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Mathematical Modeling of the
Biomechanics of the Lamina
Cribrosa Under Elevated
Intraocular Pressures
Comprehensive understanding of the biomechanical performance of the lamina cribrosa
(LC) and the optic nerve head is central to understanding the role of elevated intraocular
pressures (IOP) in chronic open angle glaucoma. In this paper, six closed-from math-
ematical models based on different idealizations of the LC are developed and compared.
This approach is used to create further understanding of the biomechanical behavior by
identifying the LC features and properties that have a significant effect on its perfor-
mance under elevated IOP. The models developed are based on thin circular plate and
membrane theories, and consider influences such as in-plane pretension caused by
scleral expansion and large deflections. Comparing the results of the six models against
a full ocular globe finite element model suggests the significance of the in-plane preten-
sion and the importance of assuming that the sclera provides the LC with a clamped
edge. The model that provided the most accurate representation of the finite element
model was also used to predict the behavior of a number of LC experimental tests
presented in the literature. In addition to the deflections under elevated IOP, the model
predictions include the distributions of stress and strain, which are shown to be compat-
ible with the progression of visual field loss experienced in glaucoma.
�DOI: 10.1115/1.2205372�

Keywords: lamina cribrosa, mathematical modeling, glaucoma, plate analysis, mem-
brane analysis
Introduction
Glaucoma is a major cause of irreversible blindness in Europe

nd North America and the third most common cause of blindness
orldwide. Chronic open angle glaucoma affects 1% of the popu-

ation over 40 and more than 10% over 80. The hypothesis of
ressure-dependent glaucomatous optic neuropathy, in which the
levation of intraocular pressure �IOP� causes optic nerve damage
nd hence visual impairment, is generally accepted. Reference can
e made for example to Anderson �1�, Emery et al. �2�, Quigley
3�, and Harju �4�. In this hypothesis, the primary site of damage
s the lamina cribrosa �see Fig. 1�, which is the main supporting
omponent of the optic nerve head. The lamina cribrosa �LC� is a
ery thin structure located in the center of the optic nerve head,
hrough which the optic nerve fibers �axons� pass. Retrodisplace-

ent of the LC under elevated IOP is thought to cause structural
amage to the axons and reduce blood flow, leading to loss of
ision as reported by Levy and Crapps �5� and Quigley et al. �6�.
his relationship between the LC deformation and the axonal
amage is not yet fully understood, although the association be-
ween the two phenomena is thought to be significant.

Several efforts have been made to date to link LC deformation
nd the resulting stresses and strains to axonal damage. Math-
matical techniques idealizing the LC as a homogenous structure
nd employing either plate or membrane analogy have been used
ecause of the apparently simple geometry of the LC. These ef-
orts include an attempt by Chi et al. �7� to idealize the LC as a
embrane �i.e., assuming no flexural resistance� with a resulting

verestimation of deformation under IOP. Dongqi and Zeqin �8�
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later developed a mathematical model for a thin elastic circular
plate representing an idealized LC. The model considered the ef-
fect of both the IOP and the in-plane pretension due to scleral
expansion, although the in-plane pretension was not directly re-
lated to the value of the IOP. This was followed by another effort
by Edwards and Good �9�. Their model was different in two ways:
it ignored the in-plane pretension caused by scleral expansion and
was based on a large deflection idealization of the LC. The model
was extended to predict the stresses and strains experienced by the
optic nerve axons due to IOP, hence, providing a further step by
attempting to relate IOP elevation to axonal injury.

These models and other contributions �such as Bellezza �10��
have led to notable advances in our understanding of the LC bio-
mechanics and the complexity of its structure. The degree of fixity
offered by the connection with the sclera, the influence of the
pretension caused by scleral expansion and the ratio between flex-
ural and in-plane stiffness are among the factors that could have a
strong effect on the structure and accuracy of the mathematical
model representing the LC behavior.

Instead of adopting one set of assumptions �regarding the im-
portance of these factors� in developing a mathematical model,
this research follows a different strategy. It considers six modeling
techniques built on different combinations of modeling idealiza-
tions, which consider how the aforementioned factors should be
incorporated into the models. By assessing and comparing these
techniques the importance of each factor is determined.

This approach should be seen as a first step towards the devel-
opment of more complex and potentially more accurate models,
and also provides relatively simple and usable mathematical mod-
els for preliminary assessment of problems. Similar research to

assess the effect of other issues such as anisotropy and viscoelas-
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icity is currently underway. The results of this work could also
elp improve understanding of the LC biomechanics and guide its
uture mathematical and numerical modeling.

Mathematical Modeling
Mathematical modeling is an attractive tool in understanding

he behavior of structures. With the closed form solutions ob-
ained, the influence of various parameters and modeling idealiza-
ions can be directly recognized and parametric studies easily per-
ormed. However, as mathematical modeling is only practically
easible for simple structures, idealizations are often necessary
nd analysts need to select the parameters expected to have the
reatest influence for inclusion in the model. Undoubtedly, more
omplex analysis can be conducted using other approaches such
s the finite element or finite difference method. However, closed
orm mathematical modeling should be seen as an important first
tep to provide an insight into the importance of parameters, to
reate useful benchmarks for future calibration exercises and to
evelop simple, approximate “engineering” methods for initial
nalysis and interpretation.

In modeling the LC, there is uncertainty regarding a number of
spects, mainly:

• the boundary condition, i.e., whether the LC is only sim-
ply supported along the interface with the sclera or is
there additional restraint against rotation along this line

• the effect of in-plane pretension due to scleral expansion
• the relative importance of the in-plane and flexural stiff-

ness of the LC
• the spatial heterogeneity in the biomechanical properties

of the LC
• the constitutive relationship of the lamina cribrosa

material

This study is intended to help clarify the current uncertainty and
uide decisions on how to include these factors in future modeling

Fig. 1 Cross section throug

Table 1 Modeling idealizat

Model Edge with sclera In-plane pre-tensi

1 Clamped
2 Simple
3 Clamped C
4 Simple C
5 Clamped
6 Simple
ournal of Biomechanical Engineering
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work. Only the first three factors are included at this stage. The
fourth and fifth factors, which require both experimental and
mathematical studies, are the focus of the next stage of research.
However, in the absence of specific experimental data the consti-
tutive relationship reported by Woo et al. �11� will be used to
represent the material behavior.

The work presented benefits from the efforts made earlier to
produce general solutions for circular plates with various loading
and boundary conditions. The most notable contributions were
made by Timoshenko and Woinowsky-Krieger �12�. The follow-
ing six mathematical models are built on different modeling ide-
alizations, which are devised to enable assessing the importance
of the first three factors. A brief description of these idealizations
is provided in Table 1 and free body diagrams for each of the
models are shown in Fig. 2.

2.1 Model 1 With a Clamped Edge and No In-Plane
Pretension. The first model ignores in-plane pretension due to
scleral expansion and assumes the sclera provides the LC with a
clamped edge, where rotation but not in-plane deformation is pre-
vented. This recognizes that the 0.12 mm thick LC is much thin-
ner than the surrounding 1.0 mm thick sclera. This model assumes
the LC to be homogeneous, isotropic and with a uniform thick-
ness. It also assumes that out-of-plane deformation is small com-
pared with the LC dimensions, and as a result, the changes in the
thickness of the plate with deformation are ignored. From analysis
of a plate segment bounded by two diametral and two cylindrical
sections �Fig. 3� and considering the following boundary condi-
tions:

• the deflection along the plate edge is prevented and
• the slope of the deflection surface along the edge and at

the center is zero

The retrodisplacement of the uniformly loaded LC, w, at any

he human optic nerve head

considered in models 1–6

ue to scleral expansion Other features

ored Small deflection model
ored Small deflection model
idered Small deflection model
idered Small deflection model
ored Large deflection model
ored Membrane model
ion

on d
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Ign
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oint at distance r from the center is given by Timoshenko and
oinowsky-Krieger �12� using the circular plate theory as

w =
q�R2 − r2�2

64D
�1�

here R is the radius of the LC, D is the flexural rigidity of the
C, D=Eh3 /12�1−�2�, E is the elastic �Young’s� modulus, h is

he LC thickness, � is Poisson’s ratio, q=IOP−S, the difference
etween the IOP and the retrolaminar pressure �S—also called the
ptic nerve tissue pressure�. S is given as a function of IOP �8,3�
n the form

Fig. 2 Free body diagrams of the

ig. 3 Analysis of a laterally loaded circular plate „see Ref.

12‡…

98 / Vol. 128, AUGUST 2006
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S = 0.5IOP for IOP � 20 mm Hg and

S = 10 mm Hg for IOP � 20mm Hg

From the following equations relating the radial and tangential
bending stresses, �r and �t, to the displacement, w:

�r =
6D

h2 �d2w

dr2 +
�

r

dw

dr
� and �t =

6D

h2 �1

r

dw

dr
+ �

d2w

dr2 � �2�

the stresses can be obtained as

�r = −
3q

8h2 �R2�1 + �� − r2�3 + ��� and

�t = −
3q

8h2 �R2�1 + �� − r2�1 + 3��� �3�

At the center �r=0�, the retrodisplacement and the stresses be-
come

wr=0 =
qR4

64D
, ��r�r=0 = ��t�r=0 = −

3qR2�1 + ��
8h2 �4�

and at the edge of the plate �where r=R�

wr=0 = 0, ��r�r=R =
3qR2

4h2 and ��t�r=R =
3�qR2

4h2 �5�

Note that

• While w is highest at the center, �r is highest along the
plate edge.

• At the plate center, the stresses calculated using Eq. �4�
cause tension on the posterior side and compression on
the anterior side. The opposite is true along the edge

deling idealizations in models 1–6
where Eq. �5� is used.

Transactions of the ASME
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2.2 Model 2 With a Simply Supported Edge and No In-
lane Pretension. Another idealization of the LC is based on

educing the importance of the rotational restraint provided by the
clera. The model in this case is obtained from model 1 by releas-
ng the restraint against edge rotation and therefore applying an
dge bending moment equal and opposite to that developed by the
dge clamp of model 1.

In model 1, the bending moment along the edge clamp is

Mr = −
�r�r=R�h

2

6
= −

qR2

8
�6�

Applying an equal and opposite moment of magnitude qR2 /8
long the plate edge while allowing it to rotate there results in the
ollowing distribution of deflection:

w =
qR2

16D�1 + ��
�R2 − r2� �7�

Adding this to the deflection of the clamped plate in Eq. �1�,
esults in the deflection of a simply supported plate

w =
q�R2 − r2�

64D
�5 + �

1 + �
R2 − r2� �8�

The stresses �r and �t, are also obtained in the same manner as

�r = −
3q

8h2 �3 + ���R2 − r2� and

�t = −
3q

8h2 �R2�3 + �� − r2�1 + 3��� �9�

and �r given in Eqs. �8� and �9� have zero values along the edge
nd a parabolic distribution inside the plate. The maximum values
or the retrodisplacement, w, and the stresses, �r and �t, exist at
he center, where r=0:

wmax =
qR4�5 + ��
64�1 + ��D

and ��r�max = ��t�max = −
3qR2�3 + ��

8h2

�10�
ote that the stresses calculated using Eq. �10� are tensile on the
osterior side of the LC and compressive on the anterior side.

2.3 Model 3 With a Clamped Edge and In-Plane
retension. The in-plane pretension in this model arises from the
cleral expansion due to the application of the IOP. The value of
he pretension, N, can be derived by analyzing the sclera as an
dealized perfect sphere. Equilibrium of the scleral hemisphere
nder IOP and N leads to �Fig. 4�

N�2�Rs� = IOP�Rs
2 or N =

IOPRs �11�

Fig. 4 Equilibrium of the sclera
2

ournal of Biomechanical Engineering
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where Rs is the radius of the sclera.
The effect of in-plane pretension on the retrodisplacement of a

circular plate has been obtained earlier by Dongqi and Zeqin �8�
in the form

w =
wq

1 + �
�12�

where wq is the retrodisplacement for an equivalent plate without
in-plane forces �as given in Eq. �1��, and �=NR2 /14.68D. Substi-
tuting the values of N and � in Eq. �12�, w is obtained as

w =
29.36Dwq

29.36D + IOPRsR
2 = Awq, �13�

where A=29.36D /29.36D+IOPRsR
2. The stresses, �r and �t, can

then be obtained using the equations

�r = �r1 + �r2, where �r1 = −
3Aq

8h2 �R2�1 + �� − r2�3 + ��� ,

�r2 =
N

h
, and �14�

�t = �t1 + �t2, where �t1 = −
3Aq

8h2 �R2�1 + �� − r2�1 + 3��� ,

�t2 =
N

h
�15�

In Eqs. �14� and �15� �rl and �tl are caused by the lateral load q,
while �r2 and �t2 are due to the in-plane pretension. Note that
while �rl and �tl are tensile on the posterior side of the plate and
compressive on the anterior side, �r2 and �t2 are always tensile.

2.4 Model 4 With a Simply Supported Edge and In-Plane
Pretension. The development of this model is similar to model 3.
The retrodisplacement of the LC again takes the form in Eq. �12�,
but wq in this case is obtained from Eq. �8� from model 2 with a
simply supported edge. In this case, � is also different according
to Timoshenko and Woinowsky-Krieger �12�

� =
N R2

4.20D
�16�

As a result, the deflection w is obtained as

w =
8.4Dwq

8.4D + IOPRsR
2 = Bwq �17�

where

B =
8.4D

8.4D + IOPRsR
2 �18�

The stresses are obtained in a similar fashion to model 3 in the
form

�r = �r1 + �r2 and �t = �t1 + �t2 �19�
where

�r1 = −
3Bq

8h2 �3 + ���R2 − r2� �20�

�t1 = −
3Bq

8h2 �R2�3 + �� − r2�1 + 3��� and �21�

�r2 = �t2 =
N

h
=

IOPRs

2h
�22�

2.5 Model 5 With a Clamped Edge and Large Deflection.

In the above four models, the deflections are assumed to be

AUGUST 2006, Vol. 128 / 499
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maller than the plate thickness. As a result, the strain at the
iddle plane of the plate is assumed to be small and negligible.
owever, if the deflection is no longer assumed to be smaller than

he thickness, yet still small in comparison with other dimensions,
he strain of the middle plane must be considered. An approximate
olution for this problem is provided by Timoshenko and
oinowsky-Krieger �12� in the form

w =
�q�R2 − r2�2

64D
, �23�

�r = −
3�q

8h2 �R2�1 + �� − r2�3 + ��� and

�t = −
3�q

8h2 �R2�1 + �� − r2�1 + 3��� �24�

here �=1/1+0.488�wo
2 /h2�, defines the effect of the stretching

f the middle plane on the plate deflection, and w0 is the retrodis-
lacement at the center. Note that while large deflections are con-
idered in the development of Eqs. �23� and �24�, the correspond-
ng thickness change under load is ignored for simplicity. In
olving Eqs. �23� and �24�, Eq. �23� is rewritten for the center
oint �r=0� as

w0 =
qR4

64D

1

1 + 0.488
wo

2

h2

�25�

his third order equation is first solved for w0. Then the distribu-
ion of w can be obtained from w=w0�1−r2 /R2�2 and �r and �t

rom Eq. �24�. Notice that the parameter � increases in signifi-
ance with large deformation. For instance, for w0=0.5 h, �
quals 0.89. With w0 increasing to h ,2h, and 4h ,� becomes 0.67,
.34, and 0.11 respectively. This means that the plate stiffness
rows gradually with larger deformation.

2.6 Model 6 With the LC Modeled as a Membrane Sup-
orted Along Its Periphery. As a step further from the above
odel, model 6 assumes the plate has no flexural stiffness and its

ehavior under lateral pressure is dominated by the membrane
ction. The model again assumes that w has the same dependence
n r as in other models

w = w0�1 −
r2

R2�2

�26�

he derivation of w0 for a circular membrane follows a strain-
nergy/virtual deflection approach, which is common in stress-
train problems of this kind. The radial and transverse strains, �r
nd �r, and the radial displacement, u, at radius r are given by

�r =
du

dr
+

1

2
�dw

dr
�2

�27�

�t =
u

r
�28�

u = r�R − r��c1 + c2r� �29�

here c1 and c2 are constants. The strain energy in the LC asso-
iated with the stretching of the membrane is given by

V =
�Eh

1 − �2�
0

R

��r
2 + �t

2 + 2��r�t�rdr �30�

o calculate the deflection of the membrane, the above equations
re solved to find c1, c2, and w0. First, the right sides of Eqs.
26�–�29� are substituted for the corresponding terms in Eq. �30�.
sing the resulting form of Eq. �30�, c1 and c2 are found by
mposing the requirements that

00 / Vol. 128, AUGUST 2006
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�V

�c1
= 0 and

�V

�c2
= 0

Another requirement is introduced that the change in the work
done by the differential pressure acting through a virtual displace-
ment equals the change in strain energy associated with the virtual
displacement. If the virtual displacement is chosen as 	w �which
is directly proportional to w0�, this requirement can be expressed
by the equation

�V

�w0
	w0 = 2�q	w0�

0

R �1 − � r

R
�2	2

rdr �31�

After manipulation and following the procedure presented in Ref.
�13�, the solution for the maximum displacement can finally be
presented as

w0 = 
R
3 qR

Eh
�32�

where


 =
3 6615��2 − 1�
2�2791�2 − 4250� − 7505�

and therefore w is determined as

w =
3 6615��2 − 1�
2�2791�2 − 4250� − 7505�

R
3 qR

Eh
�1 −

r

R
�2

�33�

By using �=0.49 �according to Woo et al. �11��, we obtain
w0=0.65R
3 qR /Eh. The membrane stress, �r, �i.e., the in-plane
radial stress due to the membrane action� is also obtained as

��r�r=0 = 0.414
3 Eq2R

h2 and ��r�r=R = 0.321
3 Eq2R

h2 .

�34�

3 Comparative Study of Mathematical Models
A brief comparative study of the six mathematical models de-

veloped above is conducted to identify the effect of various
idealizations. All six models are used to predict the central dis-
placement of the LC under a range of IOP between 10 and
60 mm Hg �0.00133, and 0.0079 N/mm2�, or q�= IOP—the retro-
laminar pressure� between 5 and 50 mm Hg �0.00067, and
0.006,67 N/mm2�. The LC and scleral dimensions used are as
reported by Yan et al. �14�, Woo et al. �11�, and Dongqi and Zeqin
�8�: R= LC radius =0.6 mm, h=LC thickness =0.12 mm,
Rs= scleral radius =12 mm, and hs= scleral thickness =1 mm.

The shear modulus, G, of the LC is assumed to be that given by
Woo et al. �11� in the form of the trilinear relationships shown in
Table 2. The modulus of elasticity, E, is derived from the shear
modulus using the relation G=E /2�l+��, where � is Poisson’s
ratio, taken as 0.49. For each IOP increment, calculations are
made for q ��IOP-S�, stresses ��r and �t�, E �Table 2�, D
�Eh3 /12�1−�2�� and w. Due to the trilinear expression used for E,

Table 2 Material properties for the lamina cribrosa as given by
Woo et al. „see Ref. †11‡…. Note: MPa=N/mm2 and kPa
=0.001 N/mm2.

Range of stress �kPa�

G �MPa� E�MPa� From To

0.12 0.358 0.0 8.0
Lamina cribrosa 0.22 0.656 8.0 15.0

0.61 1.818 15.0 –
the relationship between pressure and deformation is nonlinear.
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The central displacements obtained from the six models are
ompared in Fig. 5 The following observations can be made:

• The edge fixity has a large effect on the model predic-
tions. Models 2 and 4 with simply supported edges de-
form considerably more than models 1 and 3 with
clamped edges �by 268% and 110%, respectively�.

• Introducing the in-plane pretension caused by scleral ex-
pansion also has a notable effect. It reduces the displace-
ment of the model with a simply supported edge �model
2� by 61% and the model with a clamped edge �model 1�
by 32%.

• Modifying the mathematical model to recognize large
deformations �model 5� leads to relatively small effects
on the results �below 5%�. This is due to the fact that the
deformations obtained under the largest IOP considered
did not exceed 35% of the thickness of the lamina crib-
rosa.

• Modeling the LC as a membrane results in large dis-
placement predictions, but the stiffness of the membrane
increases rapidly with more curvature as would be
expected.

Reference can also be made to Fig. 6 showing the distribution
f model displacement across the LC diameter under
OP =25 mm Hg �i.e., q=15 mm Hg or 0.002 N/mm2, allowing
or a retrolamina pressure S=10 mm Hg�. The observations noted
bove regarding the central displacement predictions are also
alid when comparing the displacement distributions in this fig-
re. Notice also the reduced displacement near the model edge in
ases with clamped boundary conditions.

Fig. 5 Central displacement compari

ig. 6 Distribution of displacement across LC diameter under
OP=25 mm Hg „q=15 mm Hg or 0.002 N/mm2

… as predicted by

athematical models

ournal of Biomechanical Engineering
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4 Further Assessment of Models
In this section, the predictions of the six models are also com-

pared against the results of a nonlinear finite element �FE� model
of the whole eye. This numerical model, which incorporates the
lamina cribrosa, the sclera, and the cornea, is not based on any a
priori assumptions of the LC’s boundary conditions, e.g., in-plane
pretension, etc. The FE model has been constructed in this form to
provide comparative predictions and to guide the selection of the
most suitable closed-form mathematical model for predicting the
behavior of the LC. This model has been used successfully to
predict the biomechanical performance of the cornea under el-
evated IOP in an earlier study �15�. In this work it is intended to
make up for the current paucity of available experimental data in
validating the mathematical models presented herein. However, it
should be the aim of future work to address this shortfall and
make available reliable laboratory data on the LC behavior.

The nonlinear FE model uses 4000 linear strain, triangular ele-
ments arranged in 40 layers, with 100 elements per layer �see
Figs. 7�a� and 7�b��. General purpose thin shell elements are used
throughout for their ability to cope with small as well as large
deformations. Each element has three corner nodes with six de-
grees of freedom per node �u ,v ,w ,�x ,�y ,�z�. The model is built
using Abaqus FE software package �16�. The analyses consider
both geometric nonlinearities due to change of joint coordinates
and material nonlinearities according to the relationships given in
Tables 2 and 3. In tracing the nonlinear behavior, Riks arc method
is adopted �17�. In this method, load increments vary according to
the current stage of overall behavior, and are controlled automati-
cally such that a solution is obtained even close to the points of
instability. The model is supported at three points along the main
circle of the sclera, which is parallel to the corneo-scleral inter-
section. This choice of boundary conditions was adopted so that it
has the minimum effect on the behavior of the LC part of the
model.

The construction of the FE model is based on an earlier study to
optimize the finite element analysis of the eye globe �15�. The
study considered several aspects including the density of the finite
element mesh, the thickness variation within the cornea, and the
significance of the out-of-plane flexural and torsional resistance of
the globe components. The study confirmed the importance of
using a dense mesh and incorporating the out-of-plane resistance
components. Modeling the thickness variation of the cornea did
not lead to notable variation in overall behavior predictions. While
detailed validation and calibration of the whole eye globe finite
element model �including the geometric and constitutive assump-
tions� is still in progress, this approach has provided a benchmark
for assessing the mathematical models presented in this paper.

s between the mathematical models
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The dimensions used in the model are: lamina cribrosa:
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=RLC=0.6 mm, h=LC thickness=0.12 mm; cornea: Rc=Rcornea
6 mm, hc=hcornea=0.6 mm; and sclera: Rs=Rsclera=12 mm and
s=hsclera=1.0 mm.
The moduli of elasticity of the cornea and the sclera are derived

rom the trilinear relationships given by Woo et al. �11� for the
hear modulus, G, and assuming �=0.49. The results are listed in
able 3.

Fig. 8 Central displacement compari

Fig. 7 Details of the finite element meshes used in analysis
models
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The model was subjected to an IOP range between 10 and
60 mm Hg �0.0013 and 0.0079 N/mm2�. IOP was applied as a
uniform pressure acting on the internal faces of all elements form-
ing the model. The LC was additionally subjected to the corre-
sponding retrolaminar pressure in accordance with the relations
given in model 1. The central displacement of the LC part of the
model, relative to the surrounding sclera, was compared to the
predictions of the six mathematical models and the results are
given in Fig. 8. The comparisons show clearly that model 3 with
a clamped edge and in-plane pretension achieved the closest
agreement with the FE model. Adopting simple edge supports or
modeling the lamina cribrosa as a membrane clearly resulted in an
overestimated displacement compared with the FE model. The
error margin associated with model 3 was below 10% at all IOP
levels. Ignoring the in-plane pretension caused by scleral expan-
sion �as in model 1� caused a growth in the error margin to be-
tween 35% and 45%. Enabling the model to consider large out-
of-plane deflections reduced the errors slightly and made it
evident that the in-plane pretension was a more influential factor
than the accurate modeling of the large deflections.

The distribution of displacement across the LC diameter under
IOP =25 mm Hg is also plotted in Fig. 9 as obtained by the FE
and the six mathematical models. The close correlation with
model 3 is maintained across the whole diameter. There is also
strong evidence of very limited rotation along the LC edge in the
FE model, indicating a behavior pattern close to that associated
with a clamped edge.

These findings show the importance of in-plane pretension and
the edge fixity provided by the sclera in modeling the behavior of
the LC. Future work, whether closed-form mathematical or nu-
merical, could build on these findings in the efforts to study the

Table 3 Material properties for the cornea and the sclera as
given by Woo et al. „see Ref. †11‡…. Note: MPa=N/mm2 and
kPa=0.001 N/mm2.

G �MPa� E �MPa� Range of stress �kPa�

From To

0.18 0.536 0.0 4.0
Cornea 0.37 1.103 4.0 12.5

0.81 2.414 12.5 –
0.90 2.682 0.0 10.0

Sclera 1.40 4.172 10.0 22.0
2.70 8.046 22.0 –

s between the FE and mathematical
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echanics of the LC and also the importance of other factors,
uch as viscoelasticity and the structural support of the axons.

Assessment Against Experimental Data
A further assessment of the most successful model �compared

o the finite element analysis�, number 3, is done by comparing its
redictions to results of experimental testing reported by Levy and
rapps �5� and by Yan et al. �18� on LC specimens. The dimen-

ions used in the mathematical modeling are: R=0.6 mm,
=0.120 mm, Rs=12.0 mm, and hs=1.0 mm.

ig. 10 Comparison between model 3 predictions and earlier

ig. 9 Distribution of displacement across the LC diameter
nder IOP =25 mm Hg according to the finite element and the
athematical models
xperimental data

ournal of Biomechanical Engineering
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The resulting model predictions match closely the test data as
shown in Fig. 10. The comparisons start at IOP=10 mm Hg as
this pressure was needed in the experiments to ensure the speci-
mens had been inflated and become free of wrinkles. Hence, the
disaplacements are relative to this geometric datum and have been
corrected for the appropriate retrolamina pressure. Note also that
the comparisons with the Levy and Crapps �5� results refer to the
global average displacements of the LC. In these tests, the profile
of the LC was monitored under elevated IOP and the average
displacement �rather than the central displacement� was reported
in their paper.

6 Stress And Strain Distribution
The distributions of stress and strain across the diameter of the

lamina cribrosa, as obtained using model 3, are illustrated in Figs.
11 and 12, respectively. The dimensions and material properties
used are: h=0.12 mm, R=0.6 mm, Rs=12 mm, and �=0.49. The
modulus of elasticity, ELC, is taken as 0.358 MPa as given in
Table 2.

The stresses and strains are significantly higher along the edges
of the lamina cribrosa and gradually reduce towards the center.
This observation ties closely with the earlier finding by Garway-
Heath et al. �19� that the loss of vision in glaucomatous eyes starts
along the boundaries and grows towards the center. The retinal
axons responsible for transmitting the vision signals along the
boundaries are known to cross the lamina cribrosa near its edge. It
appears therefore that the high stresses and strains in the LC edge
could be responsible for damage to the axons transmitting the
boundary vision signals. Then with higher IOP, the stresses and
strains closer to the center of the LC grow, spreading the damage
to the axons transmitting vision signals from more central areas.

7 Conclusions
Six mathematical approaches to the biomechanical modeling of

the LC are introduced in this paper. In particular, the LC boundary
condition, the effect of the surrounding sclera, and the relative
significance of in-plane and flexural stiffness are varied between

Fig. 11 Stress distribution on the anterior face of the lamina
cribrosa at four different levels of IOP as obtained using model
3

the models. Comparisons with a full ocular finite element model,
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hich does not adopt any related idealizations, indicate that con-
idering a clamped edge and incorporating in-plane pretension are
mportant modeling considerations. With these factors included in
he closed-form mathematical model based on the circular plate
heory, predictions of the behavior of the LC under elevated IOP
ave been achieved with good agreement with FE model and with
imited available experimental data. Further, the following conclu-
ions are drawn from the research presented in this paper:

1. The effects of boundary conditions �i.e., end fixity� and
in-plane pretension on the outcome of mathematical
modeling are significant. Therefore, care should be taken
in considering these factors when attempting to approxi-
mate in vivo conditions.

2. Modeling the lamina cribrosa as a membrane leads to
large overestimations of the displacement compared with
the results of FE modeling and the limited available ex-
perimental data.

3. With a relatively simple closed-form mathematical model
that incorporates the most pertinent aspects, the behavior
of the lamina cribrosa could be reasonably accurately

ig. 12 Strain distribution on the anterior face of the lamina
ribrosa at four different levels of IOP as obtained using model
predicted, enabling parametric studies to be conducted
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easily using calculations that could be developed rapidly
by hand or using a spreadsheet.

4. Further model development should be conducted to as-
certain whether a more accurate representation of the
structural complexity of the laminar cribrosa would pro-
duce improved predictions of the biomechanical behavior
under elevated intraocular pressure.
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