Western Engineering

Motivation and Background

Lead acid batteries (LAB) are efficient, safe and lowcost. Their market was valued at **37.5 billion \$** in Europe alone in 2020. The main application in the automotive sector is starting, lighting and ignition (75%). Polymeric materials account for 22-30% of the whole end-of-life battery and hold great value.

The research interest in plastic waste pyrolysis has more than doubled in the last three years. The main focus is virgin plastics treatment at the laboratory scale.

For this reason, our research focuses on real industrial plastic waste. To identify the impacts of contamination on yields and product composition. Moreover, process and plant scale-up are carried out to achieve industrial implementation of plastic waste pyrolysis.

Objectives

- Assess liquid and gas production for LAB-derived plastics pyrolysis with different operating conditions in a laboratory-scale rector;
- Perform a techno-economic evaluation of the pyrolysis of this feedstock and to assess the economic sustainability of the scale-up of the considered process;
- Compare the investigated processes and products and define the most advantageous configuration.

Liquid and gas products from lead acid battery (lab) derived plastics via pyrolysis: a techno-economic assessment to maximize the value Maddalena Laghezza, Franco Berruti, Silvia Fiore

Methodology

Lead acid battery-derived plastics were provided by Rovereta s.r.l

Single-stage pyrolysis in mechanically fluidized bed reactor (MFR), feeding rate of 0.90 kg h⁻¹, temperature 550-650°C, nitrogen flow 1 L min⁻¹

Techno-economic analysis development method

Total capital investment	Equipment cost Direct costs Indirect costs Fixed capital = direct + indirect costs. Working capital
Annual income	Annual gas production time its selling price Annual oil production times its list price. Annual char production times its market value
Total product cost	Annual manufacturing cost: feedstock, utilities, labor, maintenance, etc. Annual general expenses: administrative, R&D, etc.
Operating income	Total product cost - Annual income
Depreciation	Straight method line with total equipment salvage value at the end of service life equal to 2000\$ (base scenario), 32000\$ (scale up).
Income after tax	Income before tax - Taxes
Annual net cash income	Income after tax + Depreciation
Annual present value	Annual net cash income discounted at the reference year
Net present value	∑ Annual present value – Total capital investment

- Plant scale-up to treat 3,000 tons per year of LAB plastic.
- Top-down analysis to define the minimum plant size required for the process to be industrially realized.
- The scale-up scenarios consider the economic parameters as in the base scenario and the influence of different energy sources (electricity, natural gas, methane recycle).

Results

Gas Composition

Char Composition

	LAB plastic pyrolysis char	Whole battery pyrolysis char (Zhu & Chen, 2020)					
Proximate analysis (%-wt)							
Moisture content	0.46	n.a.					
Volatile matter content	5.71	n.a.					
Ash content	72.95	n.a.					
Fixed carbon	20.88	n.a.					
Ultimate analysis (%-wt)							
С	20.51	85.28					
Н	1.16	11.48					
Ν	1.12	0.56					
S	0.05	n.a.					
0	4.12	1.14					

Liquid Composition

	С	Н	Ν	S
OIL - Cond. 1	53.68 ± 3.11	$\textbf{5.88} \pm \textbf{2.06}$	$\textbf{2.47} \pm \textbf{1.30}$	0 ± 0
OIL - Cond. 2	69.40 ± 2.12	5.72 ± 0.25	$\textbf{2.39} \pm \textbf{0.21}$	0 ± 0

Techno-economic assessment

Chemical and **Biochemical Engineering**

Conclusions

- At 550°C the liquid production is maximized
- At 650°C the gas production is maximized and 39% of the feedstock is converted into hydrogen
- A plant capacity of **3000 tons** per year is **not** economically **sustainable** in any case
- The best scenario is given by a plant size of 10500 tons per year and methane recycling
- In this case a payback period of 4 years and an internal rate of return of 30% is achieved

Acknowledgements

