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a deep understanding of the relationship between hydrodynamic » To develop CFD simulations to better understand the behavior of an industrial
phenomenon and heat transfer properties is needed. FCC regenerator.
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freeboard. A large amount of heat combustion is released, which can
damage the regenerator internals (as cyclones and plenum chamber) Conclusions:
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« CPFD simulated the coke combustion of spent catalyst in FCC regenerator. The * The heat transfer in the distributor regime is lower than in the bulk
obtained results are compared to industrial data. regime, where large bubbles wake region is well developed.
o outlet # Continuity equation of gas phase: * Heat transfer in the center region is higher than near the wall due to
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