Engineering

Western

INTRODUCTION

- Tars formed during biomass gasification are a disadvantage, given they cause operational issues and lower quality syngas.
- A fluidizable catalyst for the conversion of tars from the biomass gasification process is needed.
- A possible candidate catalyst is: a) mesoporous γ -Al₂O₃ as support b) CeO₂ as a promoter to reduce acid sites, c) Ni as an active phase.
- Promoter and active phase loadings, as prepared with incipient wetness, are key issues.
- Physicochemical characterization (BET, TPR, XRD, NH_3 -TPD) is very important.
- Catalyst evaluation in the CREC Riser Simulator, under different operational conditions, is needed to establish a kinetic model.

OBJECTIVES

- catalyst for stable develop secondary treatment of biomass tars.
- To prepare a set of catalysts suitable for tar conversion.
- characterize the physical and То ulletchemical properties of the prepared catalysts using techniques such as NH₃-TPD, H_2 -TPR, XRD, N_2 physisorption.
- To evaluate the performance under different operational conditions on the CREC Riser Simulator.
- To establish the kinetic modelling for the selected catalyst.

Catalyst for Gasification of Biomass Derived Tars

Floria Rojas Chaves (frojasch@uwo.ca) Supervisor: Hugo de Lasa (hdelasa@uwo.ca) Co-supervisor: Cindy Torres Quirós (cindy.torres@ucr.ac.cr)

RESULTS

N₂ Physisorption

Table 1. Textural properties of the samples with different CeO₂ loadings

	Surface Area (m²⁄g)	Pore Volume (cm³/g)	Average Pore Diameter (Å)
γ -Al ₂ O ₃	199 ± 13	0.54 ± 0.04	109.5 ± 0.6
$2\%CeO_2/$ γ -Al ₂ O ₃	201 ± 3	0.54 ± 0.01	106.7 ± 0.4
5%CeO ₂ / γ -Al ₂ O ₃	183 ± 3	0.49 ± 0.01	106 ± 2
$10\% CeO_2/$ γ -Al ₂ O ₃	183 ± 13	0.47 ± 0.03	103.7 ± 0.1

Chemical and **Biochemical Engineering**

- mesoporous materials, with an hysteresis likely
- temperature
- without changes with Ni