
Catalyst for Gasification of Biomass Derived Tars

Surface Area 
(m²/g)

Pore Volume 
(cm³/g)

Average Pore 
Diameter (Å)

γ-Al2O3 199 ± 13 0.54 ± 0.04 109.5 ± 0.6

2%CeO2/
γ-Al2O3

201 ± 3 0.54 ± 0.01 106.7 ± 0.4

5%CeO2/
γ-Al2O3

183 ± 3 0.49 ± 0.01 106 ± 2

10%CeO2/
γ-Al2O3

183 ± 13 0.47 ± 0.03 103.7 ± 0.1
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Table 1. Textural properties of the samples with
different CeO2 loadings
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Figure 1. Adsorption-desorption isotherms
for the different CeO2 loadings

INTRODUCTION

OBJECTIVES

• To develop a stable catalyst for
secondary treatment of biomass tars.

• To prepare a set of catalysts suitable for
tar conversion.

• To characterize the physical and
chemical properties of the prepared
catalysts using techniques such as NH3-
TPD, H2-TPR, XRD, N2 physisorption.

• To evaluate the performance under
different operational conditions on the
CREC Riser Simulator.

• To establish the kinetic modelling for the
selected catalyst.

METHODOLOGY

RESULTS

• Tars formed during biomass gasification

are a disadvantage, given they cause

operational issues and lower quality

syngas.

• A fluidizable catalyst for the conversion

of tars from the biomass gasification

process is needed.

• A possible candidate catalyst is: a)

mesoporous γ-Al2O3 as support b) CeO2

as a promoter to reduce acid sites, c) Ni

as an active phase.

• Promoter and active phase loadings, as

prepared with incipient wetness, are key

issues.

• Physicochemical characterization (BET,

TPR, XRD, NH3-TPD) is very important.

• Catalyst evaluation in the CREC Riser

Simulator, under different operational

conditions, is needed to establish a

kinetic model.

N2 Physisorption
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Figure 3. H2-TPR of samples with different 
NiO loadings

Figure 2. X-Ray Diffraction patterns for 
samples calcined at 500 °C. 
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Figure 4. NH3-TPD of samples with different 
CeO2 loadings
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CONCLUSIONS

• The addition of CeO2 over γ-Al2O3 does
not have a significant impact on the
textural support properties.

• The isotherms found are of type IV, which
are characteristic of mesoporous
materials, with an hysteresis likely
corresponding to cylindrical pores.

• As nickel loadings increases for a set
CeO2, the reduction temperature
decreases.

• XRD patterns show a peak at 28° which is
characteristic of the CeO2. This peak
remains without changes with Ni
addition.

• CeO2 addition slightly reduces the strong
acid sites, specially with 5% CeO2, while
the basicity of the support remaining
unchanged.

Step # 1: Multi-step 
impregnation using incipient 

wetness technique.

Step # 2: Catalyst
Characterization (BET, NH3-TPD, 

XRD, CO2-TPD, H2-TPR)

(Pending)
Step # 3: Performance of the 

prepared catalyst

CeO2 as promoter and 
Ni as active phase.

Calcination at 500 °C

Different operational conditions, such as 
temperature and reaction time.

Experiments in CREC Riser Simulator

0.00

0.05

0.10

0.15

0.20

0.25

45 145 245 345 445

C
o

n
ce

n
tr

at
io

n
 (

cm
³/

m
in

 g
)

Temperature (°C)

Al2O3 2CeO2 5CeO2 10CeO2

Figure 5. CO2-TPD of samples with different 
CeO2 loadings
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