Motivation & Background

Fluid Coking: A thermal cracking process using hot fluidized coke to convert heavy, low-grade petroleum oils into lighter hydrocarbons.

Could local vapor saturation increase detrimental liquid carry-under to stripper?

Research Methodology

Research Objectives

1. Quantify liquid accumulation due to vapor saturation with a pilot plant Fluid Coker
2. Determine impact of vapor saturation on liquid yield and composition

Characteristics

- Very good mixing:
 - No agglomerates
 - Very good heat transfer
 - Liquid accumulation from vapor saturation

Measure amount of accumulated liquid vs. injection time:

- At end of injection, increase bed temperature by 30°C
- Use ΔP to measure the amount of vapor out of the bed after the end of injection

Impact of Experimental Conditions:

- Change of Bed Temperature (T)
- Change of Bed Pressure (P)
- Change of Injection Time (t_inj)

Results

- **Mass of Accumulated Liquid (g)**
 - Heating Oil
 - Varsol
 - Heating Oil / Varsol

Conclusion

1. New method to characterize liquid accumulation
2. Liquid accumulation mitigated by reaction to lighter compounds
3. Liquid composition

Future Work

1. Simulated distillation of liquid product
2. Test different feedstocks from Suncor
3. Incorporate vapor saturation in Fluid Coker model:
 - Vapor-liquid equilibrium HYSYS
 - Gas mixing and transfer measurements in large cold model of Fluid Coker

Acknowledgement of Sponsors