Development of a General Kinetic Model based on Chemical Compositions of Lignocellulosic Biomass for Predicting Product Yields from Hydrothermal Liquefaction

Haoyu Wang, Xin Han, Yimin Zeng, Chunbao Charles Xu

*Department of Chemical and Biochemical Engineering, University of Western Ontario, London, ON N6A 5B9, Canada
*CanmetMATERIALS, NRCan, Hamilton, ON L8P 0A5, Canada

Motivation and Background

- Energy Demand Growth
- Environmental Impacts
- Fossil Fuel Depletion

Intensive research on exploring alternatives to fossil resources for both energy and chemical production. Bioresources, such as lignocellulosic biomass, food waste and algal biomass, are promising candidates to produce bioenergy and bio-based chemicals. Hydrothermal liquefaction is one of the promising methods to convert biomass into valuable products.

Objectives

To develop a general kinetic model based on the chemical compositions (cellulose, hemicellulose, and lignin) of lignocellulosic biomass to predict product yields (gas, liquid, and solid residue) and elucidate the reaction pathways and mechanisms in HTL of lignocellulosic biomass.

Research Methodology

Reaction Network

- Feedstocks → [Cellulose] → [Hemicellulose] → [Lignin] → [Bio-oil] → [Gas] → [Solid residue]

Reaction Rate

1. \[\frac{dX_{feed}}{dt} = -(k_1 + k_2 + k_3)X_{feed} \]
2. \[\frac{dX_{bio}}{dt} = k_1X_{feed} + k_3X_{cell} - (k_5 + k_6)X_{bio} \]
3. \[\frac{dX_{oil}}{dt} = k_5X_{feed} - (k_1 + k_2 + k_3)X_{oil} \]
4. \[\frac{dX_{gas}}{dt} = k_7X_{bio} + k_8X_{oil} \]

Key Results

- Curve fitting of experimental data
- Comparison of HTL product yields obtained by model predictions and by experiments reported in literature

Acknowledgment of Sponsors

- NSERC CRGNS
- FPI Innovations
- Natural Resources Canada
- Western Innovation Network
- Ontario Innovation Fund
- Canada Excellence Research Chair in Western Canada Titanium Ventures