

Motivation & Background

Fluid Coking: a thermal cracking process using hot fluidized coke to convert heavy, low-grade petroleum oils into lighter hydrocarbons.

Could local vapor saturation increase detrimental liquid carry-under to stripper?

Research Objectives

Quantify liquid accumulation due to vapor saturation with a pilot plant Fluid Coker

Assumption:

Mass of Accumulated Liquid in Bed vs. Time

VAPOR FLOW IN A FLUID COKER - FLUID COKING REACTOR (FCR) Jie Han, Francisco Sanchez, Cedric Briens, Jennifer McMillan

Research Methodology

Very good mixing:

- No agglomerates
- Very good heat transfer \rightarrow liquid accumulation from <u>vapor saturation</u>

Measure amount of accumulated liquid vs. injection time:

- At end of injection, increase bed temperature by 30°C to vaporize all in-bed accumulated liquid
- Use ΔP to measure the amount of vapor out of the bed after the end of injection

• Feed compositions:

- Mixture of heating oil and Varsol
- Varsol: very light \rightarrow no accumulation

Liquid product characterization:

- Density
- Viscosity
- Simulated distillation
- Gas yield (measure of over cracking)

Conclusion

- New method to characterize liquid accumulation
- Liquid accumulation mitigated by reaction to lighter compounds
- 3. Liquid composition

Future Work

- Simulated distillation of liquid product
- 2. Test different feedstocks from Syncrude
- Incorporate vapor saturation in Fluid Coker model:
 - Vapor-liquid equilibrium: HYSIS
 - II. Gas mixing and transfer: measurements in large cold model of Fluid Coker

Acknowledgement of Sponsors

Chemical and **Biochemical Engineering**

Model for Reaction in Liquid Phase Model for Reaction Prediction for **Commercial Cokers** in Vapor Phase Model for Mass Transfer and Mixing

