Western University - Faculty of Engineering
Department of Civil and Environmental Engineering

CEE 9550 – Seismic Analysis and Design of Buildings
Course Outline – Winter 2023

DESCRIPTION:
Seismic analysis and design of buildings course is designed to achieve the following objectives:
• Understand the fundamentals of structure dynamics.
• Perform seismic analysis of buildings manually and using computer modelling.
• Apply the seismic provisions of the building code of Canada.
• Understand the concept of capacity design.
• Design seismic-resistant steel buildings.
• Design seismic-resistant reinforced concrete buildings.

PREREQUISITE:
Bachelor degree in Structural Engineering and CEE 9512a or equivalent

TOPICS:

<table>
<thead>
<tr>
<th>Topic #</th>
<th>Description</th>
<th>Learning Activities</th>
<th>Tentative timeline</th>
</tr>
</thead>
</table>
| 1 | Earthquake Ground Motions Characteristics | • In-person Lecture during the scheduled class hours. Attending lectures is mandatory*
• Reading material (Course notes – Chapter 1) | Week 1 |
| | Lecture 1: Wednesday Jan 11
• Causes and effects of earthquakes
• Seismic waves
• Characteristics of earthquakes
• Characteristics of ground record accelerations
• Attenuation relationship
• Return periods
• Design intensity | | |
| 2 | Response of a Single Degree of Freedom System | • In-person Lecture during the scheduled class hours. Attending lectures is mandatory*
• Reading material (Course notes – Chapter 2)
• Help session (office hour) | Weeks 2-3 |
| | Lecture 2: Wednesday Jan 18
• Free vibration response
• Response to harmonic loads | | |
| | Lecture 3: Wednesday Jan 25
• Response to earthquake loading using numerical integration (time history analysis) Concept of elastic response spectrum | | |
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Seismic Analysis of Multi Degrees of Freedom Structures</td>
</tr>
<tr>
<td>Lecture 4: Tuesday Jan 31</td>
<td>Lecture 5: Wednesday Feb 1</td>
</tr>
<tr>
<td>• Dynamic analysis of MDOF systems using the modal analysis procedure</td>
<td>• Linear seismic analysis using modal analysis</td>
</tr>
<tr>
<td>• Dynamic analysis of MDOF systems using the time history procedure</td>
<td>• Linear seismic analysis using time history approach</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Code Procedures for Earthquake Resistant</td>
</tr>
<tr>
<td>Lecture 6: Tuesday Feb 7</td>
<td>Lecture 7: Wednesday Feb 8</td>
</tr>
<tr>
<td>• Inelastic behaviour and ductility</td>
<td>• Code Provisions for dynamic analysis</td>
</tr>
<tr>
<td>• Seismic provisions of the National Building Code of Canada NBCC</td>
<td></td>
</tr>
<tr>
<td>• Concept of capacity design</td>
<td></td>
</tr>
<tr>
<td>Lecture 7: Wednesday Feb 8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Seismic Analysis Using Computer Modeling</td>
</tr>
<tr>
<td>Lecture 7: Wednesday Feb 15</td>
<td></td>
</tr>
<tr>
<td>• 3D modelling for high-rise building subjected to earthquake loading according to NBCC code using ETABS software</td>
<td>• In-person Lecture during the scheduled class hours. Attending lectures is mandatory*</td>
</tr>
<tr>
<td></td>
<td>• Reading material (Course notes - Chapter 4)</td>
</tr>
<tr>
<td></td>
<td>• Help session (office hour)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture</td>
<td>Date</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
</tbody>
</table>
| 6 | Lecture 8: Tuesday Feb 28 | Seismic behaviour and design provisions of ductile moment resisting steel frames
Seismic behaviour and design provisions of ductile steel braced frames
Lecture 9: Wednesday March 1
Solved example: Seismic Design of a steel building | • In-person Lecture during the scheduled class hours. Attending lectures is mandatory*
• Reading material (Course notes – Chapter 6)
• Help session (office hour) | | Lecture 8: Tuesday Feb 28 | Seismic Design of Steel Buildings
Lecture 8: Tuesday Feb 28
Lecture 9: Wednesday March 1 | Specifying and designing steel structures using the latest codes and standards
Understanding damage states and their implications
Understanding the role of steel dampers and their effectiveness | 30% | Depth and breadth of knowledge | Understanding of advanced concepts and theories
Awareness of important current problems in the field of study
Understanding of computational and/or empirical methodologies to solve related problems |
| 7 | Lecture 10: Tuesday March 14 | Seismic behaviour and design provisions of ductile moment resisting reinforced concrete frames
Lecture 11: Wednesday March 15
Seismic behaviour and design provisions of ductile reinforced concrete shear walls | • In-person Lecture during the scheduled class hours. Attending lectures is mandatory*
• Reading material (Course notes - Chapter 7)
• Help session (office hour) | | Lecture 10: Tuesday March 14 | Seismic Design of Reinforced Concrete Structures
Lecture 10: Tuesday March 14
Lecture 11: Wednesday March 15 | Specifying and designing reinforced concrete structures using the latest codes and standards
Understanding damage states and their implications
Understanding the role of reinforced concrete dampers and their effectiveness | 30% | Application of knowledge | Ability to apply knowledge in a rational way to analyze a particular problem
Ability to use coherent approach to design a particular engineering system using existing design tools |

* There will be no classes during the winter reading week

SPECIFIC LEARNING OUTCOMES

<table>
<thead>
<tr>
<th>Degree Level Expectation</th>
<th>Weight</th>
<th>Assessment Tools</th>
<th>Outcomes</th>
</tr>
</thead>
</table>
| Depth and breadth of knowledge | 30% | • Assignments
• Project
• Final Examination | • Understanding of advanced concepts and theories
• Awareness of important current problems in the field of study
• Understanding of computational and/or empirical methodologies to solve related problems |
| Research & scholarship | 10% | • Assignments
• Project | • Ability to conduct critical evaluation of current advancements in the field of specialization
• Ability to conduct coherent and thorough analyses of complex problems using established techniques/principles and judgment |
| Application of knowledge | 30% | • Assignments
• Projects
• Final Examination | • Ability to apply knowledge in a rational way to analyze a particular problem
• Ability to use coherent approach to design a particular engineering system using existing design tools |
| Professional capacity / autonomy | 10% | • Project | • Awareness of academic integrity
• Ability to implement established procedures and practices in the coursework
• Defends own ideas and conclusions
• Integrates reflection into his/her learning process |
| Communication skills | 10% | • Project | • Ability to communicate (oral and/or written) ideas, issues, results and conclusions clearly and effectively |
| Awareness of limits of knowledge | 10% | • Project | • Awareness of the need of assumptions in complex scientific analyses and their consequences
• Understanding of the difference between theoretical and empirical approaches
• Ability to acknowledge analytical limitation due to complexity of practical problems |

ASSESSMENTS:

<table>
<thead>
<tr>
<th>Assessment Type</th>
<th>Material Covered</th>
<th>Tentative Due Date*</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework Assignments (five)</td>
<td>Topics 1, 2, 3, 4, 6</td>
<td>Check course calendar</td>
<td>25%</td>
</tr>
<tr>
<td>Participation</td>
<td>Topics 1-7</td>
<td>Weekly activity</td>
<td>5%</td>
</tr>
<tr>
<td>Project</td>
<td>Topics 5-7</td>
<td>March 29th, 2021</td>
<td>35%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>Topics 1 – 7</td>
<td>April 10th, 2021</td>
<td>35%</td>
</tr>
<tr>
<td>Project (Oral Exam)</td>
<td></td>
<td>March 31st, 2021</td>
<td>30% of project weight</td>
</tr>
</tbody>
</table>

* The shown dates are an approximate guide for students and are subject to change.

Activities in which collaboration is permitted:

- *Participation (asynchronous) using course OWL site “Forums”:* Students are strongly encouraged to post questions/respond to posted questions on a weekly basis. Group discussion using “Forums” regarding course material and topics covered in lectures is permitted.

- *Project:* Students will be divided into groups (2-3 members per group). Collaboration between only group members is permitted. One final project report is required from each group.

Activities in which students must work alone (collaboration is not permitted):

- Homework Assignments
- Final Exam

CONTACT INFORMATION:

Course instructor: Dr. Ashraf El Damatty, P.Eng.,
email: damatty@uwo.ca

Contact policy:

- Contact instructor via email (above) or through messages in OWL
- Weekly Office hours will be announced
- A general FAQ section on the ‘forums’ section of OWL will be used for students to post course-related questions so that all have the same information.
CONTACT HOURS:

3 or 6 hours lecture per week based on the schedule above
For Tuesdays, the lectures will be 4:30 pm – 7:30 pm at ACEB 1410
For Wednesdays, the lectures will be 9:30 am – 12:30 pm at UCC 37

COURSE MATERIALS:

Lecture notes prepared by Dr. El Damatty will be made available through the course website on OWL at http://owl.uwo.ca/, along with other useful reference material and data for assignments.

Other References:

1) Elements of earthquake engineering and structural dynamics, by Filiatrault, Andrée, Cursus, 2013.

COMPUTING:

Several assignments will involve computer modelling of structures using the commercial programs SAP2000 and ETABS. The full version of the programs is available at the PC lab in the Engineering building. Remote access to the computer lab and the software license servers will be provided. Instructions on how to remotely access the software license will be posted on course OWL site.

Units:

SI units will be used in lectures and examinations

USE OF ENGLISH:

In accordance with Senate and Faculty Policy, students may be penalised up to 10% of the marks on all assignments, tests, and examinations for the improper use of English. Additionally, poorly written work with the exception of the final examination may be returned without grading. If resubmission of the work is permitted, it may be graded with marks deducted for poor English and/or late submission.

COURSE CONTENT

The lecture notes and online lecture videos are copyrighted and legally protected. Do not post these videos and lecture notes on any other website or online forums. The recording of the live/synchronous sessions of the course without the permission from the instructor is prohibited. The illegal posting and sharing of the copyrighted course content could be subjected to legal actions.

CHEATING, PLAGIARISM/Academic Offences

Academic integrity is an essential component of learning activities. Students must have a clear understanding of the course activities in which they are expected to work alone (and what working alone implies) and the activities in which they can collaborate or seek help; see information above under “Assessments” and ask instructor for clarification if needed. Any unauthorized forms of help-seeking or collaboration will be considered an academic offense. University policy states that cheating is an academic offence. If you are caught cheating, there will be no second warning. Students must write
their essays and assignments in their own words. Whenever students take an idea or a passage of text from another author, they must acknowledge their debt both by using quotation marks where appropriate and by proper referencing such as footnotes or citations. Plagiarism is a major academic offence. Academic offences are taken seriously and attended by academic penalties which may include expulsion from the program. Students are directed to read the appropriate policy, specifically, the definition of what constitutes a Scholastic Offence (see Western's scholastic discipline regulations for graduate students).

SYNCHRONOUS LEARNING ACTIVITIES
Students are expected to participate in synchronous learning activities as outlined in the course syllabus and/or described by the instructor. If you have issues that will impede your ability to participate in synchronous activities, please discuss with the course instructor at the beginning of the course.

CONDUCT
Students are expected to follow proper etiquette during synchronous and asynchronous activities to maintain an appropriate and respectful academic environment. Any student who, in the opinion of the instructor, is not appropriately participating in the synchronous and asynchronous learning activities and/or is not following the rules and responsibilities associated with the online learning activities, will be reported to the Associate Dean (Graduate) (after due warning has been given). On the recommendation of the Department concerned, and with the permission of the Associate Dean (Graduate), the student could be debarred from completing the assessment activities in the course as appropriate.

HEALTH/WELLNESS
As part of a successful graduate student experience at Western, we encourage students to make their health and wellness a priority. Western provides several health and wellness related services (remotely accessible) to help you achieve optimum health and engage in healthy living while pursuing your graduate degree. Information regarding health- and wellness-related services available to students may be found at http://www.health.uwo.ca/.

Students seeking help regarding mental health concerns are advised to speak to someone they feel comfortable confiding in, such as their faculty supervisor, their program director (graduate chair), or other relevant administrators in their unit. Campus mental health resources may be found at http://www.health.uwo.ca/mental_health/resources.html
https://www.uwo.ca/health/psych/index.html

SICKNESS
Students should immediately consult with the Instructor (for a particular course) or Associate Chair (Graduate) (for a range of courses) if they have problems that could affect their performance. The student should seek advice from the Instructor or Associate Chair (Graduate) regarding how best to deal with the problem. Failure to notify the Instructor or the Associate Chair (Graduate) immediately (or as soon as possible thereafter) will have a negative effect on any appeal. Obtaining appropriate documentation (e.g., a note from the doctor) is valuable when asking for accommodation due to illness.

ACCESSIBILITY
Please contact the course instructor if you require material in an alternate format or if any other
arrangements can make this course more accessible to you. You may also wish to contact Accessible Education at 661-2111 x 82147 or http://academicsupport.uwo.ca/accessible_education/index.html, for any specific question regarding an accommodation.