
Information and Software Technology 92 (2017) 92–94

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

Soft sides of software

Luiz Fernando Capretz

a , ∗, Faheem Ahmed

b , Fabio Q.B. da Silva

c

a Western University, Department of Electrical and Computer Engineering, London, N6A5B9, Canada
b Thompson Rivers University, Department of Computing Science, Kamloops, V2C0C8, Canada
c Universidade Federal de Pernambuco, Centro de Informática, Recife, 50740-560, Brazil

a r t i c l e i n f o

Article history:

Received 24 January 2017

Revised 17 July 2017

Accepted 23 July 2017

Available online 24 July 2017

o

t

o

h

e

t

v

p

p

p

p

t

i

m

o

s

o

p

i

S

i

w

c

a

p

h

g

1. Introduction

It is impossible to exclude the human factors from software en-

gineering expertise during software development because software

is developed by people and for people. The intangible nature of

software has made it a difficult product to successfully create, and

a close examination of the reasons for major software system fail-

ures shows that several of these reasons eventually boil down to

human issues. As software practitioners are immersed in the tech-

nological aspect of the product, they can quickly learn lessons from

technological failures and readily come up with solutions to avoid

them in the future. Nonetheless, they do not learn lessons from the

human aspects of software engineering.

Dealing with human errors is much more difficult for develop-

ers and often this aspect is overlooked in the development process

as software developers move on to problems that they are more

comfortable solving. The main reason for the oversight is that hu-

man factors are usually related to soft skills, i.e., teamwork, moti-

vation, emotions, commitment, leadership, multi-culturalism, inter-

personal skills, etc. Another reason is that there has been a lack of

progress in this area since the field of software psychology (a soft

side) has not focused on problems arising from human failings to

the same extent as we have on strictly technical problems.

A quick search for “human factors” in the IEEE Guide to

the Software Engineering Body of Knowledge (SWEBOK) and the

ACM/IEEE Curriculum Guidelines for Undergraduate Degree Pro-

grams in Computer Science, reveals that the term appears only

eight times in each document body. Nevertheless, one prominent

sentence does reinforce the importance of the topic: “Students need

to repeatedly see how software engineering is not just about technol-
∗ Corresponding author.

E-mail addresses: lcapretz@uwo.ca (L.F. Capretz), fahmed@tru.ca (F. Ahmed),

fabio@cin.ufpe.br (F.Q.B. da Silva).

2

d

r

http://dx.doi.org/10.1016/j.infsof.2017.07.011

0950-5849/© 2017 Elsevier B.V. All rights reserved.
gy. ” However, due to the constraints of most software curricula,

he reality indicates that, at best, human factors are squeezed into

nly one or two HCI courses. SWEBOK-v3.0 suggests that only five

ours of studies be given to group dynamics. This is clearly not

nough for a topic of such crucial importance. Educators willing

o venture into this area face an arduous task if they try to con-

ince their colleagues and software engineering zealots of the im-

ortance of soft skills materials.

One factor that may have influenced this lack of attention in the

ast is that very few researchers and practitioners have explored

rogramming as an individual cognitive activity and not looked at

ersonality traits. Others have touched on team and social perspec-

ives of software engineering and focused on the human aspects

n the software development processes. One can find trustworthy

aterials and heated discussions at the website of the Psychol-

gy of Programming Interest Group (www.ppig.org). Nevertheless,

tudies on human factors to date have only scratched the surface

f their impact on the software development process. Occasionally

apers have described results obtained by quantitative and qual-

tative research conducted in this field. Quick searches at Google

cholar have shown a few thousands results for “human factors

n software”, “psychology of computer programming” and “soft-

are psychology”, but hundreds of thousands results for “cloud

omputing”—a much more recent topic in the computing/software

rena. Google shows only seven entries for “course in software

sychology.” Even worse is the fact that this kind of research has

ad a minimal impact on the daily life of professional software en-

ineers in the last 40 years.

. Pioneers and late research on software psychology

Software engineering has come a long way from its defining

ays of the 1970s. While it has been excelling in serving diverse

equirements of disparate customer bases, ranging from space sci-

http://dx.doi.org/10.1016/j.infsof.2017.07.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2017.07.011&domain=pdf
mailto:lcapretz@uwo.ca
mailto:fahmed@tru.ca
mailto:fabio@cin.ufpe.br
http://www.ppig.org
http://dx.doi.org/10.1016/j.infsof.2017.07.011

L.F. Capretz et al. / Information and Software Technology 92 (2017) 92–94 93

e

e

f

t

o

P

t

l

g

m

t

b

[

a

g

L

f

m

n

s

p

i

o

i

r

r

i

a

t

e

r

e

l

o

d

c

w

i

t

t

t

a

t

p

t

s

i

i

u

d

t

o

t

a

w

t

t

d

3

l

r

c

d

s

l

o

c

w

c

i

i

h

g

e

t

n

s

h

n

g

t

t

a

s

s

r

t

t

s

4

c

p

a

w

t

f

m

i

s

fi

p

a

a

m

(

o

w

f

a

g

e

t

d

e

v

d

S

f

d

b

t
ntists and weather forecasters to boutiques and retail shop own-

rs, it has also been causing serious concerns due to major system

ailures caused by software glitches or improper software verifica-

ion and validation, or human limitations. However, human aspects

f software engineering continue to be a neglected research area.

ossible reasons for this neglect are: the complex relationships be-

ween human psychology and the software development processes,

ack of awareness of the impact of human factors in software en-

ineering, and possibly lack of trust in empirical studies on hu-

an factors in software engineering. If the status quo lasts long,

he software engineering discipline may face serious problems.

The importance of the people dimension has been highlighted

y thoughtful leaders, like Weinberg [1] , Dijkstra [2] and DeMarco

3] . Since the 1970, egoless programming is one of the most cited

nd most misunderstood concepts in software psychology; it has

iven rise to a variety of powerful software review techniques.

ately, Weinberg stated that “there is no shortage of evidence that,

or example, technical reviews lead to more reliable code produced

ore cheaply and consistently. And, indeed, more software orga-

izations today regularly use some form of technical review as a

tandard part of their software processes”. This is one of the first

ieces of evidence that good software engineering best practices

nfluenced by egoless programming, i.e. reviews and walkthroughs,

utlast specific technologies such as old-fashioned CASE tools.

Recently, Cruz et al. [4] conducted an extensive mapping study,

n which 19,0 0 0 articles published between 1970 and 2010 were

etrieved, but only 90 were considered to be representative and

elevant to the understanding of the role of individual personality

n software engineering. This clearly confirms that despite being

 significantly important piece of the software engineering puzzle,

he personality factor is still missing when it comes to empirical

vidence of realities. Many of the empirical studies to date have

evolved around discovering the personality traits of a software

ngineer while at school or working in the profession. However,

ittle evidence is available on the effectiveness or impact analysis

f the personality profile needed in managing a software project,

eveloping group cohesiveness, dealing with individual behavior,

onflict management, etc. The micro-level interpretation of soft-

are development activities (such as system analysis, design, cod-

ng, and testing) demands, in order to effectively carry out the ac-

ivity, a certain set of abilities from the individuals involved. De-

ermining the best personality traits for these particular roles and

he individuals who have these personality traits are concepts that

re rarely discussed. Perhaps, that is because determining answers

o these questions is not a simple matter.

Undoubtedly, it is important to assign people with particular

ersonality traits to their preferred tasks in a software project;

his increases the chances of a successful project outcome [5] . This

tudy tackles a difficult-to-measure aspect of software engineer-

ng: that is, how to best choose individuals for the various tasks

n a software project. To a certain extent, successful approaches

se psychological types to determine who prefers certain software

evelopment roles. The study found patterns that link personality

raits to role preferences in a software life cycle. Among the vari-

us roles, the most preferred ones among the participants are sys-

em analyst, software designer, and programmer. In contrast, tester

nd maintainer happen to be the least popular roles among soft-

are engineers. However, that study omits the different charac-

eristics that may be most appropriate for other software occupa-

ions, such as project manager, troubleshooter, helpdesk personnel,

atabase administrator, and so forth.

. The importance of soft skills

When software employers advertise jobs, they divide their wish

ist into technical and non-technical skill sets. Technical skills are
elatively easy to evaluate by looking into academic credentials,

ertifications, professional experience, etc. On the other hand, the

ifficulty of assessing non-technical skills—such as interpersonal

kills, teamwork, ability to work under strict deadlines, being a fast

earner, and open and flexible to change—tend to make these skills

verlooked compared to technical skills when employers evaluate

andidates for jobs [6] . About 80% of the individuals who fail at

ork do not fail due to a lack of technical skills but rather be-

ause of their inability to relate or communicate well with others

n a team [7] . Software development is a collaborative type of work

n which solo performers are rare. In this case, an individual who

as appropriate academic credentials but is unable to work in a

roup setting may have a catastrophic effect on the project. How-

ver, as we have mentioned, these non-technical skills are difficult

o assess at the time of hiring. Similarly, the rapid growth in tech-

ology and continuous process improvement are characteristics of

oftware development that make work difficult for someone who

as an inability to learn fast or work under constant pressure.

Kappelman et al. [8] provided insights into the diverse and dy-

amic nature of skills required at different stages of a software en-

ineering career, from new hires to CIOs. They assert that the key

o progression to software project management is to hone one’s

echnical and functional-area skills, and that communication skills

re critical throughout a software professional career; they advised

oftware professionals to build their people and decision-making

kills. Organizations can use these skills to enhance their software-

elated workforce practices, and software engineers can use them

o achieve their personal career objectives and help others do so

oo. It appears that the time is now ripe to address essential soft

kills that complement technical skills.

. Emotions, culture, and diversity

Modern software development is the result of a complex pro-

ess that involves many stakeholders; these stakeholders include

roduct owners, quality assurance teams, the project manager, and,

bove all, the software developers. The main difficulty that soft-

are project managers face when tasks are assigned is selecting

he right people within a team so that the chances of success-

ul completion of the project increases. There is no easy gauge to

easure selecting the “right” person for a job because the answer

s not deterministic. For example, “motivation” deals with a rea-

on to perform better; however, motivation by itself is often insuf-

cient for achieving goals. Arguably, other human-related factors

lay an important role in software development. Emotions, moods

nd feelings in the workplace receive significant attention in man-

gement research and organizational psychology. Using biometrics

easures, Muller and Fritz [9] show that a wide range of emotions

happiness, frustration, anger, etc.) experienced by software devel-

pers is definitely correlated with their progress on the tasks.

Furthermore, software development no longer takes place

ithin one room or building. Instead, it is a global venture per-

ormed by development teams composed of individuals scattered

cross the globe, most of them having different cultural back-

rounds. Culture has to do with the way people think, react to

vents, socialize, and prioritize things, and also the work ethic

hat they have. How these diverse individuals operate within the

evelopment team can present a complex problem to solve; for

xample, in both the USA and the Netherlands, individualism is

ery high; whereas, in the cases of China, West Africa, and In-

onesia, collectivism is more important in social behavior [10] .

imilarly, some cultures are task-oriented instead of relationship-

ocused. When individuals from these opposite cultures interact to

evelop a software product, the success of the software project can

e relatively difficult to predict, and these opposing factors have

he potential to increase project risks. Despite the awareness that

94 L.F. Capretz et al. / Information and Software Technology 92 (2017) 92–94

i

i

b

t

w

i

o

t

c

s

i

m

c

i

e

R

[

these cultural dynamics may contribute to the probable success

or failure of the software project, the real issue is that the soft-

ware industry tends to ignore these dynamics because no one has

a clear solution for the problem.

However, the software industry cannot afford to lose potential

professionals who may think differently. In terms of software de-

velopment, better software will result from the combined efforts

of a variety of mental processes, experience, and values. Different

ways of thinking are important for software engineering, as in-

dividuals with different mindsets can make unique contributions

during the software development process. More than ever, soft-

ware engineering needs diversity of thinking because it takes va-

riety to conquer complexity. Binging this to the software context,

skills diversity is needed to solve the myriad problems related to

software development and maintenance [11] . Since strong teams

are the ones made up of balanced perspectives, organizations can

benefit from a conscious attempt to diversify the styles of their

software engineers. Diversity and variety will enable us to bring a

richness of talents and points of view to bear upon the inherent

complexity of software systems.

5. Teams and interactions

Although the research on diversity has led to important results,

it has not fully addressed the effects, positive and negative, of hav-

ing different individuals working and interacting in software devel-

opment teams. The vast majority of software systems of practical

relevance are developed by teams, not individuals, due to their in-

herent complexity and also to their size and effort needed for their

development. When individuals must work in teams, a broader

view must be taken: we need to understand how individuals inter-

act and work together in those teams, and this is much more diffi-

cult to understand and requires further attention from researchers

in behavioral psychology, management science, and empirical soft-

ware engineering. Consequently, team processes and interactions

must be taken into account during team building and throughout

the entire lifetime of the team [12] . More recently some embryonic

empirical studies have been conducted to exam the impact of per-

sonalities in software development teams. Acuna et al. [13] found

a positive relationship between some organizational climate fac-

tors and satisfaction in software development teams: the teams

whose members score highest for the agreeableness personality

factor have the highest satisfaction levels, and this has an impact

on the software quality. Finally, Yilmaz et al. [14] indicated that ef-

fective team structures support teams with higher emotional sta-

bility, agreeableness, extroversion, and conscientiousness personal-

ty traits. This complex and overlooked research area needs further

nvestigation.

Software is a field of rapid changes: the best technology today

ecomes obsolete in the near future. If we review the graduate at-

ributes of any of the software engineering programs across the

orld, life-long learning is one of them. The social and psycholog-

cal aspects of professional development is linked with rewards. In

rganizations, where people are provided with learning opportuni-

ies and there is a culture that rewards learning, people embrace

hanges easily. However, the software industry tends to be short-

ighted and its primary focus is more on current project success;

t usually ignores the capacity building of the individual or team.

It is hoped that our software engineering colleagues will be

otivated to conduct more research into the area of software psy-

hology so as to understand more completely the possibilities for

ncreased effectiveness and personal fulfillment among software

ngineers working alone and in teams.

eferences

[1] G.M. Weinberg , The Psychology of Computer Programming, Dorset House, New

York, NY, 1971 .
[2] E. Dijkstra , Programming Considered as a Human Activity, ACM Classic Books

Series – Classics in Software Engineering, ACM, Washington, DC, 1979 .
[3] T. DeMarco , T. Lister , Peopleware, Dorset House, New York, NY, 1987 .

[4] S. Cruz, F.Q.B. Silva, L.F. Capretz, Forty years of research on personality in soft-

ware engineering: a mapping study, Comput. Hum. Behav. 46 (1) (2015) 94–
113, doi: 10.1016/j.chb.2014.12.008 .

[5] L.F. Capretz, D. Varona, A. Raza, Influence of personality types in software task
choices, Comput. Hum. Behav. 52 (2015) 373–378, doi: 10.1016/j.chb.2015.05.

050 .
[6] F. Ahmed, L.F. Capretz, P. Campbell, Evaluating the demand for soft skills in

software development, IEEE IT Professional 14 (January-February (1)) (2012)

44–49, doi: 10.1109/MITP.2012.7 .
[7] K. Richter , R. Dumke , Modeling, Evaluation, and Predicting IT Human Re-

sources, CRC Press, Boca Raton, FL, 2015 .
[8] L. Kappelman , M.C. Jones , V. Johnson , E.R. McLean , K. Boonme , Skills for suc-

cess at different stages of an IT professional’s career, Commun. ACM 59 (August
(8)) (2016) 64–70 .

[9] S. Muller , T. Fritz , Stuck and frustrated or in flow and happy: sensing devel-

opers’ emotions and progress, in: 37th IEEE/ACM International Conference On
Software Engineering, Florence, Italy, May, 1, 2015, pp. 688–699 .

[10] J.S. Olson , G.M. Olson , Culture surprises in remote software development
teams, ACM Queue 1 (9) (2003) 52–59 .

[11] L.F. Capretz, F. Ahmed, Making sense of software development and personality
types, IEEE IT Professional 12 (January (1)) (2010) 6–13, doi: 10.1109/MITP.2010.

33 .

12] F.Q.B. Silva, A.C.C. França, M. Suassuna, L.M.R.S. Mariz, I. Rossiley, R.C.G. Mi-
randa, T.B. Gouveia, C.V.F. Monteiro, E. Lucena, E.S.F. Cardozo, Team building

criteria in software projects: a mix-method replicated study, Inform. Softw.
Technol. 55 (7) (2013) 1316–1340, doi: 10.1016/j.infsof.2012.11.006 .

[13] S.T. Acuna, M.N. Gomez, J.E. Hannay, N. Juristo, D. Pfahl, Are team personality
and climate related to satisfaction and software quality? Aggregating results

from a twice replicated experiment, Inform. Softw. Technol. 57 (2015) 141–156,

doi: 10.1016/j.infsoft.2014.09.002 .
[14] M. Yilmaz, R.V. O’Connor, R. Colomo-Palacios, P. Clarke, An examination of per-

sonality traits and how they impact on software development teams, Inform.
Softw. Technol. 86 (2017) 101–122, doi: 10.1016/infsof.2017.01.005 .

http://refhub.elsevier.com/S0950-5849(17)30071-X/sbref0001
http://refhub.elsevier.com/S0950-5849(17)30071-X/sbref0001
http://refhub.elsevier.com/S0950-5849(17)30071-X/sbref0002
http://refhub.elsevier.com/S0950-5849(17)30071-X/sbref0002
http://refhub.elsevier.com/S0950-5849(17)30071-X/sbref0003
http://refhub.elsevier.com/S0950-5849(17)30071-X/sbref0003
http://refhub.elsevier.com/S0950-5849(17)30071-X/sbref0003
http://dx.doi.org/10.1016/j.chb.2014.12.008
http://dx.doi.org/10.1016/j.chb.2015.05.050
http://dx.doi.org/10.1109/MITP.2012.7
http://refhub.elsevier.com/S0950-5849(17)30071-X/sbref0007
http://refhub.elsevier.com/S0950-5849(17)30071-X/sbref0007
http://refhub.elsevier.com/S0950-5849(17)30071-X/sbref0007
http://refhub.elsevier.com/S0950-5849(17)30071-X/sbref0008
http://refhub.elsevier.com/S0950-5849(17)30071-X/sbref0008
http://refhub.elsevier.com/S0950-5849(17)30071-X/sbref0008
http://refhub.elsevier.com/S0950-5849(17)30071-X/sbref0008
http://refhub.elsevier.com/S0950-5849(17)30071-X/sbref0008
http://refhub.elsevier.com/S0950-5849(17)30071-X/sbref0008
http://refhub.elsevier.com/S0950-5849(17)30071-X/sbref0009
http://refhub.elsevier.com/S0950-5849(17)30071-X/sbref0009
http://refhub.elsevier.com/S0950-5849(17)30071-X/sbref0009
http://refhub.elsevier.com/S0950-5849(17)30071-X/sbref0010
http://refhub.elsevier.com/S0950-5849(17)30071-X/sbref0010
http://refhub.elsevier.com/S0950-5849(17)30071-X/sbref0010
http://dx.doi.org/10.1109/MITP.2010.33
http://dx.doi.org/10.1016/j.infsof.2012.11.006
http://dx.doi.org/10.1016/j.infsoft.2014.09.002
http://dx.doi.org/10.1016/infsof.2017.01.005

	Soft sides of software
	1 Introduction
	2 Pioneers and late research on software psychology
	3 The importance of soft skills
	4 Emotions, culture, and diversity
	5 Teams and interactions
	 References

