Western Engineering

## Motivation and background

- n-butanol is widely used as an important industrial intermediate. Based on the combustion performance it is a superior alternative biofuel compared to bioethanol<sup>[1]</sup>.
- The large supply of bioethanol on the market, justifies seeking a green and efficient route for the direct catalytic conversion of ethanol (EtOH) to nbutanol (BuOH).
- Current technology for this route is still limited to bench scale due to the lack of suitable catalysts and optimized reaction systems<sup>[2]</sup>



## Objectives

Regulating the catalytic activity of MgAlO-based catalysts to optimize nbutanol production.

Develop methodology to identify and qualitatively and quantitatively correlate the relationships between active sites and catalytic performance.

## **Research Methodology and equipment**

Reaction network of the EtOH to BuOH process



DAQ ---

# Decoupling of redox/basic catalytic mechanisms during n-Butanol production Wei Tian and José E. Herrera







## Chemical and **Biochemical Engineering**

