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Background and Motivation

Reduction of COz emissions

Il-ﬁf

= CO, emissions: main contributor to global warming and primarily released from fossil fuels for
energy and industrial production. The Paris Agreement requires to limit global warming by 1.5 to 2

°C by reducing carbon dioxide (CO,) and other greenhouse gas emissions.

= Net-zero emissions: zero carbon emissions or all emissions are offset by capturing emitted carbon.

The Canadian government has legislated its commitment to achieve net-zero emissions by 2050.

= Carbon capture and utilization (CCU): converts captured CO, to fuels and chemical commodities

using renewable energy and helps achieve net-zero emissions.
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Converting captured CO, to Methanol

= Methanol (MeOH): a stable and transportable feedstock for chemicals and fuels as well as an

energy resource for transportation and electricity production.

= High demand with high emissions: currently produced 100 Mt/year releasing 300 Mt CO,
emissions and predicted to reach 500 Mt by 2050 with 1.5 Gt CO, emissions 2.,

= Production: mainly by syngas-based (CO and H,) conversion using fossil carbons, such as natural

gas and coal. Renewable methanol only <0.2 Mt/year [2,

= Potential: converting captured CO, to MeOH not only provides a renewable MeOH feedstock, but

also helps achieve net-zero emissions.

COZ_ hydrogenation to MeOH

Conversion & Selectivity(%)

= Direct CO, hydrogenation: CO, +3H, © CH,0H +H,0  AH,q5 = -49.5 kJ/mol

= Reversible water gas shift (RWGS): CO, +H, < CO +H,0 AH,o5 = 41.2 kJ / mol

= CO hydrogenation: CO + 2H, < CH,0H AH,qq = -90.6 kJ/mol
100 o e T - o = - - 10
oo b, \\ < i ',‘Z'M’Pa. . /'_/” (b) —
\ - T \3 M P /' '3'Mpa |
80 |- 2MPe ,° RETT —X-CO, 0.8 - :
\ Y / ~—S-CH_OH 1 :
70 AMPas ¢° ) 3 0.7
N AN ——S-CO 0 :
60 | 55 g N S 0.6- !
s T A .'\.)‘./ : - |
*t ) % 0.5- ;
<l & W ik s - Y CORXN
40 F\.3\MPa ’ A ‘/.‘ ;;j g | cmmm= Fixed-bed
30 FramPay. . T [ 0.3 4 ! CO,RXN
1Ml;a', .o :'\A " T - , ~*@uuug@. Fixed-bed
20 '-7_'-/_ S i TATS % G | B Slumy
10;.'.‘.,'./ ’\\\"..\-‘.\.\ 0'1_. '
0 - - ! ! X T . 0.0 T T T I ll T T T T T
150 200 250 300 350 400 270 280 290 300 310 320 330
Temperature(°C) Temperature (")

= MeOH formation: more favorable at lower temperatures and higher pressures 131,
= Stability of CO,: high temperatures to overcome the activation energy.

= RWGS reaction: more favorable at higher temperatures to form CO and reduce MeOH selectivity,

waste the H, feed, and produce more water [4..

= Catalysts: mostly developed for syngas-based MeOH synthesis in gas-phase reactors, could suffer from

water sintering and thermal deactivation 3.
= Fixed-bed reactor: local high-temperature spots and catalyst thermal decomposition issues 4.

= Gas-liquid-solid slurry reactor: better heat removal and temperature control 34,
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Objectives

Formulate In,05-based catalysts for methanol synthesis via CO, hydrogenation in a gas-liquid-solid

slurry reactor.
|dentify the support effects of ZrO, and ZnO for the In,0O, catalysts.
Identify the loading effect of In,O,; and compare with the CuO catalysts.

Improve the catalytic performance of In,0;-based catalysts.

Materials and Methods
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Results and Discussion

H,-Temperature programmed reduction and support effect of ZrO, and ZnO on In,0,
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= The 5wt.% In,0,/ZrO, showed a sharp H, consumption peak at 260 °C.

= The ZrO, support shows significantly higher methanol activity than the ZnO support since ZrO, can
decrease the H, reduction temperature of In,0; to below the reaction temperature, which could

promote MeOH formation on In-Zr surface.
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Loading effects of In,0, and CuO supported by ZrO,
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= The interactions between In-Zr can created more

oxygen vacancies, which can improve methanol

formation B3I,

= A higher In,0; loading could lead to the formation

of larger clusters and reduce the conversion.

= CO formation is more favored on Cu, which leads to

higher conversions but lower MeOH selectivities.

Promotion effect of CuO on In,0; supported by ZrO,

MeOH Selectivity & CO, Conversion (%)
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Conclusions

= Cu showed promotion effects on methanol selectivity and CO, conversion of In,0; catalysts for CO,

hydrogenation to methanol in the slurry reactor.
Compared to the previously developed catalysts in the slurry systems, 5wt.% In,0,-5wt.% CuO/ZrO, reached:

= The highest MeOH activity of 0.165 g,,.on 8.+ h™, relatively higher CO, conversion of 20%, but lower

selectivity of 38%, which still needs improvement.

References

[1] IEA, World Energy Outlook 2021, IEA, Paris 2021.

[2] IRENA, MI, Innovation Outlook: Renewable Methanol, International Renewable Energy Agency and Methanol Institute, Abu Dhabi 2021.

[3] S. Saeidi, S. Najari, V. Hessel, K. Wilson, F. J. Keil, P. Concepcion, S. L. Suib, A. E. Rodrigues, Progress in Energy and Combustion Science 2021, 85, 100905.
[4] S. Kanuri, S. Roy, C. Chakraborty, S. P. Datta, S. A. Singh, S. Dinda, International Journal of Energy Research 2022, 46, 5503.

[5] J. Ye, C. Liu, D. Mei, Q. Ge, ACS Catalysis 2013, 3, 1296.

[6] Y. Zhang, L. Zhong, H. Wang, P. Gao, X. Li, S. Xiao, G. Ding, W. Wei, Y. Sun, Journal of CO2 Utilization 2016, 15, 72.

[7] U. Din, M. S. Shaharun, D. Subbarao, A. Naeem, F. Hussain, Catalysis Today 2016, 259, 303.

[8] Y. Jiang, H. Yang, P. Gao, X. Li, J. Zhang, H. Liu, H. Wang, W. Wei, Y. Sun, Journal of CO2 Utilization 2018, 26, 642.

[9] P. Schiihle, S. Reichenberger, G. Marzun, J. Albert, Chemie-Ingenieur-Technik 2021, 93, 585.




