [67] present the use of problem frames for prod-
uct line engineering modeling and requirements analysis
and demonstrate some additional notation to support
the requirements management and variability issues in
product line problem frames. Dobrica and Niemeld [22]
discuss how UML standard concepts can be extended
to address the challenges of variability management in
software product line architecture and introduce some
extensions in UML standard specification for the explicit
representation of variations and their locations in soft-
ware product line architectures, this work is based on
Quality-driven Architecture Design and quality Analysis
(QADA) methodology. Eriksson et al. [24] describe a
product line use case modeling approach named PLUSS
(Product Line Use case modeling for Systems and Soft-
ware engineering) and conclude that PLUSS performs
better than modeling according to the styles and guide-
lines specified by the Rational Unified Process (RUP)
in the current industrial context.

Software architecture evaluation techniques are gener-
ally divided into two groups of qualitative evaluation and
quantitative evaluation. Qualitative techniques include sce-
narios, questionnaires, checklists etc. Quantitative tech-
niques cover simulations, prototypes, experiments,
mathematical models, etc. Etxeberria and Sagardui [25]
highlight the issues that can arise when evaluating product
line architecture versus evaluating single system architec-
ture, including classifications of relevant attributes in prod-
uct line architecture evaluation, new evaluation moments
and techniques. Graaf et al. [31] present a scenario based
software product line evaluation technique, which provides
guidelines to adapt scenario-based assessment to software
product line context. Using the qualitative technique of
software architecture evaluation van der Hoek et al. [58]
put forward service utilization metrics to assess the quality
attribute of software product line architecture. Zhang et al
[66] study the impact of variants on quality attributes using
a Bayesian Belief Network (BBN) and design a methodol-
ogy applicable to software product line architecture evalu-
ation. De Lange and Kang [20] propose a product-line
architecture prototyping approach using network tech-
nique to assess issues related to software product line archi-
tecture evaluation. Gannod and Lutz [28] define an
approach to evaluate the quality and functional require-
ments of software product line architecture. Niemeld
et al. [47] discuss the basic issues of product family archi-
tecture development and presents evaluation model of soft-
ware product family in industrial setting.

The literature survey of the related work of software
product line architecture exposes some key architecture
process activities such as domain engineering, commonality
and variability management, requirements modeling, archi-
tecture documentation and architecture evaluation, which
are currently in practice. We used these key architecture
process activities as a set of independent variables in the

F. Ahmed, L.F. Capretz | Information and Software Technology 50 (2008) 1098-1113

empirical investigation presented in this paper in order to
construct the research model of our investigation.

2. Research models and hypotheses of the study

The main objectives of this empirical investigation are
twofold. First, this study provides an opportunity to empir-
ical investigate the association between the key architecture
factors and software product line performance. Secondly, it
studies the interrelationships of key architecture factors in
managing and developing software product line architec-
ture. Fig. 1 shows the theoretical model purposely designed
for the empirical investigation of the association of soft-
ware product line architecture process activities and soft-
ware product line performance. The model examines the
association of a number of independent variables arising
from the literature survey of software product line engi-
neering on the dependent variable of software product line
performance of an organization. The main objective of this
model is to investigate empirically the answer of the follow-
ing research question:

RQ: What is the impact of architecture process activities
on the overall performance of software product line?

There are six independent and one dependent variable of
this model. The six independent variables are called “archi-
tecture factors” in the rest of this paper. They include
domain engineering, requirements modeling, commonality
management, variability management, architecture evalua-
tion and architecture artifacts management. The dependent
variable of this study is software product line performance
of an organization. We measure the software product line
performance of an organization for the past 3 years, with
respect to cost and development time reductions, market
growth, and financial strengths. The multiple linear regres-
sion equation of the model is depicted by Eq. (I)

Architecture Factors

1101

Software product line performance
= Po + Bif1 + Pofa + Bafs + Bafa + PBsfs + Pefe I

where o, B1, B2, B3, Ba. Ps, e are coeflicients, and f1, f2, f3,
fa, f5, fo are the six independent variables. In order to

empirically investigate the research question (RQ) we
hypothesize the following:

H1: Domain engineering activity has a positive impact on
software product line performance.

Requirements modeling is positively associated with
the performance of software product line.
Commonality management plays a positive role in
software product line performance.

Variability management is positively associated with
software product line performance.

Architecture evaluation is positively associated with
software product line performance.

The performance of software product line is posi-
tively associated with architecture artifacts
management.

H2:
H3:
H4:
HS:

He6:

Fig. 2 illustrates the research model designed to investi-
gate the interdependency of software product line architec-
ture process activities. The model shown in Fig. 2 describes
the directional association among various key architecture
factors. The purpose of this research model is to find out
the interrelationships of various key architecture factors
of software product line. The main objective of this
research model is to investigate empirically the answer of
the following research question:

RQ-1: What is the impact of domain engineering activity
on variability and commonality management of
software product line architecture?

| Domain Engineering |

| Requirements Modeling |

| Commonality Management |

| Variability Management |

| Architecture Evaluation |

RQ-2: Does requirements modeling helps in managing
and understanding variability and commonality
in software product line architecture?

(H14), (B9
1 -
(H24), (B2
| g
(H34), (Ba
| g
(H4 4, (B Software Product Line
| Performance
P
(H5 4), (B
' g
(H6 4) , (Be)
' g

| Architecture Artifacts Managem ent |

Fig. 1. Research model.

1102 F. Ahmed, L.F. Capretz | Information and Software Technology 50 (2008) 1098-1113

I Variability Managem ent

I | Architecture Artifacts Management ‘

H1a

A 4

H2a H5a

‘ Requirements Modeling ‘ ’

Domain Engineering ‘

' 3

H3a

A

H4a Héa

‘ Commonality Managem ent

Architecture Evaluation ‘

Fig. 2. Research model of inter-relationships of architecture factors.

RQ-3: Does domain engineering helps in managing
product line architecture artifacts?

RQ-4: What is the association of architecture evaluation
on the domain engineering?

In order to empirically investigate the research questions
RQ-1 to RQ-4 we hypothesize the following:

Hla: Variability management is positively associated
with requirements modeling.

H2a: Variability management is positively associated

with domain engineering.

Commonality management has a positive associa-

tion with requirements modeling.

H4a: Commonality management is positively associ-
ated with domain engineering.

H5a: Architecture artifacts management of software
product line has positive relationship with
domain engineering.

Ho6a: Architecture evaluation is positively associated
with domain engineering.

H3a:

3. Research methodology

The target population for this study was organizations,
having been involved in using the software product line
approach for more than 3 years. We approached organiza-
tions by sending them personalized emails and request
them to participate in this empirical study. The organiza-
tions were requested to fill out the questionnaire purposely
designed for this study. Ten organizations agreed to partic-
ipate in this study with a mutual understanding of keeping
the names of the organizations as well as individuals confi-
dential. The participating organizations are involved in
wide range of operations such as consumer electronics, tele-
communication, avionics, automobiles, and information
technology. The participating organizations are North
American and European multinational companies. The
organizations differed in size and range from medium to
large-scale. We assume that the medium scale organization
has number of employees around 2000-3000, whereas a
large-scale organization has more then 3000 employees. It
is important to note here that the size of the organization
in terms of number of employees is based on total number

of employees in the organization working in various
departments. We requested the organizations under study
to distribute the questionnaire within various departments,
so that we could have many responses within same organi-
zation. The respondents, on average, had been associated
with the organizations for the last 3 years. The minimum
qualification of respondents was an undergraduate univer-
sity degree and the maximum was a Ph.D. degree. We
received a minimum of one and a maximum of six
responses from each organization. The total respondents
were 33 altogether.

3.1. Measuring instrument

The research model shown in Fig. 1, identified six inde-
pendent variables termed as architecture factors in this
study and one dependent variable of software product line
performance. We collected data on the architecture factors
and the perceived level of software product line perfor-
mance using the questionnaire specifically designed for this
study. The questionnaire presented in Appendix A was
used to serve as a source of first contact in learning the
extent to which the architecture factors were practiced
within each organization dealing in the software product
lines and their perceived level of organizational perfor-
mance in software product line concept. The questionnaire
required respondents to indicate the extent of their agree-
ment or disagreement with statements using a five-point
Likert scale. We used twenty-four separate items to mea-
sure the independent variables. We used four items to mea-
sure each organization’s performance in the software
product lines. Previous researches on software engineering,
software architecture, software product lines, and software
product line architecture were reviewed to ensure that a
comprehensive list of measures were included in constructs
of each independent variable. In order to measure the
extent to which each of the six architecture factors were
practiced in organizations dealing with software product
lines; we used multi-item, five-points Likert scales that ran-
ged from “strongly disagree” (1) to ““strongly agree™ (5) for
all items associated with each variable. Four items for each
independent variable were designed to collect measures on
the extent to which the variable is practiced within each
organization. The items for all six architecture factors are
labeled sequentially in Appendix A and are numbered 1-

F. Ahmed, L.F. Capretz | Information and Software Technology 50 (2008) 1098-1113 1103

24. We measured the dependent variable, i.e. software
product line performance for the past 3 years, with respect
to cost and development time reductions, market growth,
and financial strengths based on the multi-item, five-point
Likert scale. The items were specifically designed for col-
lecting measures for this variable and are labeled sequen-
tially from 1 to 4 in Appendix A. All items shown in
Appendix A are written specifically for this empirical
investigation.

3.2. Reliability and validity analysis of measuring instrument

Conducting reliability and validity analysis, which has
been widely used in empirical software engineering, can
reduce the external threats to the findings of empirical
investigations. Reliability refers to the reproducibility of
a measurement, whereas validity refers to the agreement
between the value of a measurement and its true value.
We conducted reliability and validity analysis of the mea-
suring instruments designed specifically for this empirical
investigation by using most common approaches generally
used in the empirical studies. The reliability of the multiple-
item measurement scales of the six architecture factors was
evaluated by using internal-consistency analysis. Internal-
consistency analysis was performed using coefficient alpha
[17]. Table 1 reports the reliability analysis, the coefficient
alpha ranges from 0.60 to 0.88. Nunnally and Bernste
[48] found that a reliability coefficient of 0.70 or higher
for a measuring instrument is satisfactory. The other reli-
ability literature such as [62] suggests that a reliability coef-
ficient of 0.55 or higher is satisfactory, and Osterhof [50]
concluded that 0.60 or higher is satisfactory. Therefore
we determined that all variable items developed for this
empirical investigation were reliable. We observed the con-
tent validity of the items included in each architecture fac-
tor, following the general recommendations of Cronbach
[18] and Straub [56], by carrying out a comprehensive liter-
ature survey to include possible items in the variable scales.
We also held discussions with the representatives of the
organizations to finalize the proposed independent vari-
ables and items included in each variable which helps in
managing face validity of the measuring instrument as well.
We also conducted pilot tests, which led to modifications in
the variable items, based on the suggestions of respondents,
which improved the content and face validity.

Table 1
Coefficient alpha & principal component analysis of variables

Architecture factors Item Coefficient ~PCA
No. o eigen-value
Domain engineering 1-4 0.77 242
Requirements modeling 5-8 0.88 2.99
Commonality management 9-12 0.78 242
Variability management 13-16 0.79 2.47%
Architecture evaluation 17-20 0.66 2.23%
Architecture artifacts management 21-24 0.60 2.30

Variable has more then one factors with eigen value >1.0.

Convergent validity, according to Campbell and Fiske
[7], occurs when the scale items in a given construct move
in the same direction (for reflective measures) and, thus,
highly correlate. The principal component analysis [15] per-
formed and reported for all six architecture factors in Table
1 provide a measure of convergent validity. We used eigen
values [34] and scree plots [8] as reference points to observe
the construct validity using principal component analysis.
In this study, we used eigen value-one-criterion, also known
as Kaiser criterion [35,55], which means any component
having an eigen value greater then one was retained. Eigen
values analysis revealed that four out of six variables com-
pletely formed a single factor, whereas in the case of vari-
ability management and architecture evaluation two
components are formed. The eigen value for the second
components are slightly higher then the threshold of 1.0.
The scree plots clearly showed a cut-off at the first compo-
nent. Therefore, the convergent validity can be regarded
as sufficient. We used multiple regression analysis to deter-
mine the criterion validity of the six architecture factors
and software product line performance. Architecture fac-
tors were used as predictor variables and software product
line performance was used as a criterion variable. The multi-
ple correlation coefficient observed, was 0.88. Cohen [14]
concluded that a multiple correlation coefficient higher than
0.51 corresponds to a large effect size. Therefore, we
observed the criterion validity of the variables to be suffi-
cient. The measurements of reliability and validity analysis
showed that the measurement procedures used in this study
had the required level of psychometric properties.

3.3. Data analysis techniques

To analyze the research model and check the signifi-
cance of the hypotheses HI-H6 and Hla-H6a, we used
various statistical analysis techniques and initially divided
the data analysis activity into three phases. Phase-I dealt
with normal distribution tests and parametric statistics,
whereas Phase-11 dealt with non-parametric statistics. In
order to reduce the threats to external validity due to
low sample size we used both statistical approaches of
parametric and non-parametric. We tested for the normal
distribution of all the architecture factors using mean,
standard deviation, kurtosis and skewness techniques,
and found the values for all these tests to be within the
acceptable range for the normal distribution with some
exceptions. We made some modification to the data
received from respondents before performing statistical
analysis. Since all the six independent variables and the
dependent variable’s measuring instrument had multiple
items, therefore we added their ratings to obtain a com-
posite score for that measure before performing statistical
analysis. The statistical analysis results reported in this
paper are based on data received from all the respondents
We conducted tests for hypotheses HI-H6 and Hla-H6a
using parametric statistics, such as the Pearson correlation
coefficient and one tailed #-test in Phase-I. In Phase-II of

1104 F. Ahmed, L.F. Capretz | Information and Software Technology 50 (2008) 1098-1113

non-parametric statistics, we conducted tests for hypoth-
eses HI-H6 and Hla-H6a using Spearman correlation
coefficient. Phase-III dealt with testing the hypotheses
of the research models of this study using the technique
of Partial Least Square (PLS). PLS technique helps
when complexity, non-normal distribution, low theoreti-
cal information, and small sample size are issues [27,33].
Since small sample size was one of the major limitations
in this study, therefore, we used PLS technique to
increase the reliability of the results as well. One of
the main reasons for small sample size is that software
product line is a relatively young concept in the soft-
ware industry and not many organizations are dealing
in software product lines since the last 3 years. The sta-
tistical calculations were performed using Minitab® 14
software.

3.4. Low sample size issues and handling approach

In this study 10 organizations participated with a total
number of respondents 33. The lower sample size in terms
of number of organizations and respondents has a poten-
tial threat to the external validity of this study in order
to generalize the outcomes. In this section we discuss why
the sample size is low and how we handled this issue to
reduce the threats to external validity. Following is the rea-
son for the low sample size:

e The major reason behind small number of participating
organizations is our initial criteria set of 3 years of expe-
rience in software product line development. There are
not many organizations having the required level of
experience in the business of software product line in
particular due to relative young age of this concept.
The reason behind choosing the 3 years experience in
software product line, as a criteria set is the characteris-
tics of long-term payback period of software product
line. In order to enhance the external validity we intend
to ensure that organizations have started assessing the
benefits of software product line in terms of pay back
or at least some potential benefits are apparent now.
The number of respondents from organizations was
beyond our control as we requested at the organiza-
tional level to distribute the survey and provide us feed-
back as well as all the participants of this study were
volunteers.

We used many statistical techniques to ensure that with
a low sample size we would observe reliable results to
improve the external validity of the study. We took follow-
ing measures to ensure the reliability of the results:

e We used both parametric (Pearson correlation) and non-
parametric (Spearman correlation) statistical approaches
to ensure the reliability of results. Since one technique is
distribution dependent and other is not so we used both
approaches to ensure the reliability of the results.

Table 2
Minimal sample size requirement for Pearson & Spearman correlation
(90% & 80% power)

Power of 90%

Correlation Power of 80%

coefficient value

Pearson Spearman Pearson Spearman
correlation correlation correlation correlation

0.1 854 1013 618 733

0.2 212 250 154 183

0.3 93 107 68 79

0.4 51 62 38 46

0.5 32 39 24 30

0.6 21 26 16 20

0.7 15 19 12 15

e We also used Partial Least Square (PLS) technique to
cross validate the statistical outcomes. Other studies
[27,33] show that PLS provides more reliable results
when low sample size is an issue.

Values in Table 2 based on literature [14] provide infor-
mation about minimal sample size requirements for
Pearson and Spearman correlation coefficient at a power
of 90% and 80%. We tested hypothesis using the Pearson
and Spearman correlation coefficient. We observed a
maximum 0.83 statistically significant correlation at
P <0.05, minimum 0.30 and average 0.65 (recorded in
Table 3). According to Table 2 a sample size of 21 and
16 is required for Pearson correlation at a power of
90% and 80%, respectively. Whereas a sample size of
26 and 20 is required for Spearman correlation at a
power of 90% and 80%, respectively, in case of an aver-
age correlation of 0.65 that we observed.

4. Data analysis and results
4.1. Hypotheses testing Phase-1

We examined the Pearson correlation coefficient and ¢-
test between individual independent variables (architecture
factors) and the dependent variable (software product line
performance) of the research model shown in Fig. 1 in order
to test hypotheses H1-H6, as well as the inter-relationships
of different architecture factors shown in Fig. 2 to test
hypotheses from Hla to H6a.The results of the statistical cal-
culations for the Pearson correlation coefficient is reported in
Table 3. The Pearson correlation coeflicient between domain
engineering and software product line performance was
positive (0.68) at P < 0.05, and thus provided a justification
to accept the HI hypothesis. The hypothesis H2 was
accepted based on the Pearson correlation coefficient (0.77)
at P <0.05 between requirements modeling and perfor-
mance. The correlation coefficient of 0.81 at P < 0.05 was
observed between the software product line performance
and commonality management. The positive correlation
coefficient of 0.83 at P < 0.05 meant that H4 was accepted.
The hypotheses H5 (correlation: 0.02) was not found signif-
icant at P < 0.05, therefore the hypotheses H5 that deals with
architecture evaluation and software product line perfor-

F. Ahmed, L.F. Capretz | Information and Software Technology 50 (2008) 1098-1113 1105

Table 3

Hypotheses testing using parametric and non-parametric correlation coefficients

Hypothesis Research variables involved Pearson coefficient Spearman coefficient
Hl Domain engineering & software product line performance 0.68% 0.64%
H2 Requirements modeling & software product line performance 0.77% 0.75%
H3 Commonality management & software product line performance 0.81% 0.82%
H4 Variability management & software product line performance 0.83% 0.85%
H5 Architecture evaluation & software product line performance 0.02° 0.05°
H6 Architecture artifacts management & software product line performance 0.80% 0.81%
Hla Variability management & requirements modeling 0.60* 0.62%
H2a Variability management & domain engineering 0.64* 0.57%
H3a Commonality management & requirements modeling 0.65% 0.66"
H4a Commonality management & domain engineering 0.65% 0.67°
Hj3a Architecture artifacts management & domain engineering 0.49% 0.43%
Hé6a Architecture evaluation & domain engineering 0.36" 0.30%

* Significant at P <0.05.
® Insignificant at P> 0.05.

mance is rejected. Hypothesis H6 was accepted after analyz-
ing the Pearson correlation coefficient (0.80 at P < 0.05). The
hypothesis Hla deals with variability management and
requirements modeling and we observed a positive relation-
ship (Person correlation coefficient: 0.60 at P < 0.05). Vari-
ability management has also a positive relationship with
domain engineering thus allowing H2a to accept (Person
correlation coefficient: 0.64 at P <0.05). The hypothesis
H3a was accepted based on the Pearson correlation coeffi-
cient (0.65) at P < 0.05, between commonality management
modeling and requirements modeling. The Pearson correla-
tion coefficient between commonality management and
domain engineering was positive (0.65) at P < 0.05, and thus
provided a justification to accept the H4a hypothesis. Archi-
tecture Artifacts management and domain engineering
shows positive relationship (Person correlation coefficient:
0.49 at P <0.05), hence H5a is accepted. The hypothesis
Ho6a that deals with architecture evaluation and domain
engineering is observed positive with Person correlation
coefficient of 0.36 at P <0.05. It was observed and is
reported here that hypotheses H1, H2, H3, H4, and H6, of
research model shown in Fig. 1, are found statistically signif-
icant and accepted whereas H5 is not supported therefore
was rejected. Furthermore it was also observed and is
reported here that hypotheses Hla, H2a, H3a, H4a, H5a
and Hé6a are found statistically significant and accepted.

4.2. Hypotheses testing Phase-11

In Phase-Il we conducted non-parametric statistics
using Spearman correlation coefficient to test the hypothe-
ses HI-H6 and Hla-H6a. Table 3 also reported the obser-
vation made in this testing phase. Hypothesis H1 was
statistically significant at P <0.05 with Spearman correla-
tion coefficient of 0.64. A positive association is observed
between requirements modeling and software product line
performance (Spearman: 0.75 at P < 0.05). H3, which deals
with commonality management and software product line
performance, was accepted (Spearman: 0.82 at P <0.05).
The Spearman correlation of (0.85 at P <0.05) is observed

for H4. The hypothesis H5 between architecture evaluation
and software product line performance was found statisti-
cally insignificant because the observed P-value was greater
then 0.05. A positive Spearman correlation of 0.81 at
P <0.05 results in accepting H6. The Spearman correlation
of (0.62 at P < 0.05) was observed between variability man-
agement and requirements modeling (H1a). H2a tests the
relationship between variability management and domain
engineering and found positive (Spearman correlation:
0.57 at P <0.05). H3a deals with commonality manage-
ment and requirements modeling and observed positive
(Spearman correlation: 0.66 at P <0.05). Domain engi-
neering and commonality management (H4a) showed a
positive association with Spearman correlation of 0.67 at
P <0.05. Hypothesis H5a (architecture artifacts manage-
ment and domain engineering) was statistically significant
at P <0.05 with Spearman correlation coefficient of 0.43.
Ho6a (architecture evaluation and domain engineering)
was accepted based on Spearman correlation of 0.30 at
P <0.05. Hence, it was observed and is reported here that
hypotheses H1, H2, H3, H4, and H6, are found statistically
significant and accepted whereas HS5 is not supported thus
rejected. Further more hypotheses to test the interrelation-
ships of architecture factors (Hla—H6a) are found statisti-
cally significant and accepted.

4.3. Hypotheses testing Phase-I111

In Phase-III of hypotheses testing, we used the PLS
technique to overcome some of the associated limitations
and to cross validate with the results observed using
approach of Phase-I and Phase-II. We tested the hypothe-
sized relationships, i.e. HI-H6, as well as Hla-H6a by
examining their direction and significance. In PLS testing
of HI-H6 we placed software product line performance
as response variable and individual architecture factor as
predicate. In order to test hypotheses Hla-H6a we placed
one variable as predicator and other as response to test
their association. Table 4 reports the result of structural
tests of the hypotheses. It contains detailed observed values

1106 F. Ahmed, L.F. Capretz | Information and Software Technology 50 (2008) 1098-1113

Table 4

Hypotheses testing using partial least square regression

Hypothesis Research variables involved Path coefficient R F-Ratio
H1 Domain engineering & software product line performance 0.71 0.46 26.92°
H2 Requirements modeling & software product line performance 0.53 0.59 46.22%
H3 Commonality management & software product line performance 0.63 0.66 61.77*
H4 Variability management & software product line performance 0.74 0.69 70.71*
H5 Architecture evaluation & software product line performance 0.02 0.005 0.02°
Ho6 Architecture artifacts management & software product line performance 0.95 0.65 57.90*
Hla Variability management & requirements modeling 0.46 0.36 18.13%
H2a Variability management & domain engineering 0.76 0.42 22.60%
H3a Commonality management & requirements modeling 0.57 0.42 23.17%
H4a Commonality management & domain engineering 0.88 0.43 23.66%
HS5a Architecture artifacts management & domain engineering 0.44 0.24 10.29%
Ho6a Architecture evaluation & domain engineering 0.40 0.12 4.61%

* Significant at P <0.01.
® Insignificant at P> 0.05.

of path coefficient, R?%and F-ratio. The path coefficient of
domain engineering was found 0.71, R* 0.46 and F-ratio
(26.92) was significant at P <0.01. Requirements model-
ing: 0.53, R%: 0.59, F-ratio: 46.22 at P < 0.01 have the same
direction as proposed. Commonality management (Path
coefficient: 0.63, R*: 0.66, F-ratio: 61.77 at P < 0.01) also
has the same direction as proposed in H3. Variability man-
agement (Path coefficient: 0.74, R* 0.69, F-ratio: 70.71 at
P <0.01) is also found in accordance with H4. Architecture
evaluation has path coefficient of 0.02 at a very low R of
0.005 and F-ratio of 0.02 was not found significant at
P <0.05. The path coefficient of architecture artifacts man-
agement was found 0.95, R* 0.65 and F-ratio (57.90) was
significant at P <0.01. Hla deals with variability manage-
ment and requirements modeling path coefficient of the
relationship was found 0.46, R* 0.36 and F-ratio (18.13)
was significant at P <0.0l. The path coefficient of the
hypothesis H2a between variability management and
domain engineering was observed 0.76, R* 0.42 and F-
ratio (22.60) was significant at P <0.01. The association
of commonality management and requirements modeling
(H3a) has the same direction as proposed (path coefficient:
0.57, R*: 0.42, F-ratio: 23.17 at P <0.01). H4a is accepted
based on path coefficient of 0.88, R*: 0.43, F-ratio: 23.66 at
P <0.01. Architecture artifacts management and domain
engineering (H5a) showed a positive relationship with a
path coefficient of 0.44, R* 0.24, F-ratio: 10.29 at
P <0.01. The hypothesis H6a between architecture evalua-
tion and domain engineering was found statistically signif-
icant (path coefficient: 0.40, R* 0.12, F-ratio: 4.61 at
P <0.01). All in all hypotheses H1, H2, H3, H4, and H6
showed significant at P <0.01 with a positive path coeffi-
cient and are in the same direction as proposed. The
hypotheses HS5 that deals with architecture evaluation
and software product line performance was not found sta-
tistically significant at P <0.05. The PLS analysis further
showed that the hypotheses Hla—H6a are found significant
at P <0.01 with a positive path coefficient and are in the
same direction as proposed.

4.4. Testing of research model

The linear regression equation of the research model is
illustrated by Eq. (I). The purpose of model testing is to
provide empirical evidence that architecture factors play
a considerable role in software product line performance.
The testing process consists of conducting regression anal-
ysis and reporting the values of the model coefficients and
their direction of association. We placed software product
line performance as response variable and individual archi-
tecture factor as predicators. The analysis also reports the
results of two-tailed #-tests conducted and their statistical
significance. Table 5 reports the regression analysis of the
research model. The path coefficient of five out of six vari-
ables: domain engineering, requirements modeling, com-
monality management, variability management, and
architecture artifacts management are found positive and
their z-statistics is also observed statistically significant at
either P <0.01 or P <0.05. The path coefficient of architec-
ture evaluation is found negative. Negative z-statistics and
P > 0.05 make architecture evaluation statistically insignif-
icant in this research model. The adjusted R> of overall

Table 5

Linear regression analysis of research model

Model coefficient name Model Coeflicient t-Value
coefficient value

Domain engineering i 0.22 2.26°

Requirements modeling B> 0.19 3.02°¢

Commonality management Ps 0.16 2.06°

Variability management Pa 0.19 2.08°

Architecture evaluation Ps —0.08 —1.08°

Architecture artifacts management fig 0.26 2.37°

Constant bo 0.46 0.32¢

R? 0.90 Adjusted B> 0.88

F-Ratio 42.09%

Significant at P <0.01.
® Significant at P < 0.05.
¢ Insignificant at P> 0.05.

F. Ahmed, L.F. Capretz | Information and Software Technology 50 (2008) 1098-1113 1107

research model was observed 0.88 with a F-ratio of 42.09
significant at P <0.01.

5. Sensitivity analysis of the study

The challenges of empirical studies include reducing
threats to external validity and increasing reliability
because empirical investigations are subject to a number
of limitations, which may contribute in threats to external
validity and reliability. Results from an empirical study
depend on data, the statistical model and the statistical
techniques used and sensitivity analysis is defined as the
investigation of how research model misspecification and
anomalous data points influence results [49]. According
Kitchenham et al. [39], in empirical investigations it is
important to perform a sensitivity analysis to understand
how individual data points or clusters of data relate to
the behavior of the whole collection. Saltelli et al. [52]
define sensitivity analysis as the study of how the variation
in the output of a model can be apportioned, qualitatively
or quantitatively, among model inputs. The sensitivity
analysis allows the researchers to understand how the
research model behaves on changing inputs and it further
supports the empirical investigations in terms of reliability
and validity. In this section we reported two sensitivity
analysis tests. First test deals with inter-rater agreement
because we have varying number of respondents within
same organization. Second test addresses the sensitivity
analysis of the overall research model shown in Fig. 1.

5.1. Inter-rater agreement analysis

We received more then one number of responses from
seven organizations out of ten participating organizations.
Varying number of respondents within an organization
may have conflicting opinions about the performance of
software product line with in the same organization, more-
over the respondents belongs to various departments
within same organizations as well, so there is a need to per-
form inter-rater agreement analysis which would provide
information about the extent of agreement among the rat-
ers within one organization. Inter-rater agreement corre-
sponds to reproducibility in the evaluation of the same
process according to the same evaluation specification
[43]. According to EI Emam [23] the inter-rater agreement
is concerned with the extent of agreement in the ratings
given by independent assessors to the same software engi-
neering practices. The Kendall coefficient of concordance
(W) [64] s often preferred to evaluate inter-rater agreement
in comparison to some other methods such as Cohen’s
Kappa [13] in case of ordinal data. “W” is an index of
the divergence of the actual agreement shown in the data
from the possible perfect agreement. In order to ensure
the reliability and validity of this empirical investigation,
we conducted and reported the inter-rater agreement anal-
ysis using Kendall’s and Kappa statistics. The Table 5
reports the Kendall and Kappa statistics of seven organiza-

Table 6
Inter-rater agreement analysis

Organization Kendall statistics Kappa statistics
Kendall’s coefficient of ~ »* Fleiss kappa Z
concordance (W) coefficient

A 0.75 69.70* 0.51 8.42%

B 0.58 66.70° 0.31 6.39%

C 0.71 65.69* 0.45 6.70%

D 0.47 6597 0.18 4.06"

E 0.50 35.03* 0.11 1.15°

F 0.38 53.18* 0.22 4.45%

G 0.66 30.70° 0.24 1.25°

Significant at P <0.01.
® Significant at P < 0.05.
¢ Insignificant at P> 0.10.

tions participated in this study with more then one respon-
dents. Values of Kendall’s W and Fliess Kappa coefficient
can range from 0 to 1, with 0 indicating perfect disagree-
ment, and 1 indicating perfect agreement [42]. The values
of the Kendall coefficient of concordance (W) in Table 6
range from 0.38 to 0.75 with an average value of 0.58,
whereas Fliess Kappa coefficient values range from 0.11
to 0.51. The inter-rater agreement analysis shown in Table
6 concludes not a perfect agreement which rarely happens
in case of empirical studies involving several respondents
but leads to a conclusion of substantial agreement.

5.2. Sensitivity analysis of the research model

The research model purposely designed for this empiri-
cal study shown in Fig. 1 consists of six-independent vari-
ables and one dependent variable. The results of empirical
investigation reported in Section 4 show that five out of
these six independent variables are positively associated
with the dependent variable of software product line per-
formance. This empirical investigation did not provide sig-
nificant statistical support for the positive association of
architecture evaluation and the performance of software
product lines. The purpose of sensitivity analysis of
research model is to study the impact of each independent
variable on the overall output of the model especially to
study the impact of architecture evaluation on the overall
output of the model because it has not been supported
by the study. We used Fourier Amplitude Sensitivity Test
(FAST) and Sobol methods to conduct and report sensitiv-
ity analysis of the research model of this study. FAST
method is commonly used to estimate the ratio of the con-
tribution of each input to the output variance with respect
to the total variance of the output as the first order sensi-
tivity index. FAST can identify the contribution of individ-
ual inputs to the expected value of the output variance [19].
FAST does not assume a specific functional relationship
such as linear or monotonic in the model structure, and
thus works for both monotonic and non-monotonic mod-
els [52]. Sobol method [54] apportions the output variance
among individual inputs and their interactions. The

1108 F. Ahmed, L.F. Capretz | Information and Software Technology 50 (2008) 1098-1113

Table 7
Sensitivity analysis of the research model

Architecture factors FAST sensitivity Soboll sensitivity

index (0 0) index (%!)
Domain engineering 16 15
Requirements modeling 25 26
Commonality management 15 16
Variability management 15 10
Architecture evaluation 1 1
Architecture artifacts management 16 15

method of Sobol can cope with both non-linear and non-
monotonic models, and provides a quantitative ranking
of inputs [9]. Sobol’s method provides insight with respect
to the main effect, interaction effect, and total effect of each
input with respect to the output of interest. The main effect
of each input represents the fractional unique linear contri-
bution of the input to the output variance. The sensitivity
analysis of the research model is reported in Table 7. It
illustrates that all the five independent variables, which
are positively associated with the dependent variable of
the research model, contribute significantly to the overall
output of the model. Architecture evaluation, which is
not significantly associated with the performance of soft-
ware product line, has very low contribution (FAST: 1%,
Sobol: 1%) in the overall output of the model. The sensitiv-
ity evaluation calculations were performed using SimLab
2.2 software.

6. Discussion

This research enables organizations to understand the
effectiveness of the relationships and inter-dependency of
key architecture process activities and software product
line. This study provides an opportunity to empirically
investigate the association between the key architecture
process activities and software product line performance
as well as their inter-dependency. The results provide the
first empirical evidence that key architecture process activ-
ities play a critical role in the development of software
product line within an organization. The organization in
the business of software product line has to deal with multi-
ple key software product line architecture process activities
in addition to their efforts in software development.

Domain engineering has a pivotal role in the process of
software product line. This study finds a positive associa-
tion between domain engineering and software product line
performance. The inception phase of software product line
starts with conducting a comprehensive domain engineer-
ing in defining and narrowing down the scope of product
line, which identifies the characteristics of the product line
and the products that comprise the product line. The prod-
uct line engineering envisages the domain engineering into
set of three activities: domain analysis, domain design and
domain implementation. Domain analysis concentrates on
understanding the domain and providing a foundation to
domain design, which is an early sketch of the architecture

of product line. Domain analysis not only defines the
boundaries of the software product line scope but also
helps in performing the commonality and variability anal-
ysis for the product line. Domain implementation further
helps in developing the core architecture of software prod-
uct line by specifying components and their inter-connec-
tion. The activities of domain engineering invariably
provide helps in carrying out commonality and variability
analysis. The domain engineering helps in defining the
common and variable parts of the software product line
requirements, thus explicitly identifying the commonality
and variability of the envision products. This study also
confirms this finding and reports the positive association
of domain engineering with commonality and variability
management. The software product line requires a strong
coordination among domain engineering and application
engineering. The domain engineering helps in establishing
an infrastructure for software product line and the applica-
tion engineering uses the infrastructure and develops prod-
ucts using core assets.

Requirements modeling provides us facility to model the
requirements graphically so that requirements can be easily
understand by various stakeholders Requirements model-
ing help in understanding the requirements of the products
and further elaborates the functionalities and tradeoffs.
Software product line needs to elaborate the requirements
at two levels: product line level and individual product
level. The product line level requirements envisage the com-
monality among products whereas individual product level
requirements represent the variability. We found a positive
impact of requirements modeling on the performance of
software product line in this empirical investigation. We
also observed a positive association of requirements model-
ing with commonality and variability management.
Requirements modeling in the context of software product
line architecture helps in identifying and specifying the
extension points commonly known as variation points in
software product line literature. It decomposes and speci-
fies the architecture into set of features with their depen-
dency. Requirements models translates the requirements
of the targeted market segment and specify the implemen-
tation views of the business case. Much of the work on
requirements modeling for software product line has con-
centrated on establishing an extension in the current avail-
able modeling techniques like UML and feature diagrams.

Product requirements in software product line are com-
posed of a constant and a variable part. The constant part
comes from product line requirements and deals with fea-
tures common to all the products belonging to the family.
The variable part represents those functionalities that can
be changed to differentiate one product from another. This
causes the significance of commonality and variability
management in software product line. Commonality
among products of a software product line is an essential
and integral characteristic of product line approach that
paves a way to maximize reusability. The products share
the common architecture and they are developed out of

F. Ahmed, L.F. Capretz | Information and Software Technology 50 (2008) 1098-1113 1109

common core assets. In this empirical investigation we
found a positive association between commonality man-
agement and the performance of software product line.
This study also found a positive association of domain
engineering and requirements modeling with the common-
ality management. The commonality management takes
much if its’ input from domain engineering and those
inputs are further elaborated and clearly specified using
requirements modeling. The extent of commonality among
products is a design decision based on business case engi-
neering and targeted market segment. In order to maximize
the reusability of software assets it is generally recom-
mended to have as much commonality as possible.

Variability among products of a software product line is
necessary because it makes them a separate business entity.
The products from the software product line may vary
from each other’s in quality, reliability, functionality, per-
formance and so on, but as they share the common archi-
tecture so the variation should not be that much high so
that they become out from the scope of the product line.
Those variations must be handled systematically to accom-
modate changes in various versions of the product. The
objective of variability management is to identify, specify
and document variability among products in the applica-
tions of product line. Software product line architecture
represents variability by specifying the variation points,
which can be exploited at application engineering level by
accommodating the design decisions based on the business
case. The variability in products has influence from internal
and external factors. The internal factors have their roots
in refining the architecture whereas external factors accom-
modate the market and customers expectations. The intro-
duction of variable features in a product from a software
product line is a strategic decision based on market seg-
ment. The findings of this empirical investigation confirm
a positive relationship between variability management
and software product line performance. This study also
observed that a better variability management is also
dependent on the activities of domain engineering and
requirements modeling. The introduction of variable fea-
tures in the successive products out of product line also
provides a justification for setting up a product line in
the organization as well because it helps in attracting new
customer and retaining the current one. Fitting the compo-
nent into the product without tailoring it is the easiest task,
but some time we need to make certain changes in the com-
ponent to meet the requirements for a particular product.
Every component present in the core assets must clearly
define the variability mechanism to be used in order to tai-
lor them for reusing. The significance of commonality and
variability management in software product line architec-
ture and the overall performance of the software product
line require tool support, which needs the attention of
researchers.

Software artifacts management play significant role in
the process of development, maintenance and reuse of
software. Software product line architecture is one of the

critical dimensions of software product line approach,
and all the resulting products share this common architec-
ture. The artifacts of the architecture provide in-depth
knowledge about various views, levels of abstractions, var-
iation points, components identification, component
behavior and their inter-connection. It has been a general
trend in software industry to represent and document
architecture using notations and languages such as Archi-
tecture Description Language (ADL). Software product
lines currently lack an architecture description language
to represent the software product line architecture in large.
This empirical investigation finds a positive impact of
architecture artifacts management on the overall perfor-
mance of software product line. We observed a positive
association of domain engineering and software product
line architecture artifacts management this is mainly
because managing software product line architecture is
heavily dependent on the documentations during domain
engineering. These documentations such as domain analy-
sis, domain design, domain testing, requirements modeling
provides inputs to software product line architecture. The
configuration management issues of software product line
artifacts are imperative in software product lines as it deals
with number of resulted products with different versions
and releases as well as numerous number of core assets
with different versions. The concept of configuration man-
agement currently used in software industry deals with a
single project, or more precisely with a single product,
and on the opposite software product line deals with set
of products. Therefore a multi dimensional approach of
configuration management should be adopted to cope up
with the issue. Configuration management of software
product line is a research area where not much work has
been done and requires an immediate attention of
researchers.

The findings of this empirical investigation did not sta-
tistically provide a significant support to the positive asso-
ciation of architecture evaluation and software product line
performance. Although the direction of association
between the performance of software product line and
architecture evaluation was found negative, the significant
statistical level of confidence did not support that result.
Therefore it is concluded that this study is not able to find
answer about the association and impact of architecture
evaluation and software product line performance.
Although this empirical investigation is unable to find an
association of architecture evaluation and software prod-
uct line performance, the theoretical foundations of this
concept foresee a strong relationship among them.

6.1. Limitations of the study and threats to external validity

The empirical investigations are subject to certain limi-
tations, although we did and report number of measures
to reduce the threats to external validity and increasing
the reliability of the study, there are still some limitations
in this study. The first limitation is the selection and partic-

1110 F. Ahmed, L.F. Capretz | Information and Software Technology 50 (2008) 1098-1113

ipating independent variables of the research model. We
used six independent variables to relate with the dependent
variable of software product line performance. There may
be other contributing factors that influence the perfor-
mance of software product lines in addition to these six,
but we kept the scope of this study within architecture pro-
cess activities. Some other contributing factors to perfor-
mance of software product lines, such as: organization
size, economic, experience in software development and
political conditions were not considered in this study.
The second limitation is bias, which is a coherent limitation
of almost all empirical studies. Although we used multiple
respondents within the same organization to reduce bias,
bias still is a core issue in decision-making. We asked the
respondents to consult major sources of data at their orga-
nization, i.e., documents, plans, models, and actors before
responding to a particular item in order to reduce the
human tendency to over- or under-estimate when filling
in questionnaires. The items were designed using accepted
psychometric principles, but the measurement is still lar-
gely based on the subjective assessment of an individual.
The third notable limitation of this study is small sample
size. Software product line is a relatively young concept
in software development, and not many of the organiza-
tions in the software industry have institutionalized and
launched this concept, so collecting data from the software
industry was a limitation. The lower sample size in terms of
number of organizations and respondents has a potential
threat to the external validity of this study. One major rea-
son behind small number of participating organizations is
that there are not many organizations involve in the busi-
ness of software product line in particular due to relative
young age of this concept. The number of respondents
from organizations was beyond our control as we
requested at the organizational level to distribute the sur-
vey and provide us feedback. Besides its general and spe-
cific limitations, this work contributes significantly in the
area of software product lines and helps to understand
the architecture dimension of software product lines.

6.2. Ethical issues and software empirical studies

Surveys, experiments, metrics, case studies, and field
studies are examples of empirical methods used to inves-
tigate both software engineering processes and products
[53]. The increased popularity of empirical methodology
in software engineering has also raised concerns on the
ethical issues. This paper reported an empirical investiga-
tion to find out certain key architecture process activities
that have an impact on the performance of software prod-
uct line in an organization. We followed the recom-
mended ethical principles to ensure that the empirical
investigation conducted and reported in this paper would
not violate any form of recommended experimental ethics.
The primary ethical principle in human subject research is
that of full informed consent on the part of the subject to
participate in the research project [26,37]. We fully

informed the participating persons in this empirical inves-
tigation about the nature and objectives of this study.
Moreover the information we acquired from respondents
does not reflect the personal information of the individual
rather they were requested to provide us information of
their own judgment about up to what extent a key archi-
tecture process activity is effectively carrying out in their
organizations. Therefore the information we collected
was at organizational level not at individual personal
level. According to Singer and Vinson [55] ethics do not
fully agree on the necessary components of informed con-
sent, but it is clear that it must contain at least some of
the elements such as: disclosure, comprehension and com-
petence, voluntariness and the right to withdraw from the
experiment. We ensured the participants in writing that
the survey conducted for this empirical investigation is a
part of a Ph.D. research and neither the identity of an
individual nor of an organization will be disclosed in
the Ph.D. thesis or in any research publications. We send
the questionnaires and received responses from the
experts in the area of software product lines in order to
ensure the competence of the respondents. All the partic-
ipants of this study were volunteers and no compensation
in any form was offered or paid. We also mentioned to
the respondents that if for any reason they do not want
to answer any question, please leave it blank. We believe
that the study conducted and reported in this paper fol-
lowed the recommended ethical principles.

7. Conclusion and future work

This work facilitates a better understanding of the archi-
tecture dimension of software product lines. Our first
objective was to empirically investigate the effect of some
key architecture process activities in the performance of
software product lines thus finding answer to the research
question (RQ) put forward. Results of this empirical inves-
tigation demonstrate that better architecture process activ-
ities contribute enhanced software product line
performance. The results strongly support the hypotheses
that domain engineering, requirements modeling, com-
monality management, variability management and archi-
tecture artifacts management are positively associated
with the performance of software product lines in an orga-
nization. We did not find any significant statistical support
for architecture evaluation in the better software product
line performance and were not able to find answer about
the association and impact of architecture evaluation and
software product line performance.

The second objective of this study was to find answers of
the research questions RQ-1, RQ-2, RQ-3 and RQ-4,
which were designed to investigate the inter-dependency
of architecture process activities.

¢ The findings of this empirical investigation support that
domain engineering is positively associated with com-
monality and variability management (RQ-1).

F. Ahmed, L.F. Capretz | Information and Software Technology 50 (2008) 1098-1113 1111

e Requirements modeling further increase the understand-
ing of commonality and variability management in
products (RQ-2).

e The architecture artifacts management is positively
associated with the domain engineering activity
(RQ-3).

e Domain engineering further facilitates the architecture
evaluation methodology (RQ-4).

Overall the second objective of this research enables
organizations to understand the effectiveness of the inter-
relationships of architecture process activities and software
product lines. The work conducted and reported in this
paper is a first of its kind in the area of software product
lines. This research reinforces current perceptions about
the significance of architecture process activities and their
involvement and impact in successful software product line
development. Currently, we are working on developing a
Process Maturity Model for process assessment of software
product lines. This work has provided the empirical justifi-
cation to include these architecture key process activities in
evaluating the architecture dimension of software product
line process maturity.

Appendix A. Architecture factors (Measuring instrument)

Domain engineering

1. The organization has adequate knowledge and
resources about the domain of software product line.

2. Roles and responsibilities of individuals and groups
are well defined and documented in the domain-engi-
neering unit of the organization.

3. Domain requirements of software product line are
clearly identified, stated and documented.

4. The domain analysis helps in setting up scope of soft-
ware product line, which covers the domain of the
application.

Requirements modeling

5. The organization uses a notation language to repre-
sent software product line requirements.

6. The organization develops requirements models for
the better understanding of the software product line
architecture, which explicitly shows the architectural
structure.

7. The organization prepares requirements models,
which help to visualize the interconnection of various
sub-units of the software product line architecture by
identifying candidate components, and their
interconnection.

8. The requirements models are regularly reviewed,
updated as needed and communicated to respective
personnel in development.

Commonality management

9.

10.

11.

12.

The domain engineering activities in the organization
identifies commonality among a set of envisioned
product line applications.

The management encourages as much commonality
as possible and developers concentrate more on prod-
uct specific issues rather then issues common to all
products.

Software product line requirements clearly identify,
model and document commonality in products.

The commonality management allows us to maximize
reuse in the organization.

Variability management

13.

14.

15.

16.

The domain engineering activities in the organization
identifies variability among a set of envisioned prod-
uct line applications.

Variability in products is within the scope of the soft-
ware product line and design decisions of variability
are influenced by market requirements and custom-
ers’ expectations.

Requirements models clearly illustrate variability in
products by showing variation points explicitly.

The variability in products help in retaining current
customers and have a tendency to attract new
customers.

Architecture evaluation

17.

18.

19.

20.

The organization has clear guidelines and well-docu-
mented methodology to evaluate the software prod-
uct line architecture.

The simulations and prototyping activities are used to
analyze the structure and interconnection of
components.

The quality and functional attributes to evaluate the
software product line architecture are explicitly
defined.

The organization has explicitly defined specific quali-
tative metrics to measure the performance of the soft-
ware product line architecture.

Architecture artifacts management

21.

22.

23.

24.

Architecture significant requirements are identified,
elaborated and well documented.

We are using architecture description language to
describe and document architectural structure and
textures.

The architecture artifacts are regularly reviewed,
updated if necessary and communicated to the
developers.

The components description, interface requirements,
interconnection hierarchy, variation mechanism are
explicitly documented and traceable.

1112 F. Ahmed, L.F. Capretz | Information and Software Technology 50 (2008) 1098-1113

Software product line performance

1. Over the past 3 years, the organization is able to
reduce cost, product defects and development time
of software products.

2. The sales of the organization have steadily increased
over the past 3 years and the organization is able to
attract new customers and launch new products.

3. Software product line is playing a significant role in
achieving the business goals of the organization.

4. Financial analysis shows a progressive growth over
the last 3 years due to software product lines.

References

[1] P. America, H. Obbink, R. van Ommering, F. van der Linden,
COPA: a component-oriented platform architecting method family
for product family engineering, in: Proceedings of the 1st Software
Product Line Engineering Conference, 2000, pp. 167-180.

[2] C. Atkinson, J. Bayer, D. Muthig, Component-based product line
development. The KobrA approach, in: Proceedings of the Ist
Software Product Lines Conference, 2000, pp. 289-309.

[3] J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig, K. Schmid, T.
Wide, J.M. DeBaud, PuLSE: a methodology to develop software
product lines, in: Proceedings of the 5Sth ACM SIGSOFT Symposium
on Software Reusability, 1999, pp. 122-131.

[4] G.H. Birk, I. John, K. Schmid, T. von der Massen, K. Muller,
Product line engineering, the state of the practice, IEEE Software 20
(6) (2003) 52-60.

[5] J. Bosch, Design and Use of Software Architectures: Adopting and
Evolving a Product-line Approach, Addison Wesley, 2000.

[6] G. Buckle, P.C. Clements, J.D. McGregor, D. Muthig, K. Schmid,
Calculating ROI for software product lines, IEEE Software 21 (3)
(2004) 23-31.

[7] D.T. Campbell, D.W. Fiske, Convergent and discriminant validation
by the multi-trait multi-method matrix, Psychological Bulletin 56 (2)
(1959) 81-105.

[8] R.B. Cattell, The scree test for the number of factors, Multivariate
Behavioral Research 1 (1966) 245-276.

[9] K. Chan, S. Tarantola, A. Saltelli, I.M. Sobol, Variance-based
Methods in Sensitivity Analysis, Wiley, New York, 2000.

[10] P.C. Clements, L.G. Jones, L.M. Northrop, J.D. McGregor, Project
management in a software product line organization, IEEE Software
22 (5) (2005) 54-62.

[11] P.C. Clements, On the importance of product line scope, in:
Proceedings of the 4th International Workshop on Software Product
Family Engineering, 2001, pp. 69-77.

[12] P.C. Clements, L.M. Northrop, Software Product Lines Practices and
Pattern, Addison Wesley, 2002.

[13] J. Cohen, A coefficient of agreement for nominal scales, Educational
and Psychological Measurement 20 (1960) 37-46.

[14] J. Cohen, Statistical Power Analysis for the Behavioral Sciences,
second ed., Lawrence Erlbaum Associates, Inc., Publishers, Hillsdale,
NJ, 1988.

[15] A.L. Comrey, H.B. Lee, A First Course on Factor Analysis, second
ed., Lawrence Erlbaum Associates, Inc., Publishers, Hillsdale, 1992.

[16] J. Coplien, D. Hoffman, D. Weiss, Commonality and variability in
software engineering, IEEE Software 15 (6) (1998) 37-45.

[17] L.J. Cronbach, Coefficient alpha and the internal consistency of tests,
Psychometrica 16 (1951) 297-334.

[18] L.J. Cronbach, Test validation, Educational Measurement (1971)
443-507.

[19] R.I. Cukier, H.B. Levine, K.E. Shuler, Nonlinear sensitivity analysis
of multi-parameter model systems, Journal of Computational Physics
26 (1) (1978) 1-42.

[20] F. De Lange, J. Kang, Architecture true prototyping of product lines,
in: Proceedings of the S5th International Workshop on Software
Product Family Engineering, 2004, pp. 445-453.

[21] D. Dikel, D. Kane, S. Ornburn, W. Loftus, J. Wilson, Applying
software product-line architecture, IEEE Computer 30 (8) (1997) 49—
55.

[22] L. Dobrica, E. Niemeld, UML notation extensions for product
line architectures modeling, in: Proceedings of the Sth Australasian
Workshop on Software and System Architectures, 2004, pp. 44—
51.

[23] K. El Emam, Benchmarking kappa: inter-rater agreement in software
process assessments, Empirical Software Engineering 4 (2) (1999)
113-133.

[24] M. Eriksson, J. Borstler, K. Borg, The PLUSS approach — domain
modeling with features, use cases and use case realizations, in:
Proceedings of the 9th International Conference on Software Product
Lines, 2005, pp. 33-44.

[25] L. Etxeberria, G. Sagardui, Product line architecture: new issues for
evaluation, in: Proceedings of the 9th International Conference on
Software Product Lines, 2005, pp. 174-185.

[26] R.R. Faden, T.L. Beauchamp, N.M.P. King, A History and Theory
of Informed Consent, Oxford University Press, 1986.

[27] C. Fornell, F.L. Bookstein, Two structural equation models: LISREL
and PLS applied to consumer exit voice theory, Journal of Marketing
Research 19 (1982) 440-452.

[28] G.C. Gannod, R.R. Lutz, An approach to architectural analysis of
product lines, in: Proceedings of the 22nd International Conference
on Software Engineering, 2000, pp.548-557.

[29] D. Garlan, D. Perry, Introduction to the special issue on software
architecture, IEEE Transactions on Software Engineering 21 (4)
(1995) 269-274.

[30] H. Gomma, M.E. Shin, Multiple-view meta modeling of software
product lines, in: Proceedings of the 8th IEEE International Confer-
ence on Engineering of Complex Computer Systems, 2002, pp. 238-
246.

[31] B. Graaf, H. Van Kijk, A. Van Deursen, Evaluating an embedded
software reference architecture — industrial experience report, in:
Proceedings of the 9th European Conference on Software Mainte-
nance and Reengineering, 2005, pp. 354-363.

[32] M. Jazayeri, A. Ran, F. van der Linden, Software Architecture
for Product Families: Principles and Practice, Addison Wesley,
2000.

[33] K. Joreskog, H. Wold, Systems Under Indirect Observation: Causal-
ity, Structure and Prediction, North Holland, The Netherlands, 1982.

[34] H.F. Kaiser, A second generation little jiffy, Psychometrika 35 (1970)
401-417.

[35] H.F. Kaiser, The application of electronic computers to factor
analysis, Educational and Psychological Measurement 20 (1960) 141—
151.

[36] K.C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, M. Huh, FORM: a
feature-oriented reuse method with domain specific reference archi-
tectures, Annals of Software Engineering 5 (1998) 143-168.

[37] J. Katz, Experimentation with Human Beings, Russell Sage Founda-
tion, New York, 1972.

[38] M. Kim, S. Park, Goal and scenario driven product line development,
in: Proceedings of the 11th Asia-Pacific Conference on Software
Engineering, 2004, pp. 584 —585.

[39] B.A. Kitchenham, S.L. Pfleeger, L.M. Pickard, P.W. Jones, D.C.
Hoaglin, K. El Emam, J. Rosenberg, Preliminary guidelines for
empirical research in software engineering, IEEE Transactions on
Software Engineering 28 (8) (2002) 721-734.

[40] P. Knauber, D. Muthig, K. Schmid, T. Wide, Applying product line
concepts in small and medium-sized companies, IEEE Software 17 (5)
(2000) 88-95.

[41] W. Lam, Creating reusable architectures: an experience report, ACM
Software Engineering Notes 22 (4) (1997) 39-43.

[42] J. Landis, G.G. Koch, The measurement of observer agreement for
categorical data, Biometrics 33 (1977) 159-174.

F. Ahmed, L.F. Capretz | Information and Software Technology 50 (2008) 1098-1113 1113

[43] H.Y. Lee, H.W. Jung, C.S. Chung; J.M. Lee, K.W. Lee, H.J. Jeong,
Analysis of inter-rater agreement in ISO/IEC 15504-based software
process assessment, in: Proceedings of the 2nd Asia-Pacific Confer-
ence on Quality Software, 2001, pp. 341-348.

[44] R.R. Macala, L.D. Stuckey Jr., D.C. Gross, Managing domain-
specific, product-line development, IEEE Software 13 (3) (1996) 57-67.

[45] M. Matinlassi, Comparison of software product line architecture
design methods: COPA, FAST, FORM, KobrA and QADA, in:
Proceedings of the 26th International Conference on Software
Engineering, 2004, pp.127-136.

[46] K. Mika, M. Tommi, Assessing systems adaptability to a product
family, Journal of Systems Architecture 50 (2004) 383-392.

[47] E. Niemeld, M. Matinlassi, A. Taulavuori, Practical evaluation of
software product family architectures, in: Proceedings of the 3rd
International Conference on Software Product Lines, 2004, pp. 130-
145.

[48] J.C. Nunnally, I.A. Bernste, Psychometric Theory, third ed., McGraw
Hill, New York, 1994.

[49] H. Nyqusit, Sensitivity analysis of empirical studies, Journal of
Official Statistics 8 (2) (1992) 167-182.

[50] A. Osterhof, Classroom Applications of Educational Measurement.,
Prentice Hall, NJ, 2001.

[51] B.J. Pronk, An interface-based platform approach, in: Proceedings of
the Ist Software Product Lines Conference, 2000, pp. 331-352.

[52] A. Saltelli, K. Chan, M. Scott, Sensitivity Analysis, Probability and
Statistics Series, Wiley, NY, 2000.

[53] I.M. Sobol, Sensitivity estimates for nonlinear mathematical models,
Mathematical Modeling Computers 1 (4) (1993) 407-414.

[54]J. Stevens, Applied Multivariate Statistics for the Social Sciences,
Lawrence Erlbaum Associates, Inc., Publishers, Hillsdale, NJ, 1986.

[55]J. Singer, N.G. Vinson, Ethical issues in empirical studies of software
engineering, IEEE Transactions on Software Engineering 28 (12)
(2002) 1171-1180.

[56] D.W. Straub, Validating instruments in MIS research, MIS Quarterly
13 (2) (1989) 147-169.

[57] M. Thompson, M.P.E. Heimdahl, Structuring product family
requirements for n-dimensional and hierarchical product lines,
Requirements Engineering Journal 8 (1) (2003) 42-54.

[58] A. van der Hoek, E. Dincel, N. Medvidovic, Using service utilization
metrics to assess the structure of product line architectures, in:
Proceedings of the 9th International Software Metrics Symposium,
2003, pp. 298-308.

[59] R. van Ommering, Software reuse in product populations, IEEE
Transactions on Software Engineering 31 (7) (2005) 537-550.

[60] F. van der Linden, Software product families in Europe: the Esaps &
Café projects, IEEE Software 19 (4) (2002) 41-49.

[61] F. van der Linden, J. Bosch, E. Kamsties, K. Kénséld, H. Obbink,
Software product family evaluation, in: Proceedings of the 3rd
International Conference on Software Product Lines, 2004, pp. 110-
129.

[62] A.H. van de Ven, D.L. Ferry, Measuring and Assessing Organiza-
tions, Wiley, NY, 1980.

[63] M. Verlage, T. Kiesgen, Five years of product line engineering in a
small company, in: Proceedings of the 27th International Conference
on Software Engineering, 2005, pp. 534-543.

[64] A. von Eye, E.Y. Mun, Analyzing Rater Agreement Manifest
Variable Methods, LEA Publishers, London, 2005.

[65] D.M. Weiss, C.T.R. Lai, Software Product Line Engineering: A
Family Based Software Development Process, Addison Wesley, 1999.

[66] H. Zhang, S. Jarzabek, B. Yang, Quality prediction and assessment
for product lines, in: Proceedings of the 15th International Confer-
ence on Advanced Information Systems Engineering, 2003, pp. 681—
695.

[67] H. Zuo, M. Mannion, D. Sellier, R. Foley, An extension of problem
frame notation for software product lines, in: Proceedings of the 12th
Asia Pacific Conference on Software Engineering, 2005, pp. 499-505.

