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SYNOPSIS 

The need for simplified models that can accurately represent the behaviour of structures is 

increasing. Engineers need such models to assess and/or to design structures using pre-specified 

performance measures. In this paper, the abilities of a previously developed model for reinforced 

concrete flexural members are significantly enhanced. The model represents a member by an 

elastic element and two-inelastic end elements. Each inelastic element consists of three-concrete 

and three-steel springs. A rational approach to calculate the properties of these springs is 

developed. The approach includes a simplified method to account for slippage of reinforcing 

bars. The model allows identifying the localized damage (concrete cracking, reinforcement 

yielding, concrete crushing, or bond-slip failure) responsible for any change in the overall 

performance of an RC frame. To illustrate the use of this approach and to validate its predictions, 

two cantilever columns are modeled and analyzed under monotonic and cyclic loadings. 

 

Introduction 

Seismic analysis of Reinforced Concrete (RC) framed structures requires realistic analytical 

procedures to produce reasonably accurate simulations of behaviour1. Such procedures must 

have the ability to predict different failure modes including: concrete crushing and bond-slip 

failure and thus allow engineers to predict the expected damage to an RC structure under 

extreme cases of loading. 

Lai et al.2 have developed an effective three-dimensional analytical model (multi-spring model) 

to predict the inelastic hysteretic and stiffness degradation behaviour of RC members subjected 

to axial load and biaxial bending. The parameters of the model are based on empirical equations 
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and thus are valid for a limited number of applications. Also, representation of strength 

deterioration due to different failure modes is not included in the model. 

Based on Lai’s2 model, Youssef and Ghobarah3 developed a macro model to account for strength 

deterioration due to bond slip and crushing of concrete. A beam or a column is represented by an 

elastic element and two inelastic end elements, as shown in Fig. 1. Each inelastic element 

consists of three concrete and three steel springs. They represent the stiffness of the effective 

reinforcing steel bars and the effective concrete. The springs are connected by rigid frame 

elements as shown in Fig. 1. The model included a number of limitations. 

1. The capacity of the edge concrete springs is calculated based on the concrete compressive 

force at ultimate condition. This is only valid for sections with low axial forces. 

2. Concrete stress-strain relationships are linearly transformed to force-deformation 

relationships using the expected ultimate capacity and ultimate deformation of the edge 

concrete springs. Such a method may not accurately capture the actual behaviour of RC 

members at different load stages. 

3. The capacity of the central concrete spring is calculated as the difference between the 

capacity of the entire section and the edge springs. The distance between the edge-springs is 

calculated by equating the ultimate moment resisted by the edge steel and concrete springs 

with that of the actual section. Such a method will not guarantee that the moments are equal 

at other stages of loading. 

4. The stiffnesses, capacities, and locations of the steel springs are based on their expected slip, 

which reduce the accuracy of the model when bond-slip is not governing. 

The main objective of the current study is to develop a simplified model for the simulation of RC 

flexural members subjected to reversed cyclic loading to address the need to accurately predict 
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the peak strength and ductility of RC structures. This is achieved by developing a rational 

approach for the computation of the properties of the multi-spring model. 

 

Proposed model 

In this model, a beam or a column is represented by an elastic element and two inelastic end 

elements, as shown in Fig. 1. The elastic element properties are taken as those for the concrete 

section before cracking. Each inelastic element consists of three concrete and three steel springs. 

The position of the edge concrete and steel springs is chosen to coincide with the tensile and 

compressive reinforcements. The remaining two springs are positioned at the centre of the 

section. The properties of each spring are defined using the following steps. 

 

1. Material models 

The uniaxial stress-strain relationship for concrete in compression is chosen to follow the model 

of Scott et al.4. The monotonic concrete stress-strain relation in compression, shown in Fig. 2, is 

described as follows: 
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Where, 

cf  = concrete compressive stress (MPa). 

'
cf  = concrete compressive strength (MPa). 

cε  = concrete strain. 

hK  = confinement factor. 
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oε  = concrete strain at maximum stress. 

cZ  = slope of the strain-softening branch. 

The uniaxial stress-strain relationship for concrete in tension is modeled by a linear branch until 

reaching the cracking stress, '
ccr f0.33f  , and then follows a softening branch. The modulus of 

elasticity of the linear branch is taken equal to that of the compressive branch at zero strain. The 

softening branch is described by the following formula3. 
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Where, 

tf  = concrete tensile stress 

crε  = concrete cracking strain 

The chosen uniaxial stress-strain relationship for reinforcing bars is shown in Fig. 3 and it 

follows a bilinear curve in both tension and compression. Modulus of elasticity Es, yield stress fy, 

and hardening ratio r, defining the post yielding stiffness r.Es, are chosen to be equal for both 

tension and compression. 

 

2. Sectional analysis 

Concrete sectional behaviour is defined using a fibre model. The section is divided into a number 

of discrete fibres, as shown in Fig. 4. Using uniaxial stress-strain relationships for each fibre and 

taking into account equilibrium and kinematics, the mechanical behaviour of the section is 

analyzed. The relationship between the incremental changes in axial strain cΔε , curvature ΔΦ , 

applied moment ΔM , and axial force ΔP  can be written as: 
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Where, 

Ei = modulus of elasticity of layer i. 

Ai = area of layer i. 

yi = distance between the centre of gravity of layer i and the centre of gravity of the section. 

For a given axial load and an increasing moment the sectional behaviour is obtained in two 

stages. In the first stage, the axial force is applied in an incremental way while moment and 

curvature are kept equal to zero. In the second stage, axial load is kept constant at the desired 

level that was reached in stage 1 and the applied curvature is increased from zero to a specified 

value. 

 

3. Forces in steel and concrete springs 

For a given axial load and moment, the equivalent forces in the steel springs can be evaluated 

from sectional analysis. No modification for these forces is needed, as the edge springs are 

chosen to coincide with compressive and tensile steel reinforcement. Regarding equivalent forces 

in the three concrete springs, a rational approach is developed to divide the concrete compressive 

and tensile forces among them. 

 

Stage I: (Strain at location of concrete spring number one is less than the cracking strain) 

For an incremental increase of the applied moment (M), the incremental change in the forces of 

the steel springs (PS1, PS2, PS3) can be evaluated from the sectional analysis. The incremental 
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change in the forces of the concrete springs (PC1, PC2, PC3) can be determined from the change 

in the concrete area represented by each spring (AC1, AC2, AC3). 

The area of a given concrete section is constant and thus the relationship between the 

incremental change in the concrete areas AC1, AC2, AC3 representing springs 1, 2 and 3, 

respectively can be written as: 

AC1+AC2+AC3 = 0                                                                                                                      (3a) 

Assuming perfect bond between steel and concrete, coinciding steel and concrete springs will 

have the same deformation. 

Ci (concrete) = Si (steel)                    (i = 1, 2, 3)                                                                           (3b) 

The relationship between these incremental deformations and the stiffnesses of the springs (KCi or 

KSi) can be written as, 
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Ignoring the variation of modulus of elasticity of concrete over the depth of concrete area 

represented by each concrete spring, the stiffness of the concrete and steel springs can be 

represented by: 
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L

AE , respectively. Eci and Esi are the modulus of elasticities of 

concrete and steel at the locations of the springs. Further assuming that the length represented by 

the steel (Lsi) and concrete (Lci) springs is the same, the following relationship can be written: 
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The incremental changes in the internal compressive and tensile forces (PCC, PCT) in the 

concrete section, evaluated by the sectional analysis, is related to the incremental change in the 

forces of the concrete springs by the following equation: 
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By substituting the equations (3b) and (3c) into equation (3e), the following equation can be 
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Where, AC1-prev, AC2-prev and AC3-prev are the concrete areas represented by springs 1, 2 and 3, 

respectively in the previous step. 

To ensure that the equivalent spring system will have the same moment as that of the modeled 

section, the following moment equilibrium equation can be written: 
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Where, TC y,y  and Z are the distances between the middle spring and the internal concrete 

compressive force, the internal concrete tensile force, and the exterior springs, respectively. 

For a given incremental change in the forces of the steel springs, AC1, AC2, and AC3 can be 

determined by solving equations (3a), (3f), and (3g). The incremental change in the force of each 

concrete spring can then be evaluated using equations (3b), (3c), and (3d). 

 

Stage II: (Cracking strain is less than concrete strain at location of spring number one but is 

greater than concrete strain at location of spring number two) 

At this stage, concrete strain at location of spring one reaches the cracking strain and 

consequently the tangential modulus drops suddenly from a high positive value to a high 

negative value. Such a sudden change magnifies any small error resulting from the 

approximations behind equation (3d). Therefore, it has been chosen to separate the compressive 
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and tensile behaviour. Spring one is chosen to represent the concrete section tensile behaviour. 

The incremental change in its force at any step is given by the following equation 

Z

springmiddlethetoforcetensiletheofc.g.fromDistance
ΔPΔP CTC1                                             (3h) 

The incremental change in the sectional compressive force is represented by spring 2 and 3. The 

force in spring 3 can be evaluated from the following moment equilibrium equation. 

ZΔPyΔP C3CCC                                                                                                                          (3i) 

The force in spring two would be the difference between PCC and PC3. 

 

Stage III: (Strain at location of springs one and two is greater than the cracking strain) 

At this stage, the concrete strain at location of the middle spring also reaches the cracking strain. 

For the same reason as discussed in stage II, compressive and tensile behaviour has been 

separated. Spring three represents the concrete section compressive behaviour whereas springs 

one and two represent the concrete section tensile behaviour. The incremental change in its force 

at any step is given by the following equation: 

Z

springmiddlethetoforceecompressivtheofc.g.fromDistance
ΔPΔP CCC3                                    (3j) 

The force in spring one can be evaluated from the following equation: 

ZΔPyΔP C1TCT                                                                                                                          (3k) 

The force in spring two will be equal to the difference between PCT and PC1. 

 

4. Deformations and stiffness 

The total deflection (total) of any flexural member can be calculated at different load stages by 

integrating the curvature obtained using sectional analysis along the member length. This 
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deflection can be used to calculate the deformation of concrete and steel springs after subtracting 

the elastic component of the deflection. 

Fig. 5 shows the deflected shape of a cantilever member, and the curvature distribution in the 

elastic and inelastic stages. The angle , defining the member inelastic rotation can be calculated 

from the following equation:  

L

δδ
θ ndeformatioelastictotal                                                                                                                    (4a) 

Where, L is the member length. 

Assuming a cantilever member, can be written as: 
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The difference between deformations of springs one and three is given by 

s3 - s1 = c3 - c1= 2 Z                                                                (4c) 

Assuming that both springs has the same stiffness, this will lead to: 
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The difference between the deformations of springs one and two is used to define the stiffness of 

spring two. 

s2 – s1 = c2 – c1 = Z                                                                                                               (4e) 
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The stiffnesses of the steel springs are evaluated using equations (4d) and (4f). These stiffnesses 

can be used to calculate the expected deformations of the concrete springs and thus their 

stiffnesses as follows: 
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It should be noted that the methodology defined above, will result in wrong estimates of the 

member axial deformation, which are usually very small for typical moment frames and do not 

affect the overall behaviour. 

 

5. Bond slip 

Experimental studies have shown that under lateral loading, the most unfavourable bond 

condition exist in the beam-to-column connections leading to significant fixed end rotations. It is 

therefore crucial to consider these deformations in the analysis of the RC frames.  

The overall shape of the local bond stress–slip constitutive model used in this study is shown in 

Fig 6. The slip and stress values defining the curve can be approximately related to the ultimate 

bond stress 1, and the corresponding slip S1, using the following equations3: 

12 S3S                                         13 S10S                                         
3
1

3

                                   (5) 

The method described by Giuriani and Plizzuri5 can be adopted to calculate 1 and S1. This 

method takes into account the confining action of different amounts of transverse reinforcement. 

It is valid in areas affected by flexural cracking and thus can be used for splices located outside 

the beam–to–column joint. For splices located within the beam–to–column joint, the average 

values of 1 and S1 for confined or unconfined concrete that were reported by Eligenhausen et al.6 

can be used. 

The local bond stress–slip constitutive model defined above can be used to solve the equilibrium, 

compatibility and constitutive relations of a bar embedded into concrete using one of the 
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approaches available in the literature 3, 7, 8. This will result in defining the steel stress–slip 

relationship. 

 

6. Modified stiffness of steel springs 

The steel bond stress–slip relationship obtained in the previous section is used to adjust the 

stiffnesses of the steel springs to account the bond-slip. The resulting decrease in the stiffnesses 

of the steel springs is expected to increase the demand on the concrete springs. 

 

7. Force deformation relationships 

The purpose of this section is to find equations to represent the force-deformation relationships 

of the concrete and steel springs, defined in the previous sections. These equations will simplify 

formulating the spring elements. 

 

Steel springs 

The force deformation relationship of a typical steel spring is modeled using the curve shown in 

Fig. 7. Each of the tensile and compressive curves is divided into three parts: elastic, elasto-

plastic and softening. KSt and KSc are the stiffnesses of the elastic part in tension and compression 

respectively. Softening part of the curve is mainly due to bond-slip softening and the spring force 

PS at any displacement dS for this zone is given by the following equation3: 
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Where, 

RSO = Ratio between the residual force in the steel bars after complete slippage occurs and the 

maximum load PSU. 
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S = softening factor 

The values of KS, Psy, Psu, dsu, RSO, and S in compression (c) and tension (t) are determined using 

the results of the previous sections. 

 

Concrete springs 

Fig. 8 shows the force deformation relationship used to model the concrete springs. Each of the 

tensile and compressive curves is divided into three parts. While part I represents the linear 

elastic behaviour, parts II and III represent the non-linear behaviour. Each non-linear part is 

approximated by a fourth order polynomial of the form: 

5c4
2

c3
3

c2
4

c1c kdkdkdk.dkP                                                                                              (7b) 

The limits of each part, the elastic stiffnesses, and the constants K1, K2, K3, K4, and K5 can be 

determined from the results of the previous sections. 

 

8. Hysteretic rules 

The concrete spring hysteretic model proposed by Youssef and Ghobarah3 is adopted in this 

study. Regarding the steel spring, a typical elasto-plastic hysteretic model is modified to account 

for possible bond slip degradation, and unequal tensile and compressive stiffnesses. Two 

possible cycles are shown in Fig. 9. Loading starts in the positive direction with stiffness KSt until 

the yield force PSYt is reached where the post yield curve is followed. The load direction is then 

reversed and unloading proceeds with the same initial stiffness KSt. When loading start in the 

negative direction, the stiffness changes to the compressive stiffness KSc. This will continue until 

reaching point A1, lying on the extension of the compressive post-yielding branch. The same 

procedure will be repeated when unloading from the compressive branch occurs. In the second 
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cycle, it is assumed that the inelastic tensile deformation reached dst and thus tensile bond-slip 

failure occurred. The same performance will occur in the compression zone when the inelastic 

deformation reaches dsc. 

 

Examples 

The methodologies to obtain forces and deformation in steel and concrete springs are applied to 

two reinforced concrete columns (Specimens S1 and S3) tested by Ghobarah et al.9. This was 

done to validate the model and to provide details of the various steps described in this paper. The 

envelope curves of the steel and concrete springs are then incorporated into a general-purpose 

non-linear structural analysis program PC-ANSR to validate the proposed model. 

 

Description of the specimens 

Specimens S1 and S3, shown in Fig. 10, represent the sections of cantilever columns. They were 

designed by Ghobarah et al.9 to represent existing structures designed according to NBCC10 

(1960) and new structures designed according to recent seismic codes11. Both specimens were 

reinforced with longitudinal reinforcement of 12M15 bars (16 mm nominal diameter) with yield 

strength of 437 MPa. Concrete strength was 24 MPa. Development length used for the 

longitudinal bars in both specimens was 600 mm. The only difference in reinforcement between 

specimens S1 and S3 was the tie reinforcement, which is shown in Fig. 10. A constant axial load 

of 505 kN was applied to both specimens. The cyclic lateral load was applied at a distance 2550 

mm from the base of the column. 
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Sectional Analysis 

Sectional analysis for both specimens is performed following the procedures described in section 

3. For each specimen an axial load of 505 kN is applied, which is followed by incremental 

increase of curvature while keeping the axial load constant. The resulting moment curvature 

diagram for both specimens is shown in Fig. 11. The moment-curvature diagram for specimen S3 

shows more ductile behaviour than specimen S1. 

 

Force deformation of concrete and steel spring 

Following the methodology described in sections 4 and 5 the force-deformation relationships for 

both steel and concrete springs are obtained. The force displacement relationships of concrete 

springs for specimens S1 and S2 are shown in Fig. 12. The coefficients defining the equation for 

each portion of the non-linear curve for both specimens S1 and S3 are calculated and are shown 

in Table 1. 

Fig. 13 shows the force-displacement relationships of steel springs for both specimens. The 

tensile and compressive curves are divided into three parts. The methodology proposed by 

Giuriani and Plizzari5 to predict 1 and S1 was adopted, as the splices were located outside the 

foundation where flexural cracks are expected. Knowing the local bond stress curve allows 

defining the steel stress-slip relationships. These relationships are given in Fig.14 for specimens 

S1 and S3. The force-deformation relationships of the steel springs are corrected using these 

relationships and are shown in Fig. 13. 
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Monotonic Behaviour 

Both specimens are subjected to increasing lateral load while keeping the axial load constant at 

505 kN. To judge on the importance of bond-slip deformations, each specimen is analyzed twice. 

The only difference between the two analyses is the steel springs force-deformation relationships 

as both before and after considering bond-slip deformations are used. Fig. 15 shows the 

monotonic load-displacement behaviour of both specimens. 

The significant reduction in load after reaching maximum load due to bond slip for specimen S1 

is observed. Specimen S3 does not show the significant load reduction, as it was designed 

according to latest code, which considers improved confinement of longitudinal reinforcement. 

The monotonic curves are characterized by point A (tensile concrete spring reaches the cracking 

strain), point B (tensile steel spring yields), point C (compressive concrete spring reaches its 

maximum strength), Point D (tensile concrete spring looses its capacity), and point E (tensile 

steel spring fails due to bond-slip softening). The obtained load-deflection curve shows the 

capability of the model to predict the behaviour of reinforced concrete sections up to failure. 

 

Cyclic Behaviour 

Each specimen was subjected to reversed cycles of deformation-controlled cycles matching the 

experiments9. The experimental and analytical results are shown in Figs. 16 and 17. Specimen S1 

behaviour is greatly affected by the inclusion of bond-slip. The specimen shows bond slip 

softening at a displacement of about 100 mm. Because of the symmetry of the specimen, the 

analytical results are the same in the negative and positive loading directions. The specimen 

behaviour is matching the experimental one in terms of stiffness and strength degradation in one 

of the loading directions (negative quad). In the other loading direction, the experiment shows 
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higher degradation than that predicted by the model. This might be attributed to variability in 

concrete cover. Inclusion of bond-slip deformations has minor effect on the behaviour of 

specimen S3. Comparing Figs. 17a and 17b, it is clear that the model predictions in terms of 

stiffness degradation, failure mode are sufficiently accurate. 

 

SUMMARY AND CONCLUSIONS 

A previously developed macro model for the representation of the inelastic behaviour of RC 

flexural members has been greatly enhanced. In this model, a flexural member is modeled using 

an elastic beam element and two inelastic end elements. A new rational approach is developed to 

calculate the properties of the three-steel and three-concrete springs composing the inelastic 

element. The approach involves calculating the moment curvature relationship of the concrete 

section using fibre model. Using compatibility, and equilibrium, the forces of concrete and steel 

springs are calculated at different load stages. Their deformations and stiffnesses are then 

calculated by integrating the curvature diagram over the member length. A simplified method to 

account for the slippage of reinforcing bars is also introduced. 

Two reinforced concrete cantilever column are modeled and analyzed using the proposed model 

under monotonic and cyclic loading. The model predictions are in good agreement with the 

experimental results. The analysis proves that the model is able to predict the damage due to: 

concrete cracking, concrete crushing, reinforcement yielding, and bond slippage. 

It should be noted that the developed element is limited to flexural behaviour and cases with 

small variations in the axial force. Future studies are needed to include shear deformations and 

axial force variations. 
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Nomenclature: 

ACi   area of concrete spring i. 
ACi-prev  area represented by concrete spring i in the previous step. 
Ai  area of layer i. 
ASi   area of steel spring i. 
b   width of cross section. 
dc   displacement of concrete spring. 
dS   displacement of steel spring. 
dSc difference between displacement at peak compressive force and displacement at 

compressive yielding for the steel spring. 
dSt difference between displacement at peak tensile force and displacement at tensile 

yielding for the steel spring. 
dsuc   compressive displacement at peak compressive force for the steel spring.  

dsut   tensile displacement at peak tensile force for the steel spring. 

Ec  modulus of elasticity of concrete ( f.4500E '
cc   MPa). 

Eci  modulus of elasticity of concrete at the location of spring i. 
Ei  modulus of elasticity of layer i. 
Es  modulus of elasticity of reinforcing bars. 
Esi  modulus of elasticity of steel at the location of spring i. 
f c  concrete compressive stress (MPa). 
f '

c   concrete compressive strength (MPa). 
fcr  concrete tensile strength (MPa). 
ft  concrete tensile stress. 
fy  yield strength of reinforcing bars. 
fyh  yield strength of transverse reinforcement (MPa). 
h  height of cross section. 
h'  width of the concrete core measured to outside of the ties. 
Ig  gross moment of inertia of the concrete section. 
k1, k2, k3, k4, k5  concrete spring parameters. 
KCi   stiffness of concrete spring number i. 

Kh  confinement factor (
'
c

yhs
h f

f
1K


 ) 

KSc   elastic compressive stiffness of the steel spring. 
KSi   stiffness of steel spring number i. 
KSt   elastic tensile stiffness of the steel spring. 
L  length of the flexural member. 
Lci  plastic length represented by concrete spring i. 
Lsi  plastic length represented by steel spring i. 
P  Applied load. 
Pc   force in the concrete spring at displacement dc. 
PCi   force in concrete spring number i. 
PS   force in the steel spring at displacement dS. 
PSi   force in steel spring number i. 
PSUc  ultimate compressive force of the steel spring. 
PSUt   ultimate tensile force of the steel spring. 
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Psyc   compressive yield force of steel spring. 
Psyt   tensile yield force of steel spring. 
r  hardening ratio (ratio between the post yielding and initial modulus of 

elasticities). 
RSO Ratio between the residual force in the steel bars after complete slippage occurs 

and the maximum load PSU. 
S1, S2, S3 slip values defining the shape of the bond stress-slip relationship. 
Sh  centre-to-centre spacing of the ties or hoop sets. 

Cy    distance between the middle spring and the internal concrete compressive force. 

Ty    distance between the middle spring and the internal concrete tensile force. 
yi distance between the centre of gravity of layer i and the centre of gravity of the 

concrete section. 
Z   distance between the middle spring and the exterior springs. 

Zc  slope of the strain-softening branch 



























h
h

'

s'
c

'
c

c

K002.0
S

h
75.0

1000f145

f29.03

5.0
Z



. 

  incremental change in section curvature. 
c   incremental change in the section central axial strain. 
ACi  incremental change in the areas represented by concrete spring i. 
Ci   axial deformation of concrete spring number i. 
M  incremental change in the moment acting on the section. 
P  incremental change in the axial force acting on the section. 
PCC  incremental change in the internal compressive concrete force. 
PCi  incremental change in the force of concrete spring i. 
PCT  incremental change in the internal tensile concrete force. 
PSi  incremental change in the force of steel spring i. 
Si   axial deformation of steel spring number i. 
S  softening factor. 
elastic deformation elastic part of the total deflection. 
total   maximum total deflection of a flexural member. 
c  concrete strain. 
cr  concrete cracking strain. 
o  concrete strain at maximum stress (o = 0.002 x Kh). 
   inelastic rotation. 
s ratio of the volume of transverse reinforcement (ties) to the volume of concrete 

core measured to outside of the ties. 
   bond stress. 
1   ultimate bond stress. 
3   residual bond stress. 
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Fig. 1. Beam / Column element. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Concrete stress-strain relationship. 
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Fig. 3. Steel material model. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Concrete section. 
 

 
 

Es 

r.Es 

Strain 
S

tr
es

s 

N. A.  
yi 

Concrete layer i 

b  

h  

Steel layer 

Steel layer 

Es 

r.Es 



26 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Deformed shape and curvature distribution of a RC flexural member. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Local bond stress-slip constitutive model. 
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Fig. 7. Typical steel spring. 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 

 
 

Fig. 8. Typical concrete spring. 
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Fig. 9. Hysteretic rules for steel spring. 
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Fig. 11. Moment curvature relationships. 
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Fig. 13. Force displacement relationships for steel springs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 14. Bond-slip relationships for reinforcing bars. 
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Fig. 16. Hysteretic behavior for specimen S1. 
Experimental [9] 
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Fig. 17. Hysteretic behavior for specimen S3. 
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 Table 1. Parameters for concrete Springs [units N and mm]     
          

Specimen Spring Force Type Portion of curve 
Initial 
Displacement 

Constants 

K1 K2 K3 K4 K5 

S1 

Exterior 

Tension 
II 0.0467 0.000 0.000 57.7 x 103 -185 x 103 151 x 103 
III 0.460 0.000 -25.1 x 103 114 x 103 -121 x 103 154 x 103 

Compression 
II -0.101 617 x 103 2.64 x 106 4.12 x 106 2.95 x 106 -311 x 103 
III -1.40 0.000 0.000 0.000 -16.6 x 103 -1.26 x 106 

Center 

Tension 
II 0.0946 0.000 824 x 103 -1.15 x 106 609 x 103 42.1 x 103 
III 0.605 0.000 -31.1 x 103 93.9 x 103 -90.3 x 103 200 x 103 

Compression 
II -0.101 617 x 103 2.64 x 106 4.12 x 106 2.95 x 103 -311 x 103 
III -1.40 0.000 0.000 0.000 -16.6 x 103 -1.26 x 106 

S3 

Exterior 

Tension 
II 0.0127 0.000 0.000 464 x 103 -475 x 103 146 x 103 
III 0.126 0.000 -276 x 103 531 x 103 -404 x 103 137 x 103 

Compression 
II -0.0492 0.000 2.04 x 106 3.95 x 106 2.82 x 106 -558 x 103 
III -0.679 55.0 1.50 x 103 12.6 x 103 27.8 x 103 -1.28 x 106 

Center 

Tension 
II 0.0744 0.000 351 x 103 -694 x 103 486 x 103 90.0 x 103 
III 0.525 0.000 -2.11 x 103 7.26 x 103 -37.5 x 103 222 x 103 

Compression 
II -0.0492 0.000 2.04 x 106 3.95 x 106 2.82 x 106 -558 x 103 
III -0.679 55.0 1.50 x 103 12.6 x 103 27.8 x 103 -1.28 x 106 

 
 


