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Abstract 

The importance to rehabilitate ageing and deteriorated existing steel structures has motivated 

researchers to develop simple and efficient rehabilitation techniques. One of the currently 

developed techniques involves bonding Fibre Reinforced Plastic (FRP) sheets to the flanges of 

steel beams. This paper presents an analytical model to predict the linear and nonlinear behaviour 

of steel beams rehabilitated using this technique. The model is based on the solution of the 

differential equations governing the composite behaviour of a rehabilitated steel beam and includes 

representation of the peel and shear behaviour of the adhesive material. A bending test was 

conducted on a W-shaped steel beam, with glass FRP sheets bonded to its flanges, and the 

experimental results were used to validate the model. The model predictions for the failure load, 

failure mechanism, midspan deflection, steel strains, and FRP strains were found to be in excellent 

agreement with the experimental results. The model was also used to predict some parameters 

that were difficult to evaluate experimentally. This provided a better understanding of the behaviour 

of the rehabilitated beam. 
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1. Introduction 
 

In the past two decades, FRP sheets had been extensively used to rehabilitate concrete 

structures [1, 2]. This allowed increasing the strength and/or ductility of these structures while 

benefiting from the FRP material advantages including: ease of application, high strength-to-weight 

ratio, and excellent resistance against corrosion and chemical attacks. New uses of FRP sheets to 

upgrade the resistance of steel structures have recently been studied. Sen et al. [3] tested six steel 

beams after bonding carbon FRP sheets to their bottom flange. A considerable increase in the 

capacity of composite beams was reported. Miller et al. [4] used carbon FRP sheets to strengthen 

four steel bridge girders. The experimental results indicated that the stiffness of the rehabilitated 

girders increased by 10% to 37%. EL Damatty et al. [5] investigated experimentally and analytically 

the flexural capacity of a W-shaped beam with glass FRP sheets bonded to its flanges. The 

excellent performance of the beam encouraged them to analytically assess the effect of bonding 

glass FRP sheet to the bottom flange of an existing composite steel bridge. They concluded that a 

38 mm glass FRP sheet would increase the truck loading capacity of the bridge by 25% [6]. To gain 

better understanding of the behaviour of the steel beams rehabilitated using FRP sheets, EL 

Damatty et al. [5] presented a closed form analytical model to predict the stresses induced in the 

adhesive and the FRP sheets. Disadvantages of this analytical approach included its inability to 

predict the behaviour of the rehabilitated beam after yielding and to capture the peeling behaviour 

of the adhesive. 

 The current study provides an analytical model that describes the linear and nonlinear 

composite behaviour of steel/FRP beams. The model is based on the solution of the differential 

equations governing the behaviour and takes into account the shear and peel behaviour of the 

adhesive material. A steel beam rehabilitated by bonding glass FRP sheets to its flanges is tested 

to validate the model predictions. The following sections of the paper describe the tested specimen, 

the analytical model, and the experimental and analytical results. 
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2. Experimental Work 

A simply supported W150x37 steel beam, strengthened by bonding 19 mm glass FRP sheets 

to its top and bottom flanges, was tested experimentally to provide the necessary results to validate 

the analytical model. Fig. 1 gives a schematic of the test setup. It shows that the composite beam 

had a span, L, of 2800 mm. It also shows that the FRP sheets were centred on the beam and had 

a length, Lf, of 2400 mm. The FRP sheets width was 152 mm, matching the steel beam width. The 

steel and plastic materials were bonded using 0.79 mm thick methacrylate adhesive system. This 

adhesive was chosen as it provides the best level of bond between steel and glass FRP sheets [7]. 

The method, for bonding the FRP sheets to the steel beam, was similar to that explained by El 

Damatty et al. [5]. 

The yield stress, modulus of elasticity, and strain-hardening ratio of the steel beam were 400 

MPa, 2x105 MPa, and 0.01, respectively. The used FRP sheets were manufactured using the 

pultrusion process and consisted mainly of large number unidirectional layers that provided 

strength and stiffness in the longitudinal direction. The tensile strength, compressive strength, and 

modulus of elasticity of these sheets, as experimentally evaluated by the manufacturer, were 135 

MPa, 165 MPa, and 12.4x103 MPa, respectively. Considering the adhesive, El Damatty and 

Abushagur [7] evaluated experimentally its shear and peel strength as 21.79 MPa, and 4 N/mm, 

respectively. They also reported the average values for the constants of the linear continuous 

springs simulating the shear and peel stiffness of this adhesive as Ks=21.79 N/mm3 and Kp=2.26 

N/mm3, respectively  

The load was transferred to the test specimen through a rigid load distributor at the two points 

shown in Fig. 1. A load-controlled manner with a rate of 2.0 kN/minute and a displacement-

controlled manner with a rate of 0.5 mm/minute were used for the elastic and the plastic ranges, 

respectively. An LVDT, attached to the midspan section of the tested beam, was used to measure 

the vertical displacement. In addition, four strain gauges, attached to the outer face of the FRP 

sheets and the inner faces of the steel beam flanges at midspan section, were used to measure the 

strain values. 
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3. Analytical Model 

A typical simply supported steel beam, strengthened by bonding FRP sheets to its top and 

bottom flanges, is shown in Fig. 1. An infinitesimal element of the bottom FRP sheet, located at 

distance x from the midspan section, is shown in Fig. 2. In this figure, u1 and u2 are the axial 

displacements of the edge of the steel beam and the FRP sheet, respectively. u1 is expected to be 

higher than u2 because of the flexibility of the adhesive material. 

In this section, the equations used to represent the steel beam behaviour are first introduced. 

This is followed by the derivation of the differential equations governing the shear and peel 

behaviour of the adhesive material. Finally, the solutions of these differential equations are 

presented. 

 

3.1 Behaviour of the steel beam 

For any steel section, the relationship between the steel beam moment, Ms, and the axial strain 

at its edge, 
dx

du1 , can be determined by conducting a sectional analysis. This relationship can be 

approximated to a bilinear curve similar to that shown in Fig. 3 and the values defining this curve 

can be evaluated. These values are: 

Mp: yielding moment. 

p: edge axial strain corresponding to Mp. 

K1: elastic stiffness. 

K2: post-elastic stiffness. 

Using these values, the relationship between Ms and 
dx

du1  can be written as: 

Elastic stage (
dx

du1  p): 
dx

du
.KM 1

1s   (1a) 

Plastic stage (
dx

du1 p): )ε
dx

du
(KMM p

1
2ps   (1b) 
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3.2 Differential equation governing the shear behaviour of the adhesive material 

The shear stress, , developing in the adhesive can be expressed by the following equation: 

)u(uKτ 21s   (2) 

Where Ks is the spring constant simulating the shear stiffness of the adhesive. 

 From the equilibrium of the horizontal forces shown in Fig. 2, the following differential equation 

can be written. 

2
2

2

s

ff
21 dx

ud

K

E.t
-uu   (3) 

Where Ef and tf are the modulus of elasticity and the thickness of the FRP sheet, respectively. 

 Differentiating equation (3) with respect to x and setting 
dx

du
ν 2 will result in the following 

differential equation that relates the axial strain of the extreme fibres of the steel section and that of 

the FRP sheet ( ν ). 

'ν'
K

.Et
ν

dx

du

s

ff1   (4) 

 The external moment (M) acting on the rehabilitated section is equal to sum of the internal 

moment in the steel section (Ms) and moment resulting from the axial stresses in the FRP sheets 

(MFRP) and can be written as: 

ν.t.)Etb(hMMMM fffsFRPs   (5) 

Where b and h are the width of the FRP section and the height of steel section, respectively. 

Simplifying equations 1, 4 and 5 results in the following differential equations that governs the 

shear behaviour of the adhesive material: 

Elastic stage (
dx

du1 p): 'ν'νw
t..EK

M.K 2
E

ff1

s   (6a) 

Plastic stage (
dx

du1 p): 'ν'νw
t..EK

).εKM-.(MK 2
P

ff2

p2ps 


 (6b) 
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Where: 

1

fs

ff

s2
E K

)t(h.b.K

t.E

K
w


  (7a) 

2

fs

ff

s2
P K

)t(h.b.K

t.E

K
w


  (7b) 

 

3.3. Differential equation governing the peel behaviour of the adhesive material 

 The equations resulting from the equilibrium of vertical forces and moments shown in Fig. 2 

are: 

.w.bK
dx

dV
p

f   (8) 

.τ
2

b.t

dx

dM
V ff

f   (9) 

Where: 

Vf and Mf: shear force and moment in the FRP sheet. 

w:  adhesive peel displacement. 

Kp:  spring constant simulating the peel stiffness of the adhesive. 

Applying the moment-curvature relationship, equation 10, and coupling equations 8 and 9 will 

result in the differential equation governing the peel behaviour (equation 11).  

2

2

fff dx

wd
.IEM   (10) 

'ν'
2.I

b.t
wλ

dx

wd

f

2
f4

4

4

  (11) 

Where, If is the inertia of the FRP sheet and 

ff

P4

.IE

.bK
λ   (12) 
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3.4  Solution in the elastic loading stage: 

In this stage, the rehabilitated length of the beam can be divided in two zones, zone AE with x 

varying from zero to 0.5 Lp, and zone BE with x varying from 0.5 Lp to 0.5 Lf  (x is measured from 

the beam midspan and Lp is the distance between the two concentrated loads acting on the beam). 

The main difference between the two zones is the applied moment as it is constant in zone AE and 

varying in zone BE. 

 Zone AE: 0  x  0.5 Lp  

The moment in this region is constant and can be written as: 

)L(L
2

P
MM poAE   (13) 

 The solutions of the differential equations 6a and 11 can be written as: 

2
Eff1

os
E1E1AE .w.t.EK

MK
.x).cosh(wB.x).sinh(wAν   (14) 

 x)cosh(ωBx)sinh(ωA
)w.(λ2.I

.wb.t
)λ.xsinh()λ.xsin(D

)λ.xcosh()λ.xsin(C)λ.xsinh()λ.xcos(B)λ.xcosh()λ.xcos(Aw

E1E14
E

4
f

2
E

2
f

3

333AE








 (15) 

 Zone BE: 0.5 Lp  x  0.5 Lf  

The moment in this region can be written as a function of the constant moment Mo in zone 

AE. 

 
)L(L

xL5.0.2.M
M

p

o
BE 


  (16) 

 The solutions of the differential equations 6a and 11 can be written as: 

2
Eff1

BEs
E1E1BE .w.t.EK

)(MK
.x).cosh(wD.x).sinh(wCν   (17) 

 x)cosh(ωDx)sinh(ωC
)w.(λ2.I

.wb.t
)λ.xsinh()λ.xsin(H

)λ.xcosh()λ.xsin(G)λ.xsinh()λ.xcos(F)λ.xcosh()λ.xcos(Ew

E1E14
E

4
f

2
E

2
f

3

333BE








 (18) 
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 From the symmetry of the problem, it can be noted that the constants A1, B3 and C3 are equal 

to zero. The constants B1, C1, D1 A3, D3, E3, F3, G3, and H3 can be evaluated by applying the 

following boundary conditions. 

edges) itsat  zero isstrain  (FRP      
2

L
at     x                     0ν

curvature) ofy (Continuit      
2

L
at     x            

dx

dν

dx

dν

strains) ofy (Continuit       
2

L
at     x                νν

f
BE

PBEAE

P
BEAE







 (19a) 

shear) ofy (Continuit          
2

L
at  x                )(V)(V

moment) ofy (Continuit          
2

L
at  x              )(M)(M

edges) itsat  zero isshear  (FRP          
2

L
at  x                          0)(V

edges) itsat  zero ismoment  (FRP          
2

L
at  x                         0

dx

wd

rotation) ofy (Continuit           
2

L
at  x                    

dx

dw

dx

dw

nt)displaceme ofy (Continuit           
2

L
at  x                         ww

p
BEfAEf

p
BEfAEf

f
CEf

f
2
CE

2

pBEAE

p
BEAE













 (19b) 

 

3.5  Solution in the plastic loading stage: 

In this stage, the rehabilitated length of the beam can be divided in three zones, zone AP with x 

varying from zero to 0.5 Lp, zone BP with x varying from 0.5 Lp to xp, and zone CP with x varying 

from xp to 0.5 Lf. 

Where xp is the distance from the beam midspan to the section at which Ms=Mp. 

 Zone AP:  x  0.5 Lp (Applied moment > Mp) 

 The moment in this region will be equal to Mo and the differential equations governing the 

behaviour are equations 6b and 11. The solutions of these equations can be written in the 

form: 
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2
pff2

p2p1os
p2p2AP .w.t.EK

).εK.εK(MK
.x).cosh(wB.x).sinh(wAν


  (20) 

 x)cosh(ωBx)sinh(ωA
)w.(λ2.I

.wb.t
)λ.xsinh()λ.xsin(D

)λ.xcosh()λ.xsin(C)λ.xsinh()λ.xcos(B)λ.xcosh()λ.xcos(Aw

p2p24
p

4
f

2
p

2
f

4

444AP








 (21) 

 Zone BP: 0.5 Lp  x  xp (Moment  Mp) 

The moment in this zone is similar to that given by equation 16. The solutions of equation 

6b and 11 are: 

2
pff2

p2p1BPs
p2p2BP .w.t.EK

).εK.εK(MK
.x).cosh(wD.x).sinh(wCν


  (22) 

 x)cosh(ωDx)sinh(ωC
)w.(λ2.I

.wb.t
)λ.xsinh()λ.xsin(H

)λ.xcosh()λ.xsin(G)λ.xsinh()λ.xcos(F)λ.xcosh()λ.xcos(Ew

p2p24
p

4
f

2
p

2
f

4

444BP








 (23) 

 Zone CP:  xp  x   0.5 Lf (Moment  Mp) 

This zone is similar to zone BE and the equations defining the behaviour in this zone are: 

2
Eff1

CPs
E2E2CP .w.t.EK

)(MK
.x).cosh(wF.x).sinh(wEν   (24) 

 x)cosh(ωFx)sinh(ωE
)w.(λ2.I

.wb.t
)λ.xsinh()λ.xsin(L

)λ.xcosh()λ.xsin(K)λ.xsinh()λ.xcos(J)λ.xcosh()λ.xcos(Iw

E2E24
E

4
f

2
E

2
f

4

444CP








 (25) 

From the symmetry of the problem, the constants B4 and C4 are equal to zero. The 

methodology used to determine xp, and the constants A2, B2, C2, D2, E2, F2, A4, D4, E4, F4, G4, H4, 

I4, J4, K4, and L4 is as follows: 

1. A suitable value for xp is assumed. 

2. The six boundary equations given by equation (26) are solved for A2, B2, C2, D2, E2, and F2. 
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edges) itsat  zero is stress (FRP           
2

L
at     x                       0ν

curvature) ofy (Continuit           xat     x              
dx

dν

dx

dν

curvature) ofy (Continuit           
2

L
at     x             

dx

dν

dx

dν

strains) ofy (Continuit           xat     x                  νν

strains) ofy (Continuit           
2

L
at     x                 νν

problem)  theof(Symmetry               0at     x                   0
dx

dν

f
CP

p
CPBP

PBPAP

pCPBP

P
BPAP

AP













 (26) 

3. Equation 4 is applied to evaluate two values for 
dx

du1 at x=xp. The first value is evaluated using 

ν BP (equation 22) and the second value is evaluated using ν CP (equation 24). 

4. If the difference between the two values evaluated in step 3 is greater than a predefined 

tolerance, then the assumed xp is incorrect and steps 1 through 4 have to be repeated. 

5. The remaining constants are evaluated by applying the following ten boundary conditions: 

 

 

 

 

 

   (27) 

 

 

 

 

 

 
 

shear) ofy (Continuit         xat  x                 )(V)(V

shear) ofy (Continuit         
2

L
at  x                )(V)(V

moment) ofy (Continuit         xat  x                )(M)(M

moment) ofy (Continuit         
2

L
at  x               )(M)(M

edges) itsat  zero isshear  (FRP         
2

L
at  x                          0)(V

edges) itsat  zero ismoment  (FRP          
2

L
at  x                         0

dx

wd

rotation) ofy (Continuit         xat  x                    
dx

dw

dx

dw

rotation) ofy (Continuit         
2

L
at  x                   

dx

dw

dx

dw

nt)displaceme ofy (Continuit         xat  x                         ww

nt)displaceme ofy (Continuit         
2

L
at  x                        ww

pCPfBPf

p
BPfAPf

pCPfBPf

p
BPfAPf

f
CPf

f
2
CP

2

p
CPBP

pBPAP

pCPBP

p
BPAP




















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4. Experimental and Analytical Results: 

The experimentally tested beam was analyzed using the analytical model explained in section 

3. Observations on its behaviour and comparisons between the analytical and the experimental 

results are given in the following sections. 

 

4.1 Analytical behaviour of the tested steel beam 

The steel beam was analyzed using sectional analysis. The resulting relationship between the 

moment in the steel beam and the extreme fibre strains is shown in Fig. 4. In the same figure, the 

bilinear approximation is shown. The following values defines the bilinear curve: 

0.005993
K

K

0.002189ε

kN.m. 120.00M

1

2

P

P






         (28) 

 

4.2 Analytical Prediction of the plastic load Pp 

The following steps were conducted to evaluate the load Pp causing the moment in the steel 

beam to reach Mp (120.00 kN.m.): 

1. WE was calculated using equation (7a) and the value of K1 evaluated in section 4.1. 

2. A value for the applied load P was assumed and the constants B1, C1, and D1 were evaluated 

by solving equations (19a). 

3. The strain in the FRP sheet at midspan section (x=0) was evaluated using equation (14). 

4. Knowing the total applied moment (M), the steel beam moment (Ms) could be evaluated using 

equation (5). 

5. Pp was calculated by proportion (Pp = Passumed Mp/Ms). For the tested beam, Pp was found to be 

143.07 kN. This means that the glass FRP sheet increased the load required to reach the 

plastic moment (120.00 kN.m.) from 128.57 kN to 143.07 kN (11.28% increase). 
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4.3. Analytical behaviour at Pb (143.07 kN): 

In this section, the behaviour of the rehabilitated beam was studied analytically at a load of 

143.07 kN. This load represents the end of the linear stage as discussed in section 4.2. The 

constants of equations (14, 15, 17, 18) were first evaluated at Pb by solving equations (19a, 19b). A 

discussion of the beam behaviour at this load is given below. 

1. The distribution of the axial strains in the FRP sheet along the beam length was evaluated 

using equations (14) and (17). Multiplying these strains by Ef resulted in the axial stress 

distribution shown in Fig. 5. Axial stresses were increasing from zero at the FRP sheet edge to 

a maximum value of 25.63 MPa (18.99% of the FRP sheet tensile strength) at the midspan 

section. 

2. The moment carried by the FRP sheet was calculated using their evaluated axial stresses 

(step 2). This allowed calculating the moment carried by the steel beam using equation (5). 

Figure 6 shows the total applied moment. It also shows the portion of the moment carried by 

the FRP sheet and that carried by the steel section. The total applied moment was having a 

trapezoidal distribution with a maximum value, MLT=133.53 kN.m. The FRP sheet contribution 

in carrying this moment was increasing from zero at its edge to a maximum value of 14.27 

kN.m (10.7% of MLT) at the midspan section. 

3. Equation (3) was applied to obtain the relative displacement (u1-u2) that occurs between the 

FRP sheet and steel section. Multiplying this relative displacement by Ks led to an evaluation of 

the shear stresses developing in the adhesive. The distribution of these stresses is shown in 

Fig. 7. The maximum value of the adhesive shear stress was at the edges of the FRP sheet 

and was equal to 7.65% of the adhesive expected shear capacity  

4. The adhesive peel displacements were evaluated using equations (15), and (18). Multiplying 

these values by Kp resulted in the distribution of the adhesive peel stresses shown in Fig. 8. 

The peel strength, obtained by El Damatty and Abushagur (2003) through a standard ASTM 

D1878 test, was presented as force per unit length. The corresponding acting peel force could 

be obtained by integrating the peel stresses within the length at which separation tends to 



 13

occur. Integrating the peel stresses, shown in Fig. 8, at the FRP sheet edge, showed that the 

adhesive peel stress reached 29.88% of its expected capacity. 

5. The moment and shear in the FRP sheet, Figs. 9, and 10, were evaluated using equations (9) 

and (10). Their extreme values were found near the edges of the FRP sheet. The maximum 

combined axial/flexural stress in the FRP sheet occurred at a distance 462 mm from the beam 

midspan and was equal to 25.664 MPa (19.01% of the FRP sheet Tensile Strength). This 

shows that at this loading level, the flexural stresses resulted in an increase of 0.13% in the 

FRP sheet stresses. The maximum shear stress in the FRP sheet was 1.14 MPa. 

 

4.4 Failure load 

The following incremental analysis was conducted to analytically predict the failure load: 

1. The initial load and the step number, n, were set equal to Pb and one, respectively. 

2. A suitable load increment dP was chosen. 

3. xp and the constants of equations (20, 21, 22, 23, 24, 25) were evaluated at a load equal to 

Pb + n dP using the iterative method given in section 3.5. 

4. Equations (3, 20, 22, 24) were applied to obtain the relative displacements (u1-u2) that occur 

between the FRP sheet and steel section. Multiplying the maximum relative displacement by 

Ks led to an evaluation of the maximum shear stress developing in the adhesive. This stress 

was compared with the shear strength of the adhesive material to judge if adhesive shear 

failure would occur at this load level. 

5. The adhesive peel displacements were evaluated using equations (21, 23, 25). Multiplying 

these values by Kp results in the distribution of the adhesive peel stresses. The 

corresponding acting peel force could be obtained by integrating the peel stresses within the 

length at which separation tends to occur. This force was compared with the peel strength of 

the adhesive material to judge if adhesive peel failure would occur at this load level. 

6. The distribution of the axial strains in the FRP sheet along the beam length was evaluated 

using equations (20, 22, 24). Multiplying these strains by Ef resulted in the axial stresses in 
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the FRP sheet. The moment in the FRP sheet was also evaluated using equation (10). The 

maximum value for the combined axial and flexural stresses were calculated and compared 

with the adhesive tensile strength to judge if FRP sheet tensile failure would occur at this 

load level.  

7. Steps 3 through 6 were repeated until failure occurred. 

Using these steps, the analytical model predicted that tensile failure of the FRP bottom sheet 

initiated the collapse of the specimen. The FRP sheet increased the specimen load capacity from 

128.57 kN (load corresponding to MP) to 206.88 kN (61% increase). The observed experimental 

failure load (216.47 kN) was in close agreement with that predicted analytically. Following is a 

discussion of the behaviour of the tested specimen at failure. 

1. Figure 11 shows the relationship between the location of the plastic hinge and the applied load. 

The bonding of the FRP sheet increased the distance over which the steel beam moment 

reached Mp from 933.33 mm (distance between applied loads) to 1350.17 mm (44.66% 

increase). 

2. The distribution of the axial stresses in the FRP sheet is shown in Fig. 5. These stresses are 

increasing from zero at the FRP sheet edge to a maximum value of 132.73 MPa (96.18% of 

the FRP sheet tensile strength) at the midspan section. The rate of increase of these axial 

stresses at the FRP sheet edges started to significantly increase at the plastic hinge location. 

This led to the adhesive shear stresses distribution shown in Fig. 7. At failure, the adhesive 

shear stresses reached 32.25% of its ultimate capacity. 

3. Figure 12 shows the total applied moment. It also shows the portion of the moment carried by 

the FRP sheet and that carried by the steel section. The total moment was having a maximum 

value, MNT=193.08 kN.m. The FRP sheet contribution in carrying this moment was increasing 

from zero at its edge to a maximum value of 70.29 kN.m (36.4% of MNT) at the midspan 

section. 

4. Figure 8 shows the distribution of the adhesive peel stresses. Integrating the peel stresses 

showed that the adhesive peel stress reached 37.00% of its expected capacity. 
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5. The moment and shear in the FRP sheet are shown in Figs. 9 and 10, respectively. The 

maximum moment occurred at the point of the applied load and was equal to 0.05 kN.m. The 

maximum combined axial/flexural stress occurred near the applied load and was equal to 135 

MPa. This explained the experimentally observed tensile failure of the FRP sheet, shown in 

Fig. 13, where failure occurred near the concentrated load. 

 

4.5 Experimental and analytical strains at the midspan section: 

This section reports the results of the four strain gauges installed at the midspan section as 

well as the strains evaluated analytically. The load-strain curves in the steel beam and the FRP 

sheet are given in Figs. 14 and 15, respectively. Examining the two figures can draw the following 

observations. 

1. The analytical model was able to predict the steel and the FRP sheet strains in both the linear 

and nonlinear ranges of loading with high accuracy. 

2. The differences between the absolute values of the strains measured in the top and bottom 

flanges, and the top and bottom FRP sheets were minor. This verifies the accuracy of these 

strain measurements. 

3. The analytical load-strain curves show a linear behaviour up to a load of 143.07 kN (moment of 

133.53 kN.m.). At this load, the steel section moment reached its Mp value (120.00 kN.m.). This 

indicates that bonding the FRP sheets to the steel flanges increased the load required to reach 

Mp from 128.57 kN to 143.07 kN (increase of 11.3%). 

 

4.6. Experimental and analytical load-deflection relationship 

 In this section, the load-deflection diagram was obtained analytically and compared to that 

obtained experimentally. For each load increment, the calculated strains in the flanges of the steel 

beam were used to evaluate the curvature distribution along the member length. These curvatures 

were then integrated to evaluate the vertical deflection at the beam midspan. The analytical 

predictions as well as the experimental results are shown in Fig. 16. The figure shows that the 
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analytical predictions for the linear and nonlinear deflections are in close agreement with the 

experimental ones. The analytical load-deflection curve was linear up to a load of 143.07 kN 

(Moment = 120.00 kN.m). Beyond this load value, the figure indicates that the section possessed a 

positive stiffness (10.43% of the initial stiffness) and had the ability to carry extra loads. This 

stiffness resulted only from the contribution of the FRP plates.  

 

5.  Conclusions 

In this paper, an analytical model capable of predicting the linear and nonlinear behaviour of 

steel beams rehabilitated using FRP sheets is developed. This model can be used to predict the 

strains, and stresses in the steel beam, the FRP sheet, and the adhesive material. It can also 

predict the deformations of the rehabilitated beam up to failure. The following failure modes are 

included in the model: adhesive shear failure, adhesive peel failure, and FRP sheet tensile failure. 

To validate the model predictions, a steel beam rehabilitated using glass FRP sheets was 

experimentally tested. The model predictions for the midspan strains and deflections and for the 

failure load were compared against the experimental results. In general, the comparison between 

the experimental, and analytical results showed excellent agreement. The tested specimen failed 

when the FRP sheet reached its maximum tensile strength. This failure mode was confirmed 

analytically and it was found analytically that the point of maximum combined flexural and axial 

stresses was located near the location of the applied load. 
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Fig. 1. Rehabilitated steel beam. 
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Fig. 2. Stresses, forces, and moments acting on an infinitesimal element of the FRP sheet. 
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    Fig. 3. Variation of the steel section moment with 

the extreme fibres axial strain. 

 

 

Fig. 4. Variation of steel section moment with the extreme fibres 

axial strain for the tested steel beam. 

 

P
2K

du

dx



sMSteel
Moment

Edge Steel
Strain

1

M

P

K 1

0

20

40

60

80

100

120

140

0 0.002 0.004 0.006 0.008 0.01 0.012

Edge Steel Strain

S
te

e
l M

o
m

e
n

t

Exact

Approximate



 21

 

Fig. 5. Relationship between FRP sheet axial stresses and the 

distance from midspan at Mp and at failure. 

 

Fig. 6. Relationship between the moment and the distance 

from midspan at Mp. 
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Fig. 7. Relationship between the adhesive shear stress and 

the distance from midspan at Mp and at failure. 
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Fig. 8. Relationship between the adhesive peel stress and the 

distance from midspan at Mp and at failure. 
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Fig. 9. Relationship between the moment in the FRP sheet and the 

distance from midspan at Mp and at failure. 
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Fig. 10. Relationship between the shear in the FRP sheet and the 

distance from midspan at Mp and at failure. 
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Fig. 11. Relationship between the applied load and its distance to 

the plastic hinge (xp-0.5 Lp). 
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Fig. 12. Relationship between the moment and the distance 

from midspan at failure. 
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Fig. 13. Failure mechanism of the rehabilitated beam. 

 

 

Fig. 14. Relationship between the applied load (P) and the strains 

in the steel beam at midspan section. 
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Fig. 15. Relationship between the applied load (P) and the strains 

in the FRP sheets at midspan section. 

 

 

Fig. 16. Relationship between applied load and midspan deflection 

of the rehabilitated steel beam. 
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