

A Brief History of the Object-Oriented Approach
Luiz Fernando Capretz

University of Western Ontario
Department of Electrical & Computer Engineering

London, ON, CANADA, N6G 1H1
lcapretz@acm.org

ABSTRACT:
Unlike other fads, the object-oriented paradigm is here to stay. The
road towards an object-oriented approach is described and several
object-oriented programming languages are reviewed. Since the
object-oriented paradigm promised to revolutionize software de-
velopment, in the 1990s, demand for object-oriented software sys-
tems increased dramatically; consequently, several methodologies
have been proposed to support software development based on that
paradigm. Also presented are a survey and a classification scheme
for object-oriented methodologies.

1. INTRODUCTION
Over the past three decades, several software development meth-
odologies have appeared. Such methodologies address some or all
phases of the software life cycle ranging from requirements to
maintenance. These methodologies have often been developed in
response to new ideas about how to cope with the inherent com-
plexity of software systems. Due to the increasing popularity of
object-oriented programming, in the last twenty years, research on
object-oriented methodologies has become a growing field of in-
terest.

There has also been an explosive growth in the number of software
systems described as object-oriented. Object-orientation has al-
ready been applied to various areas such as programming lan-
guages, office information systems, system simulation and
artificial intelligence. Some important features of present software
systems include:

• Complexity: the internal architecture of current software sys-
tems is complex, often including concurrency and parallelism.
Abstraction in terms of object-oriented concepts is a technique
that helps to deal with complexity. Abstraction involves a se-
lective examination of certain aspects of an application. It has
the goal of isolating those aspects that are important for an
understanding of the application, and also suppressing those
aspects that are irrelevant. Forming abstractions of an applica-
tion in terms of classes and objects is one of the fundamental
tenets of the object-oriented paradigm.

• Friendliness: this is a paramount requirement for software
systems in general. Iconic interfaces provide a user-friendly
interaction between users and software systems. An icon is a
graphical representation of an object on the screen, with a cer-
tain meaning to its observer, and is usually manipulated with
the use of a mouse, a process that has come to be known as
WYSIWYG (What You See Is What You Get) interaction. In
such interfaces, windows, menus and icons are all viewed as
objects. The trend to object-oriented graphical interfaces is
evident in many areas of software development; experience
suggests that user interfaces are significantly easier to develop
when they are written in an object-oriented fashion. Thus the
object-oriented nature of the WYSIWYG interfaces maps

quite naturally into the concepts of the object-oriented para-
digm.

• Reusability: reusing software components already available
facilitates rapid software development and promotes the pro-
duction of additional components that may themselves be re-
used in future software developments. Taking components
created by others is better than creating new ones. If a good
library of reusable components exists, browsing components
to identify opportunities for reuse should take precedence over
writing new ones from scratch. Inheritance is an object-
oriented mechanism that boosts software reusability.

The rapid development of this paradigm during the past ten years
has important reasons, among which are: better modeling of real-
world applications as well as the possibility of software reuse dur-
ing the development of a software system. The idea of reusability
within an object-oriented approach is attractive because it is not
just a matter of reusing the code of a subroutine, but it also en-
compasses the reuse of any commonality expressed in class hierar-
chies. The inheritance mechanism encourages reusability within an
object-oriented approach (rather than reinvention!) by permitting a
class to be used in a modified form when a sub-class is derived
from it [1, 2, 3, 4].

2. THE BACKGROUND OF THE OBJECT-ORIENTED
APPROACH
The notion of “object” naturally plays a central role in object-
oriented software systems, but this concept has not appeared in the
object-oriented paradigm. In fact, it could be said that the object-
oriented paradigm was not invented but actually evolved by im-
proving already existing practices. The term “object” emerged
almost independently in various branches of computer science.
Some areas that influenced the object-oriented paradigm include:
system simulation, operating systems, data abstraction and artifi-
cial intelligence. Appearing almost simultaneously in the early
1970s, these computer science branches cope with the complexity
of software in such a way that objects represent abstract compo-
nents of a software system. For instance, some notions of “object”
that emerged from these research fields are:

• Classes of objects used to simulate real-world applications, in
Simula [5]. In this language the execution of a computer pro-
gram is organized as a combined execution of a collection of
objects, and objects sharing common behavior are said to con-
stitute a class.

• Protected resources in operating systems. Hoare [6] proposed
the idea of using an enclosed area as a software unit and in-
troduced the concept of monitor, which is concerned with
process synchronization and contention for resources among
processes.

• Data abstraction in programming languages such as CLU [7].
It refers to a programming style in which instances of abstract

ACM SIGSOFT Software Engineering Notes vol 28 no 2 March 2003 Page 1

data types (i.e. objects) are manipulated by operations that are
exclusively encapsulated within a protected region.

• Units of knowledge called frames, used for knowledge repre-
sentation. Minsky [8] proposed the notion of frames to capture
the idea that behavior goes with the entity whose behavior is
being described. Thus a frame can also be represented as an
object.

All these influences have been gathered together and the object-
oriented paradigm has been seen as a way to converge them, as
shown in Figure 1. The common characteristic of these ideas is
that an object is a logical or a physical entity that is self-contained.
Clearly, other belated items could be added to that list, such as
innovations in programming languages, as demonstrated in Ada;
and advances in programming methods, including the notion of
modularization and encapsulation. Nevertheless, Simula was the
first programming language that had objects and classes as central
concepts. Simula was initially developed as a language for pro-
gramming discrete-event simulations, and objects in the language
were used to model entities in the real-world application that was
being simulated.

Despite the early innovation of Simula, the term “object-oriented”
became prominent from Smalltalk [9]. The Smalltalk language,
first developed in 1972 in the Learning Research Group at Xerox
Palo Alto Research Center, was greatly influenced by Simula as
well as by Lisp. Smalltalk was the software half of an ambitious
project known as the Dynabook, which was intended to be a pow-
erful personal computer. Research on Smalltalk has continued and
the Smalltalk language and the environment were by-products of
that project. From Smalltalk, some common concepts and ideas
were identified and they gave support, at least informally, to the
object-oriented paradigm. Because of the evolution and dissemina-
tion of programming languages like Smalltalk, this new paradigm
has evolved, and new languages, methodologies, and tools have
appeared.

3. CHARACTERISATION OF AN OBJECT-ORIENTED
MODEL
Although object-oriented programming has its roots in the 1970s,
there were many definitions about what precisely the term object-
oriented meant. The term meant different things to different people
because it had become very fashionable to
describe any software system in terms of ob-
ject-oriented concepts. To some, the concept
of object was merely a new name for abstract
data types; each object had its own private
variables and local procedures, resulting in
modularity and encapsulation. To others,
classes and objects were a concrete form of
type theory; in this view, each object is con-
sidered to be an element of a type which itself
can be related through sub-type and super-
type relationships.

To others still, object-oriented software sys-
tems were a way of organizing and sharing
code in large software systems. Individual
procedures and the data they manipulate are
organized into a tree structure. Objects at any

level of this tree structure inherit behavior of higher level objects;
inheritance turned out to be the main structuring mechanism which
made it possible for similar objects to share program code. Despite
many authors being concerned with providing precise definitions
for the object-oriented paradigm, it was difficult to come up with a
single generally accepted definition.

Rentsch [10] defines object-oriented programming in terms of
inheritance, encapsulation, methods, and messages, as found in
Smalltalk. Objects are uniform in that all items are objects and no
object properties are visible to an outside observer. All objects
communicate using the same mechanism of message passing, and
processing activity takes place inside objects. Inheritance allows
classification, sub-classification and super-classification of ob-
jects, which permits their properties to be shared.

Pascoe [11] also presents object-oriented terminology from the
Smalltalk perspective. Pascoe defines an object-oriented approach
in terms of encapsulation, data abstraction, methods, messages,
inheritance, and dynamic binding for object-oriented languages.
Pascoe also affirms that some languages that have one or two of
these features have been improperly called object-oriented lan-
guages. For instance, Ada could not be considered an object-
oriented language because it does not provide inheritance.

Other authors, such as Robson [12] and Thomas [13], emphasize
the idea of message passing between objects and dynamic binding
as fundamental to object-oriented programming. There is no doubt
those authors have also been influenced by the Smalltalk language,
wherein the message passing mechanism plays a fundamental role
as the way of communication among objects. On the other hand,
Stroustrup [14] claims that object-oriented programming can be
seen as programming using inheritance, and that message-passing
is just an implementation technique, not at all an inherent part of
the paradigm.

Nygaard [15] discusses object-oriented programming in terms of
the concept of objects in Simula. In that language an execution of
a computer program is organized as the joint execution of a collec-
tion of objects. The collection as a whole simulates a real-world
application, and objects sharing common properties are said to
constitute a class. Madsen and Moller-Pedersen [16], like Nygaard
[15], sees object-oriented programming as a model that simulates
the behavior of either a real or imaginary part of the world. The

System
Simulation

Operating
Systems

Data
Abstraction

Artificial
Intelligence

Classes +
Objects

Monitors
Abstract Data
Types +
Encapsulation

Frames

Object-Oriented
Paradigm

 Figure 1: The Background of the Object-Oriented Paradigm.

ACM SIGSOFT Software Engineering Notes vol 28 no 2 March 2003 Page 2

model consists of objects defined by attributes and actions, and the
objects simulate phenomena. Any transformation of a phenomenon
is reflected by actions on the attributes. The state of an object is
expressed by its attributes and the state of the whole model is the
state of the objects in that model.

The object-oriented paradigm was still lacking a well-known and
profound theoretical understanding, then some research come out
in this area. Cardelli and Wegner [17], for example, with formal
methods that used denotational semantics, described the essential
features of the object-oriented paradigm, such as abstract data
types, objects, classes and inheritance.

Lastly, Wegner [18] characterized an object-oriented approach in
terms of objects, classes and inheritance. Objects are autonomous
entities that have a state and respond to messages; classes arrange
objects by their common attributes and operations; inheritance
serves to classify classes by their shared commonality. Thus: ob-
ject-orientation = objects + classes + inheritance. The characteriza-
tion of an object-oriented approach proposed by Wegner has been
the most accepted one.

As it has been described, there are many different interpretations
of the object-oriented paradigm. Nevertheless, one thing that all
definitions have in common, not surprisingly, is the recognition
that an object is the primitive concept of the object-oriented para-
digm. The object is an encapsulation of protected data along with
all the legal operations that act on that hidden information.

4. COMPARISON BETWEEN “OBJECT-ORIENTED”
LANGUAGES

At the beginning of programming language development, assem-
bly languages only enabled programmers to write code based on
machine instructions (operators) that manipulated the contents of
memory locations (operands). Therefore the level of control and
data abstraction achieved was very low. A great leap forward oc-
curred when the first higher-level languages, e.g. Fortran and Al-
gol, appeared. The operators turned into statements and operands
into variables and data structures. The traditional view of programs
in these languages is that they were composed of a collection of
variables that represented some data and a set of procedures that
manipulated those variables. The majority of traditional program-
ming languages supported this data-procedure paradigm. That is,
active procedures operate upon passive data that is passed to them.
Things happen in a program by invoking a procedure and giving to
it some data to manipulate. Through a sequence of statements and
procedures, early higher-level languages had reasonable support to
implement actions; however, they had shortcomings to represent
abstract data types.

Abstract data types are abstractions that may exist at a higher level
than operands and operators, or variables and procedures sepa-
rately. Some languages provided a construct that allowed both
variables and procedures to be defined within a single unit; for
instance the cluster construct in CLU, which satisfies the definition
of abstract data types. The same idea can also be found in Ada
through the package construct. Nevertheless, if two abstract data
types are similar but not identical, there is no means of expressing
their commonality conveniently in a programming language that
supports only abstract data types.

The object-oriented paradigm goes a step further than abstract data
types; that is, object-oriented languages allow similarities and dif-
ferences between abstract data types to be expressed through in-
heritance, which is a key defining feature of the object-oriented
paradigm. Therefore it would be better to characterize the evolu-
tion of object-oriented languages based on the support for both
abstract data types and inheritance; in this case the immediate an-
cestor of object-oriented languages was Simula, which was an
Algol-based language. Simula was the first language to introduce
the concept of class and to allow inheritance to be expressed, and
it should be recognized as the “mother” of a few object-oriented
programming languages. Besides, because object-oriented con-
cepts have also arisen from the artificial intelligence community, it
is not surprising that Lisp has influenced a number of object-
oriented languages. For instance, Flavors [19], Loops [20] and
CLOS [21], have all borrowed ideas from Lisp and Smalltalk.

The prominence of the object-oriented paradigm has influenced
the design of other programming languages. There are languages
that incorporate object-oriented constructs into the popular C, Pas-
cal and Modula-2, resulting in the hybrid languages Objective-C
[22], C++ [23], ObjectPascal [24] and Modula-3 [25]. The inclu-
sion of object-oriented concepts into traditional languages sophis-
ticated them, in that programmers had the flexibility to use or not
to use the object-oriented extensions and benefits. Although these
hybrid languages became more complex, those extensions enabled
programmers who had considerable experience with those tradi-
tional procedure languages to explore incrementally the different
concepts provided by the object-oriented paradigm. Nevertheless,
when using a hybrid language, programmers had to exercise more
discipline than when using a pure object-oriented language be-
cause it was too easy to deviate from sound object-oriented princi-
ples. For instance, C++ allows global variables, which violates the
fundamental principle encapsulation.

As far as concurrency is concerned, objects can also be viewed as
concurrent agents that interact by message passing, thus emphasiz-
ing the role of entities such as actors and servers in the structure of
a real-world application. The main idea behind object-oriented
languages that support concurrency is to provide programmers
with powerful constructs that allow objects to run concurrently.
Concurrency adds the idea of simultaneously executing objects
and exploiting parallelism. Languages to which this applies in-
clude: Actor [26], ABCL [27], POOL-T [28], Orient84 [29] and
ConcurrentSmalltalk [30].

Other languages influenced basically by Simula and CLU, such as
Beta [31] and Eiffel [32] have also appeared and are believed to
give good support for the object-oriented paradigm. Although Eif-
fel and Smalltalk seem to be coherent object-oriented languages
with integrated programming environments, C++ has become the
most used object-oriented programming language, due to the in-
fluence of UNIX and the popularity of the C language from which
C++ derived. Finally, Java [33] should look familiar to C and C++
programmers because Java was designed with similar but cleaner
constructs; it also provides a more robust library of classes. Java is
rapidly gaining territory among programmers, and it is expected to
become the most popular object-oriented language. Analyzing the
evolution of all those languages over time leads to the dependency
graph shown in Figure 2.

ACM SIGSOFT Software Engineering Notes vol 28 no 2 March 2003 Page 3

A programming language is called object-based if it permits the
definition of objects as abstract data types only, whereas, a lan-
guage is called object-oriented if it allows the definition of objects
and supports the inheritance mechanism. According to this classi-
fication, the set of object-based languages includes Ada and CLU.
This is so because objects in Ada are defined as packages and ob-
jects in CLU are instances of clusters. The set of object-oriented
languages is smaller than the set of object-based languages, and
excludes Ada and CLU but includes Smalltalk and C++ because
the latter two support inheritance. Table 1 shows a comparison
between some of the programming languages mentioned above.

When serious programming is mentioned, it is not just about the
language, it is also about library support that has been built around
a language, forming a platform that helps to develop software sys-
tems.

It can be concluded that, despite the possibility of following an
object-oriented fashion using languages (e. g. Ada and CLU) with
less or more difficulty, direct language support is beneficial in
facilitating as well as encouraging the use of the object-oriented
tenets such as in Eiffel or Java. Not only do these languages sup-
port the object-oriented paradigm, but also they enforce it because
the main language constructs dealt with are related to objects,
classes and inheritance. The danger in trying to force object-

oriented concepts into a language that does not provide inheritance
is that weird constructions may be produced, impairing software
development and jeopardizing the quality of the resulting software.

Table 1: Comparing Languages

Features
X

Languages

Abstract
Data
Types

Inheritance
Support

Dynamic
Binding

Extensive
Library

Simula yes yes yes no
CLU yes no yes no
Ada yes no no yes
Smalltalk yes yes yes yes
ObjectiveC yes yes yes yes
C++ yes yes yes yes
CLOS yes yes yes no
Obj.Pascal yes yes yes no
Beta yes yes yes no
Eiffel yes yes yes yes
Actor yes yes yes no
Java yes yes yes yes

Ada

Lisp

Assembly

Algol

Simula

Smalltalk

Flavors
Loops
CLOS

Actor
POOL-T
ABCL
Orient84

Objective-C
ObjectPascal
Modula-3

Beta

C++

CLU C

Pascal

Modula-2

Java

60s

50s

70s

80s

90s

Fortran

Eiffel

Figure 2: Language Evolution.

ACM SIGSOFT Software Engineering Notes vol 28 no 2 March 2003 Page 4

5. CLASSIFICATION OF OBJECT-ORIENTED
METHODOLOGIES
An important idea brought forward by software engineering is the
concept of software life cycle models. Several models have been
proposed in order to systematize the several stages that a software
system goes through [34, 35, 36]. In parallel, many software de-
velopment methodologies have also been proposed over the last
few decades. Such methodologies provided some discipline in
handling the inherent software complexity because they usually
offered a set of rules and guidelines that helped software engineers
understand, organize, decompose and represent software systems.

Those methodologies may be classified into three approaches.
First, some methodologies dealt with functions; they emphasized
refinement through functional decomposition as, for example,
Structured Design [37], HIPO [38] and Stepwise Refinement [39].
Typically, software development has to follow a top-down fashion
by successively refining functions.

In a second line of thought, there were methodologies that recom-
mended that software systems should be developed with emphasis
on data rather than on functions. That is, the system architecture
was based on the structure of the data to be processed by the sys-
tem. The software system should be structured mainly through the
identification of data components and their meaning. This tech-
nique could be noted in the early Jackson Structured Programming
methodology [40] and the Entity-Relationship Model (ERM) [41].
The Entity-Relationship Model was the most common approach to
data modeling in the 1970s and 1980s. ERM is a graphical tech-
nique easy to understand yet powerful enough to model real-world
applications, then entity-relationship diagrams are readily trans-
lated into a database implementation.

A third style consisted of methodologies that aimed at developing
software systems from both functional and data points of view, but
separately. Examples of such methodologies are SADT [42],
Structured Analysis [43] and Structured System Analysis [44].
SADT provides different kinds of diagrams to represent functions,
control, mechanisms and data. As far as Structured Analysis and
Structured System Analysis are concerned, designers can represent
and refine functions through data flow diagrams, (which also show
functions) and use a data dictionary to describe data. So that engi-
neering applications could be better modeled, Ward and Mellor
[45] introduced real-time extensions into structured analysis. Fi-
nally, Structured System Analysis and Design Methodology
(SSADM) [46] is another renowned structured analysis approach.

These methodologies, known as structured, organize a system
specification and design around hierarchies of functions. Struc-
tured analysis begins by identifying one or more high level func-
tions that describe the overall purpose of a software system. Then,
each high level function is broken down into smaller less complex
functions, followed by structured design and structured program-
ming. Needless to say, these methodologies have been supported
by a myriad of CASE tools. The main purposes of the tools were
to increase productivity, help with system documentation and en-
hance the quality of the developed software.

A combination of approaches that followed structured analysis,
structured design, and structured programming was collectively
known as structured development. This approach iteratively di-

vides complex functions into sub-functions. When the resulting
sub-functions are simple enough, decomposition stops. This proc-
ess of refinement was known as the functional decomposition ap-
proach. Structured development also included a variety of
notations for representing software systems. During the require-
ments and analysis phases, data flow diagrams, entity-relationship
diagrams and a data dictionary are used to logically specify a
software system. In the design phase, details are added to the
specification model and the data flow diagrams are converted into
structure chart diagrams ready to be implemented in a procedural
language.

Structured analysis appeared to be an attractive starting point to be
followed by object-oriented design primarily because it was well
known, many software professionals were trained in its techniques,
and several tools supported its notations. However, structured
analysis was not the ideal front-end to object-oriented design,
mainly because it perpetuated a functional decomposition view of
the system. Applying a functional decomposition approach first
and an object-oriented approach later on the same software system
led to trouble because functions could not be properly mapped into
objects.

Ideally, object-oriented design and implementation should be part
of a software development process in which an object-oriented
philosophy is used throughout software development, as shown in
Figure 3. In that figure, the dashed arrows represent an unnatural
mapping between concepts of different approaches, as opposed to
the bold arrows, which indicate a smooth transition from one
phase to the next. Consequently, attempting to combine an object-
oriented approach with a structured development approach gave
rise to some problems.

Because, in early phases, a software system was described in terms
of functions and later on the description was changed to object-
oriented terms (see Figure 3), it jeopardized traceability from re-
quirements to implementation. Structured development method-
ologies did not place data within objects but on the data flow
between functions, and a software system was described with data
flows and functions. In contrast, the object-oriented paradigm or-
ganizes a software system around classes and objects that exist in
the designer's view of the real-world application.

On the other side, there has also been a profusion of so-called “ob-
ject-oriented” methodologies for analysis and design influenced by
different backgrounds, and found in a variety of software life cycle
models. Nevertheless, two major trends can be noticed:

1) Adaptation: it has been concerned with mixing an object-
oriented approach with well-known structured development
methodologies.

2) Assimilation: it has emphasized the use of an object-oriented
methodology for developing software systems, but has fol-
lowed the traditional waterfall software life cycle model.

5.1 Adaptation
Adaptation proposes a framework to mix an object-oriented ap-
proach with existing structured methodologies. Henderson-Sellers
and Constantine [47] suggested that a combination of structured
development with an object-oriented approach could smooth soft-
ware development. Based on a functional decomposition designers
could use their experience and intuition to derive a specification

ACM SIGSOFT Software Engineering Notes vol 28 no 2 March 2003 Page 5

from an informal description in order to get a high
level abstraction for a software system. The adaptation
of structured development to an object-oriented ap-
proach preserves the specification and analysis phases
using data flow diagrams, and it proposes heuristics to
convert these diagrams into an object model in such
way that subsequent phases can then follow an object-
oriented approach. Some advantages of this adaptive
approach are:

• A complementary coupling between structured
development and the object-oriented approach.

• A smoother migration from well-practiced and
well-known approaches to a new one that included
classes, objects and inheritance.

• Gradual change from old tools and environments
to a new paradigm.

The most widely used software engineering method-
ologies have been those for structured development.
Such methodologies have been popular because they
were applicable to many types of application domains.
Because of this popularity, structured development has
been combined with an object-oriented approach.
Software engineers, who had used functional decompo-
sition and data modeling techniques, have probably
found the methodologies of Shlaer and Mellor [48] as
well as Coad and Yourdon [49] familiar because these
methodologies are clearly adaptations of traditional
structured development methodologies and data model-
ing techniques.

Those methodologies oversimplified the object-oriented paradigm
by misusing the concepts of classes and objects during the analysis
phase. Basically, they concentrated on modeling real-world enti-
ties as objects, and they can be considered as extensions of the
Entity-Relationship Model [41], suggesting that they are incre-
mental improvements of existing approaches to data modeling.
Moreover they have not discussed the impact of their methodology
on other phases of the software life cycle. These methodologies
were used during a period of transition from structured develop-
ment to object-oriented development as a compromise. However,
they did not permit the full advantages of an object-oriented ap-
proach.

Jackson [50] has proposed a methodology called the Jackson Sys-
tem Development (JSD). JSD has some features that appear on the
surface to be similar to object-oriented design. The main task is to
model the application and to identify entities (which could be
viewed as objects), actions (i.e. operations) and their interactions.
However, JSD is not fully suitable for object-oriented design be-
cause there is little to support the object-oriented paradigm, and
inheritance is completely ignored. Other less known proposals in
which object-oriented concepts are derived from structured devel-
opment can also be mentioned. Some of these methods were
merely extensions of structured development techniques. Masiero
and Germano [51] and Hull et al. [52] put together object-oriented
design with JSD, and the by-product of the design is implemented
in Ada. Bailin [53] and Bulman [54] combined object-oriented
development with Structured System Analysis [44] and the Entity-
Relationship Model [41] in an object-oriented requirements speci-

fication model. Lastly, Alabiso [55] and Ward [56] combined ob-
ject-oriented development with Structured Analysis [43],
Structured Design [37] and the Entity-Relationship Model [41].

The first significant step towards an object-oriented design meth-
odology started within the Ada community. Many ideas about ob-
ject-oriented design came out with the work of Abbott [57] and
Booch [58]. Booch rationalized Abbott's method, and referred to it
as Object-Oriented Design [59]. Both Abbott and Booch have rec-
ommended that a design should start with an informal description
of the real-world application and from that narrative description
designers could identify classes and objects from nouns, and op-
erations from verbs. Booch’s work was significant because it was
one of the earliest object-oriented design methodologies to be de-
scribed. He was also one of the most influential advocates of ob-
ject-oriented design within the Ada community.

Realizing the drawbacks of the technique based on identification
of classes and objects from informal descriptions, later, Booch no
longer used a narrative description. Instead, Booch [60] combined
object-oriented design with existing methodologies and called it
Object-Oriented Development. He suggested that existing meth-
odologies such as SREM [61] or Structured System Analysis [44]
or JSD [50] could be used during the system analysis phase as a
step before object-oriented design. Subsequently, Booch [62] pro-
posed a truly object-oriented design methodology.

As far as Booch's influences are concerned, they can be summa-
rized as follows: what has come to be known as object-oriented
design in the context of Ada was first proposed by Booch [58],

IMPLEMENTATION

Object-
Oriented
Design

Class +
Object
Diagrams

Object-
Oriented
Analysis

Class
Diagrams

Object-
Oriented
Programming

Abstract
Data Types +
Inheritance

ANALYSIS

DESIGN

Structured
Analysis

Data Flow +
ERM
Diagrams

Structured
Design

Structure
Charts

Structured
Programming

Data
Structures +
Functions

Figure 3: Some Combinations of Approaches

ACM SIGSOFT Software Engineering Notes vol 28 no 2 March 2003 Page 6

later extended and generalized by Booch [60], then refined by Sei-
dewitz [63], Heitz [64] and Jalote [65]. Berard [66] and Sincovec
and Wiener [67] also presented principles and methods biased by
Booch [58] with implementation driven towards Ada. These de-
sign methodologies concentrated on identifying objects and opera-
tions, and were object-oriented in the sense that they viewed a
software system as a collection of objects. Wasserman et al. [68]
have proposed OOSD, a graphical representation for Object-
Oriented Structured Design. OOSD provided a standard design
notation by supporting concepts of both structured and object-
oriented design. The main ideas behind OOSD came from Struc-
tured Design [37] and Booch [60] notation for Ada packages. Most
of these methodologies were based on an informal description or
representation of the software requirements, from which objects,
attributes and operations were identified. Moreover, all of these
methodologies applied hierarchical decomposition, a trend to de-
compose a software system by breaking it into smaller components
through a series of top-down refinements towards an implementa-
tion in Ada.

5.2 Assimilation
In the 1980s and 1990s several object-oriented methodologies ap-
peared but they covered only partially the software life cycle
model. Assimilation was a trend that put the object-oriented para-
digm within the traditional waterfall software life cycle model.
Several authors tried to fit the object-oriented paradigm into this
framework: Lorensen [69], Jacobson [70], Wirfs-Brock et al. [71],
Rumbaugh et al. [72] and Booch [62] can be considered good ex-
amples.

Lorensen [69] described the rudiments of object-oriented software
development by explaining that it was fundamentally different
from traditional structured development methods, such as those
based on data flow diagrams and a functional decomposition ap-
proach.

Jacobson [70] claimed to have a full object-oriented development
methodology named the ObjectOry, which combined a technique
to develop large software systems termed block design [73] with
conceptual modeling [74] and object-oriented concepts. Jacobson
stated that it was quite natural to unite these three approaches since
they rely on similar ideas aiming at, among other things, the pro-
duction of reusable software components.

Wirfs-Brock et al. [71] focused on the identification of responsi-
bilities and contracts to build a responsibility-driven design. Re-
sponsibilities are a way to apportion work among a group of
objects that comprise a real-world application. A contract is a set
of related responsibilities defined by a class, and describes the
ways by which client objects can interact with server objects. In-
troduced by Beck and Cunningham [75], was a technique that re-
corded design on cards, and which proposed the Class,
Responsibility, and Collaboration (CRC) cards. It has been sug-
gested that using CRC cards is a simple technique for teaching
object-oriented thinking to newcomers.

Rumbaugh et al. [72] developed the Object Modeling Technique
(OMT), which focused on object modeling as a software develop-
ment technique. OMT is a comprehensive methodology that incor-
porates structured development based on a functional
decomposition approach following the traditional waterfall soft-

ware life cycle model.

Booch [62] introduced a comprehensive object-oriented methodol-
ogy for software development with a graphical notation to express
a design, one that could form the basis for automated tools. He
also included a variety of models that addressed the functional and
dynamic aspects of software systems.

6. FINAL REMARKS
This paper has expanded upon the background of the object-
oriented paradigm. This paradigm has provided a powerful set of
concepts completely absorbed into the software development cul-
ture of the 1990s, just as, in the same way, structured development
methodologies (and, to some extent abstract data types concepts)
had been in the 1970s and 1980s. This is evident in the abundance
of tools supporting all aspects of software development following
this paradigm. Consequently the last decade has been a period of
gradual acceptance of the object-oriented paradigm, which has
become the main approach to developing software systems since
the early 1990s.

One great advantage of using the object-oriented paradigm is the
conceptual continuity across all phases of the software develop-
ment life cycle; that is, the conceptual structure of the software
system remains the same, from system analysis down through im-
plementation. Therefore when the object-oriented paradigm is
used, the design phase is linked more closely to the system analy-
sis and the implementation phases because designers have to deal
with similar abstract concepts (such as classes and objects)
throughout software development. Capretz and Capretz [76] de-
scribe a methodology for object-oriented design and maintenance,
which takes domain analysis and software reusability into account
as important aspects of an alternative software life cycle model.
However, object-orientation has needed an organized and manage-
able view of software development permeating all phases of the
software life cycle model. That demand has been met by the Uni-
fied Modeling Language (UML) [77] and by CASE tools such as
Rational Rose.

Because there are unique object-oriented concepts involved in the
whole software development process, there should have been spe-
cific methodologies suitable to the development of that object-
oriented software. However, history shows that the object-oriented
software development has been combined with other approaches;
it was influenced by, and has been influencing, other ideas. After
more than thirty years since the first object-oriented programming
language was introduced, the debate over the claimed benefits of
the object-oriented paradigm still goes on. But there is no doubt
that most new software systems will be object-oriented; that, no-
body disputes.

REFERENCES
[1] Johnson R. E. and Foote B. Designing Reusable Classes,

Journal of Object-Oriented Programming, 1(2), pp. 22-35,
June/July 1988.

[2] Micallef J. Encapsulation, Reusability and Extensibility in
Object-Oriented Programming Languages, Journal of Ob-

ACM SIGSOFT Software Engineering Notes vol 28 no 2 March 2003 Page 7

ject-Oriented Programming, 1(1), pp. 12-36, April 1988.

[3] Gossain S. and Anderson B. An Iterative-Design Model for
Reusable Object-Oriented Software, ACM SIGPLAN Notices,
25(10), pp. 12-27, October 1990.

[4] Capretz L. F. and Lee P. A. Reusability and Life Cycle Is-
sues Within an Object-Oriented Design Methodology, Ege R.
Singh M. and Meyer B. (eds.) Proceedings of TOOLS
USA'92 - Technology of Object-Oriented Languages and
Systems, Englewood Cliffs, New Jersey: Prentice Hall, pp.
139-150, August 1992.

[5] Dahl O.-J., Myhrhaug B. and Nygaard K. SIMULA67 Com-
mon Base Language, Publication No. S-22, Oslo: Norwegian
Computing Centre, 1970.

[6] Hoare C. A. R. Monitors: an Operating Systems Structuring
Concept, Communications of the ACM, 17(10), pp. 549-577,
October 1974.

[7] Liskov B., Snyder A., Atkinson R. and Schaffert, C. Abstrac-
tion Mechanisms in CLU, Communications of the ACM,
20(8), pp. 564-576, August 1977.

[8] Minsky M. A Framework for Representing Knowledge, Wis-
ton P. (ed.) The Psychology of Computer Vision, New York:
McGraw-Hill, 1975.

[9] Goldberg A. and Robson D. Smalltalk-80: The Language
and its Implementation, Reading, Massachusetts: Addison-
Wesley, 1983.

[10] Rentsch T. Object Oriented Programming, ACM SIGPLAN
Notices, 17(9), pp. 51-57, September 1982.

[11] Pascoe G. A. Elements of Object-Oriented Programming,
Byte 11(8), pp. 139-144, August 1986.

[12] Robson D. Object-Oriented Software Systems, Byte, 6(8),
pp. 74-86, August 1981.

[13] Thomas D. What's in an Object, Byte, 14(3), pp. 231-240,
March 1989.

[14] Stroustrup B. What is Object-Oriented Programming?, Lec-
ture Notes in Computer Science, No. 276, pp. 51-70, Berlin:
Springer-Verlag, 1987.

[15] Nygaard K. Basic Concepts in Object Oriented Program-
ming, ACM SIGPLAN Notices, 21(10), pp. 128-132, October
1986.

[16] Madsen O. L. and Moller-Pedersen B. What Object-Oriented
Programming May Be and What It Does Not Have to Be,
Lecture Notes in Computer Science, No. 322, pp. 1-20, Ber-
lin: Springer-Verlag, 1988.

[17] Cardelli L. and Wegner P. On Understanding Types, Data
Abstraction, and Polymorphism, ACM Computing Surveys,
17(4), pp. 471-522, December 1985.

[18] Wegner P. Dimensions of Object-Based Language Design,
ACM SIGPLAN Notices, 22(12), pp. 168-182, December
1987.

[19] Moon D. A. Object-Oriented Programming with Flavors,
ACM SIGPLAN Notices, 21(11), pp. 1-8, November 1986.

[20] Stefik M. and Bobrow D. G. Object-Oriented Programming:
Themes and Variations, The AI Magazine, 6(4), pp. 40-62,
April 1986.

[21] DeMichiel L. G. and Gabriel R. P. The Common Lisp Object
System: An Overview, Lecture Notes in Computer Science,
No. 276, pp. 151-170, Berlin: Springer-Verlag, 1987.

[22] Cox B. J. Object-Oriented Programming - An Evolutionary
Approach, Readings, Massachusetts: Addison-Wesley, 1986.

[23] Stroustrup B. The C++ Programming Language, Reading,
Massachusetts: Addison-Wesley, 1986.

[24] Tesler L. Object Pascal Report, Santa Clara, California: Ap-
ple Computer, 1985.

[25] Cardelli L. Modula-3 Report, Palo Alto, California: Digital
Equipment Corporation, 1989.

[26] Agha G. An Overview of Actor Languages, ACM SIGPLAN
Notices, 21(10), pp. 58-67, October 1986.

[27] Yonezawa A., Shibayama E., Takada T. and Honda Y. Mod-
elling and Programming in an Object-Oriented Concurrent
Language ABCL/1, Yonezawa A. and Tokoro M. (eds.) Ob-
ject-Oriented Concurrent Programming, pp. 55-90, Cam-
bridge, Massachusetts: MIT Press, 1987.

[28] America P. POOL-T: A Parallel Object-Oriented Language,
Yonezawa A. and Tokoro M. (eds.) Object-Oriented Con-
current Programming, pp. 199-220, Cambridge, Massachu-
setts: MIT Press, 1987.

[29] Yutaka I. and Tokoro M. A Concurrent Object Oriented
Knowledge Representation Language Orient84/K: Its Fea-
tures and Implementation, ACM SIGPLAN Notices, 21(11),
pp. 232-241, November 1986.

[30] Yokote A. and Tokoro M. Concurrent Programming in Con-
currentSmalltalk, Yonezawa A. and Tokoro M. (eds.) Object-
Oriented Concurrent Programming, pp. 129-158, Cam-
bridge, Massachusetts: MIT Press, 1987.

[31] Kristensen B. B., Madsen O. L., Moller-Pedersen B. and
Nygaard K. Multi-Sequential Execution in the Beta Pro-
gramming Language, ACM SIGPLAN Notices, 20(4), pp. 57-
70, April 1985.

[32] Meyer B. Object-Oriented Software Construction, Engle-
wood Cliffs, New Jersey: Prentice-Hall, 1988.

[33] Arnold K. and Gosling J. The Java Programming Language.
Reading, Massachusetts: Addison-Wesley, 1996.

[34] Royce W. W. Managing the Development of Large Software
Systems, Proceedings of the 9th International Conference on
Software Engineering, pp. 328-338, IEEE Press, 1987.

[35] Boehm B. W. A Spiral Model of Software Development and
Enhancement, IEEE Computer, 21(5), pp. 61-72, May 1988.

[36] Henderson-Sellers B. and Edwards J. M. The Object-
Oriented Systems Life Cycle, Communications of the ACM,
33(9), pp. 142-159, September 1990.

[37] Yourdon E. and Constantine L. L. Structured Design,
Englewood Cliffs, New Jersey: Prentice-Hall, 1979.

ACM SIGSOFT Software Engineering Notes vol 28 no 2 March 2003 Page 8

[38] Stay J. F. HIPO and Integrated Program Design, IBM System
Journal, 15(2), pp. 143-154, April 1976.

[39] Wirth N. Program Development by Stepwise Refinement,
Communications of the ACM, 14(4), pp. 221-227, April
1971.

[40] Jackson M. A. Principles of Program Design, New York,
New York: Academic Press, 1975.

[41] Chen P. P. The Entity-Relationship Model: Toward a Unified
View of Data, ACM Transactions on Database Systems, 1(1),
pp. 9-36, March 1976.

[42] Ross T. R. and Schoman K. E. Structured Analysis for Re-
quirements Definitions, IEEE Transactions on Software En-
gineering, SE-3(1), pp. 6-15, January 1977.

[43] DeMarco T. Structured Analysis and System Specification,
Englewood Cliffs, New Jersey: Prentice-Hall, 1979.

[44] Gane C. and Sarson T. Structured System Analysis: Tools
and Techniques, Englewood Cliffs, New Jersey: Prentice-
Hall, 1979.

[45] Ward P. and Mellor S. Structured Development for Real-
Time Systems, Englewood Cliffs, New Jersey: Prentice-Hall,
1985.

[46] Eva M. SSADM Version 4: A User’s Guide, London:
McGraw-Hill, 1994.

[47] Henderson-Sellers B. and Constantine L. L. Object-Oriented
Development and Functional Decomposition, Journal of Ob-
ject-Oriented Programming, 3(5), pp. 11-17, January 1991.

[48] Shlaer S. and Mellor S. J. Object-Oriented Systems Analysis:
Modeling the World in Data, Englewood Cliffs, New Jersey:
Prentice-Hall, 1988.

[49] Coad P. and Yourdon E. Object-Oriented Analysis, Engle-
wood Cliffs, New Jersey: Prentice-Hall, 1990.

[50] Jackson M. A. System Development, London: Prentice-Hall,
1983.

[51] Masiero P. and Germano F. S. R. JSD as an Object-Oriented
Design Method, Software Engineering Notes, 13(3), pp. 22-
23, July 1988.

[52] Hull M. E. C., Zarca-Aliabadi A. and Guthrie D. A. Object-
Oriented Design, Jackson System Development (JSD) Speci-
fication and Concurrency, Software Engineering Journal,
4(2), pp. 79-86, March 1989.

[53] Bailin S. C. An Object-Oriented Requirements Specification
Method, Communications of the ACM, 32(5), pp. 608-623,
May 1989.

[54] Bulman D. M. An Object-Based Development Model, Com-
puter Language, 6(8), pp. 49-59, August 1989.

[55] Alabiso B. Transformation of Data Flow Analysis Model to
Object-Oriented Design, ACM SIGPLAN Notices, 23(11), pp.
335-353, November 1988.

[56] Ward P. How to Integrate Object Orientation with Structured
Analysis and Design, IEEE Software, 6(2), pp. 74-82, March
1989.

[57] Abbott R. J. Programming Design by Informal English De-
scription, Communications of the ACM, 26(11), pp. 882-894,
November 1983.

[58] Booch G. Software Engineering with Ada, Menlo Park, Cali-
fornia: Benjamin/Cummings, 1983.

[59] Booch G. Object-Oriented Design, Freeman P. and
Wasserman A. I. (eds.) Tutorial on Software Design Tech-
niques, 4th Edition, pp. 420-436, IEEE Press, 1983.

[60] Booch G. Object-Oriented Development, IEEE Transactions
on Software Engineering, SE-12(2), pp. 211-221, February
1986.

[61] Alford M. W. A Requirements Engineering Methodology for
Real-Time Processing Requirements, IEEE Transactions on
Software Engineering, SE-3(1), pp. 60-69, January 1977.

[62] Booch G. Object-Oriented Design with Applications, Red-
wood City, California: Benjamin/Cummings, 1991.

[63] Seidewitz E. General Object-Oriented Software Develop-
ment: Background and Experience, Journal of Systems and
Software, 9(2), pp. 95-108, February 1989.

[64] Heitz M. HOOD Reference Manual, Issue 3.0, Noordwijk,
The Netherlands: European Space Agency, 1989.

[65] Jalote P. Functional Refinement and Nested Objects for Ob-
ject-Oriented Design, IEEE Transactions on Software Engi-
neering, SE-15(3), pp. 264-270, March 1989.

[66] Berard E. An Object-Oriented Design Handbook, Rockville,
Maryland: EVB Software Engineering Inc., 1986.

[67] Sincovec R. F. and Wiener R. S. Modular Software Con-
struction and Object-Oriented Design Using Ada, Peterson
G. E. (ed.) Tutorial: Object-Oriented Computing, pp. 30-36,
IEEE Press, 1987.

[68] Wasserman A. I., Pircher P. A. and Muller R. J. The Object-
Oriented Structured Design Notation for Software Design
Representation, IEEE Computer, 23(3), pp. 50-63, March
1990.

[69] Lorensen W. Object-Oriented Design, CRD Software Engi-
neering Guidelines, General Electric Co., 1986.

[70] Jacobson I. Object Oriented Development in an Industrial
Environment, ACM SIGPLAN Notices, 22(12), pp. 183-191,
December 1987.

[71] Wirfs-Brock R., Wilkerson B. and Wiener L. Designing Ob-
ject-Oriented Software, Englewood Cliffs, New Jersey: Pren-
tice Hall, 1990.

[72] Rumbaugh J., Blaha M., Premerlani W., Eddy F. and Loren-
sen W. Object-Oriented Modeling and Design, Englewood
Cliffs, New Jersey: Prentice Hall, 1991.

ACM SIGSOFT Software Engineering Notes vol 28 no 2 March 2003 Page 9

[73] Jacobson I. Language Support for Changeable Large Real
Time System, ACM SIGPLAN Notices, 21(11), pp. 377-384,
November 1986.

[74] Borgida A. Features of Languages for the Development of
Information System at the Conceptual Level, IEEE Software,
2(1), pp. 63-72, January 1985.

[75] Beck K. and Cunningham W. A Laboratory for Teaching
Object-Oriented Thinking, ACM SIGPLAN Notices, 24(10),
pp. 1-6, October 1989.

[76] Capretz L. F. and Capretz M. A. M. Object-Oriented Soft-
ware: Design and Maintenance. Singapore: World Scientific,
1996.

[77] Booch G., Rumbaugh J. and Jacobson I. The Unified Model-
ing Language User Guide. Reading, Massachusetts: Addi-
son-Wesley, 1999.

Author’s bio-sketch: Dr. L. F. Capretz has
extensive experience in software engineer-
ing. He has worked (both at technical and
managerial levels), taught and done research
on the engineering of software in Brazil,
Argentina, England and Japan since 1981. In
the Faculty of Engineering at the University
of Western Ontario (Canada), he teaches
software design in an accredited program
that offers a degree in software engineer-
ing. Currently, he is focusing his research
in component-based software engineering and
software product lines.

ACM SIGSOFT Software Engineering Notes vol 28 no 2 March 2003 Page 10

