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a b s t r a c t

Modeling soft tissue using the finite element method is one of the most challenging areas in the field of
biomechanical engineering. To date, many models have been developed to describe heart valve leaflet
tissue mechanics, which are accurate to some extent. Nevertheless, there is no comprehensive method
to modeling soft tissue mechanics, This is because (1) the degree of anisotropy in the heart valve leaflet
changes layer by layer due to a variety of collagen fiber densities and orientations that cannot be taken
into account in the model and also (2) a constitutive material model fully describing the mechanical
properties of the leaflet structure is not available in the literature. In this framework, we develop a new
high-order element using p-type finite element formulation to create anisotropic material properties
nisotropy
eart valve
oft tissue

similar to those of the heart valve leaflet tissue in only one single element. This element also takes the
nonlinearity of the leaflet tissue into consideration using a bilinear material model. This new element is
composed a two-dimensional finite element in the principal directions of leaflet tissue and a p-type finite
element in the direction of thickness. The proposed element is easy to implement, much more efficient
than standard elements available in commercial finite element packages. This study is one step towards
the modeling of soft tissue mechanics using a meshless finite element approach to be applied in real-time
haptic feedback of soft-tissue models in virtual reality simulation.

pyrigh
Crown Co

. Introduction

Finite element analysis (FEA) has been extensively used for the
tructural analysis and functional simulation of heart valve (HV)
eaflet tissue. Material models employed in previous studies for
imulation of HV leaflet tissues such as porcine valves or peri-
ardial bovine valves using the finite element method (FEM) can
e generally categorized into four groups: linear isotropic [1–5],
onlinear isotropic [6–9], linear anisotropic [10–12] and nonlin-
ar anisotropic [13] that come with varying degrees of accuracy.
ou and co-workers and Li and co-workers presented a nonlinear
nisotropic model for porcine HV and analyzed the effect of geom-
try and nonlinearity of the tissue mechanical properties on stress

istribution in a porcine HV [14,15]. De Hart et al. studied the effect
f collagen fibers on mechanics and hemodynamics of a trileaflet
ortic valve using numerical methods [16]. To simulate the effect
f collagen remodeling on the mechanical properties of the aor-
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tic valve, a finite element model was used. In their study, collagen
remodeling was assumed to be the net result of collagen synthesis
and degradation. Recently Kim et al. has provided a new approach
using a Fung-type elastic constitutive model for pericardial biopros-
thetic HVs accounting for anisotropy and hyperelasticity of the HV
leaflets [17]. In another study, we developed a new hybrid element
to be used in heart valve leaflet tissue mechanics simulation, which
can be applied to any other soft tissues. This novel element was a
combination of hyperelastic isotropic elements and spar elements
in the direction of collagen fibers. However, despite the effective-
ness of this model, compared to the proposed approach, it was very
time-consuming [19].

In this study, we design a new high-order anisotropic and bilin-
ear element to be used in HV leaflet tissue mechanics simulation
under physiological conditions. The specific advantage of the pro-
posed element compared to other similar elements is that this
element deals with less numerical complexities due to its indepen-
dency on a strain energy density function, thus, it is quick. It also

takes into consideration the realistic material properties. The FE
formulation employed in this study is a combination of p-type and
Galerkin FE. The proposed element is new and offers similar accu-
racy as the equivalent nonlinear FEM solution to the same model
while solutions are obtained in a fraction of the CPU time.

half of IPEM. All rights reserved.
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Table 1
Dimensions of the HV stent.

Valve size (outer diameter of the stent) 30.0 mm
Orifice diameter (inner diameter of the stent) 28.0 mm
Sewing ring diameter 35.0 mm
Valve height 17.5 mm
Aortic protrusion (valve height minus the height of

saddle arc on sewing ring)
14.5 mm

Table 2
The stiffness values of the porcine aortic HV leaflet tissue in the two principal direc-
tions (circumferential and longitudinal).

F
l
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. Method

HV leaflet is formed by stacking three layers with different
echanical properties, thus, considered a biocomposite layered

hin plate. The theories available in the literature for such a
omposition are based on the equivalent single theory layer, includ-
ng classical laminates theory and shear deformation laminates
heory, and three-dimensional elasticity theory, including three-
imensional elasticity and layer wise theory (for more details see
19,20]).

The p-type FE to be used for the leaflet tissue mechanics is rela-
ively new. The present study is based on a new three-dimensional
igh-order element that contains a two-dimensional high-order
lement in the “in-plane” domain and one-dimension polynomial
n the direction of the thickness of the leaflet (the “out-of-plane”
omain) using a p-type FE.

.1. Geometry of the valve tissue

The leaflet geometry is developed based on the design proce-
ure proposed in our other study using Bezier surfaces [18]. This
eometry corresponds to that of porcine aortic HV leaflet geometry
eported in [21]. The stent specifications and dimensions are listed
n Table 1.
The geometry used for this study is shown in Fig. 1 consisting
f three identical leaflets made of 55 control points as described in
18]. The thickness of the HV leaflet is not uniform and varies over a
ange of 0.1–1.4 mm [14]. In our model, we assume the leaflets are
f uniform thickness (0.8 mm).

Fig. 1. The geometry of the HV leaflet tissue developed

ig. 2. The stress–strain curve for the porcine aortic HV leaflet tissue (A) in two princip
ongitudinal direction. It should be noted that the physiological range falls within the a st
Strain 0–25% 25–60%

Young’s modulus (E) Circumferential 360 kPa 3.29 MPa
Longitudinal 62 kPa 615 kPa

2.2. Material properties of the leaflet tissue

We measured the stress–strain curves of the porcine aortic valve
in two principal directions, i.e., the radial and circumferential direc-
tions as shown in Fig. 2. The stress–stain curve can be considered
a bilinear material model, which is soft in low strains (<25%) and
stiff in high strains (>25%) (Fig. 2A). The bilinear stiffness of the

HV leaflet tissue in the two principal directions (longitudinal and
circumferential) is listed in Table 2. Since the stiffness in the cir-
cumferential direction is higher than the longitudinal direction, the
shear modulus of elasticity G is calculated based on ECir as follows:
G = ECir/2(1 +�), where G is the shear modulus of elasticity, ECir is

using Bezier type surfaces as described in [18].

al directions as shown in (B). The radial direction in the figure corresponds to the
rain between 20% and 30% [18].
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where t, r and s are DOFs of the components of displacement vec-
ig. 3. The geometry of the HV leaflet tissue covered with only 183 high-order eleme
B).

he Young’s modulus in the circumferential direction and � is the
oisson’s ratio assumed to be 0.45 [22].

.3. The novel anisotropic high-order element

A new high-order element is proposed in this section. This
lement is nonlinear (bilinear) and anisotropic, possessing two
rincipal directions, the circumferential direction and the longi-
udinal direction, as shown in Fig. 2B. The HV leaflet is made up
f 183 high-order elements as shown in Fig. 3A. The schematic
hree-dimensional structure of the proposed high-order element
s shown in Fig. 3B. This element consists of 20 nodes with non-
inear boundaries designed specifically for the HV leaflet. Each
lement is assigned a total degree of freedom (DOF) of 55, i.e.,
OF = 15 for u components, DOF = 15 for v components and DOF = 25

or w components, where u, v and w are the principal displace-
ent vector components in �, � and z directions, respectively at

ach node as shown in Fig. 3. The three-dimensional displacement
eld of the element is based on a two-dimensional high-order

lement extended in the direction of z, perpendicular to the ��-
lane, using a one-dimensional Lagrange interpolation function.
he Lagrange function can be either linear, parabolic or cubic. The

n-plane displacement field of the proposed high-order element is a
ombination of trigonometric and polynomial functions (for details

Fig. 4. (A) Geometry of the leaflets to be solved for a pushback contact solution, (B
) and one single high-order element with demonstration of major and minor nodes

see [18] and [19]). The displacement field is obtained by a tensor
product of a two-dimensional high-order elements shape functions
(SF) N(�, �) in ��-plane along with a one-dimensional Lagrange
interpolation function N(z) in the direction of z. The displacement
field for this element is defined as [19]:

u(�, �, z) =
t∑
i=1

(
p∑
k=1

Nui (�, �) · uik

)
· Nk(z) (1)

v(�, �, z) =
r∑
i=1

(
p∑
k=1

Nv
i (�, �) · vik

)
· Nk(z) (2)

w(�, �, z) =
s∑(

p∑
Nwi (�, �) ·wik

)
· Nk(z) (3)
tors, i.e., u, v and w on each element, respectively. P is the order of
the polynomial used for the Lagrange interpolation function in the
direction of z, where P = 2, 3 and 4 for a linear, parabolic and cubic
function, respectively, and uik, vik andwik are the components of the
displacement vector at node ik. See Appendix A for more details.

) surfaces before and after contact and (C) penalty method to contact force.
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principal stress regions in porcine HV leaflets using a transversely
isotropic material model in a FE model [14]. We also did a simi-
lar study on the HV leaflet tissue with a different material model
as described in [18]. The proposed element offers similar accuracy
(with <5% error) as the equivalent nonlinear FEM solutions detailed
H. Mohammadi et al. / Medical Eng

.4. Leaflets contact

The contact surfaces and the corresponding force are deter-
ined by interactive computation of a pushback force which is

alculated on nodes. To characterize the kinematics of the con-
act we define two symmetrical leaflets whose surfaces are ∂s1 and
s2 in a three-dimensional space shown in Fig. 4A/B. The distance

rom each point on the leaflet from the central plane is defined by
scalar function, g(x), which is the “gap” function. Assuming fric-

ionless contact, the contact force must be normal to the surface
f the leaflets (Fig. 4A). The normal vector is a partial derivative of
(x) with respect to the spatial coordinates. Thus the contact force
s [23]:

n = Pr ∂g(x)
∂x

= Pr∇g (4)

here Pr is the pressure. The penalty method replaces the con-
act force with the penalty εFg as shown in Fig. 4C, where εF is the
enalty coefficient. As in FEM all forces must be discretized into
odal equivalent force, the contact force in the penalty formulation

s discretized as follows [23]:

cont
e =

∫
∂sc
εFg∇gNe(x1, x2)da (5)

here εFg�g is the contact penalty force, Ne is the shape function,
sc is the contact area, da is the element area, and Fconte is the nodal
quivalent contact force on node e.

.5. Pressure follower force

Force vectors are defined in such a way that their directions
lways remain normal to the surface in the current configuration
ach time [24]. A shell element with an applied uniform pressure
r on the current configuration which has a unit normal n, is con-
idered. The traction force vector, t is expressed as prn and the
orresponding virtual external work in the current configuration
s in the form:

Wext =
∫
�

ı� · prn d� (6)

here� is the displacement vector of the surface, n is the normal
ector to the surface, pr is the pressure and Wext is the external
ork done by the pressure. A uniform aortic pressure of pr = 16 kPa

120 mmHg) is assumed on the top surface of the leaflet.

. Results

.1. Stress distribution on the leaflet

Two models are considered: (1) A single leaflet is modeled
ithout taking into consideration the effect of contact that occurs

etween the two adjacent leaflets in the closing phase (Fig. 5) and
2) the complete valve with three leaflets is modeled accounting for
he contact and its effect on mechanical performance of the valve
Fig. 6). For each model, we assume that the leaflet is composed of
wo distinct layers on top of each other. The top layer corresponds
o fibrosa (the layer of the leaflet facing the aorta) and the bottom
ayer corresponds to ventricularis (the layer of the leaflet facing the
eft ventricle).

Fig. 5 shows the distribution of the maximum principal stresses
ver the two layers applied on a single leaflet tissue (model I).

esults show that the values of principal stresses are slightly differ-
nt in the top and bottom layers. The maximum of the first principal
tresses (the maximum principal stress) are 580 kPa and 602 kPa
n the top and bottom layers, respectively. Also, in this model, as
hown in Fig. 5A, the maximum principal stress is located lower
Fig. 5. The maximum principal stresses distribution over the leaflet tissue on the
top layer (A) and on the bottom layer (B), with no contact considered between the
two adjacent leaflets—values are in kPa.

than the corners of the leaflets on the attachment of the leaflets
to the stent. Li et al. reported similar locations and values for high
Fig. 6. The maximum principal stresses distribution over the leaflet tissue on the
top layer (A) and on the bottom layer (B), accounting for the contact between the
two adjacent leaflets—values are in kPa.
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n [14] and [18] while solutions are obtained in a fraction of the CPU
ime.

In model II, contact between the two adjacent leaflets is consid-
red. Results show that the coaptation area has a direct effect on the
aximum principal stresses. The maximum principal stresses over

he leaflet for the two layers of the leaflet tissue are shown in Fig. 6.
he maximum values for the first principal stress (max. principal
tress) on the top and bottom layers are slightly higher compared
o model I (no contact). The maximum values are 731 kPa for the
op layer and 590 kPa for the bottom layer. Also, the location of
he maximum principal stress in model II (with contact) is not the
ame as when contact is not taken into consideration. In fact, the
ocation with maximum values of stress is not on the attachment,
ut is located on the center of the leaflet, slightly away from the
ttachment, as shown in Fig. 6.

In Li’s model, contact has not been taken into consideration and
hus, the results obtained by their model cannot be realistic. In
ther words, their results cannot show the same values as expe-
ienced by a normal valve leaflet under physiological conditions.
ur results show that with taking the effect of contact into account

he values of principal stresses increase by ∼10%. Recently Kim et al.
as provided a new approach using a Fung-type elastic constitutive
odel for pericardial bioprosthetic HVs accounting for anisotropy

nd hyperelasticity of the HV leaflets [17]. They did not model the
ontact, as this feature is not available for hyperelastic elements
n FE commercial packages. Fig. 6 clearly shows that the contact
etween the leaflets has a significant effect on the stress distribu-
ion both in location and values. Based on our results the crucial
ocations are close to, but not exactly on, the stent attachments, as
hown in Fig. 7A and B with a maximum values of 621 kPa on the
op layer and 667 kPa on the bottom layer.

Fig. 7 shows the bending moment per unit length (M) for model
I, which is calculated by knowing the values of stresses in the top
nd bottom layers, as such:

=
√
M2
x +M2

y −MxMy + 3M2
xy (6)

x = (	topx − 	bottomx )
h2

12
(7)

y = (	topy − 	bottomy )
h2

12
(8)
xy = (
topxy − 
bottomxy )
h2

12
(9)

here x and y are the circumferential and longitudinal directions,
espectively. Results indicate that the bending moment is maxi-

ig. 7. The bending moment per unit length (mN)—in the vicinity of the contact area
ending moment is maximum.
Fig. 8. Longitudinal normal stress, transversal normal stress and the maximum
shear stress with respect to labeled locations, (A) on the midline of the leaflet, (B)
on the line passing over the maximum values.

mum in the vicinity of the contact area with a value of 12.7 mN.
Maximum bending deformation also occurs in the same area. Bend-
ing moment is consistently low in the areas close to the attachment,
however, in these areas the values of principal stress are maximum.

Li et al. reported that the maximum bending moment per unit
length is close to the coaptation area with a value of 11.2 mN. Also,
distribution of the bending moment calculated for the closing phase
is in good agreement to ones of Li’s model (less then 5% error) [14].
Fig. 8 shows values of stress including in-plane stress (max. shear
stress) and out-of-plane stresses (longitudinal and transversal nor-
mal stresses) with respect to labeled locations. The direction shown
in Fig. 8A is the midline of the leaflet or the axis of symmetry and
Fig. 8B shows the path where maximum values of stress occur. As
shown in Fig. 8, the critical values of stress do not occur at the mid-
line where the maximum deformation occur, however, longitudinal
normal stress, transversal normal stress and maximum shear stress
are maximum in the area close to the corners on the attachment of
the leaflet to the stent.

3.2. Deformation of the leaflets

Results indicate that the surface area is initially 6.07 cm2 and is
6.68 cm2 after deformation without considering the effect of con-
tact and 6.42 cm2 when accounting for the contact, as shown in
Fig. 9. This corresponds to 10% and 5.29% area expansion, respec-
tively. Results also show two long wrinkles in the middle of the
leaflet close to the symmetry line, which is due to the coaptation
area (Fig. 9). The smaller the orifice area is, the smaller the wrinkle
zone (data are not presented). As shown in Fig. 9, the wrinkles are

symmetric as the pressure applied on the leaflets are assumed to be
uniform and symmetric. However, neither aortic pressure nor ven-
tricular pressure is constant and uniform as they are both time and
location dependent, thus, wrinkles may be formed irregularly in
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Fig. 9. Deformation of the HV leaflet in the closing phase. The contact area and the wrinkled area after deformation due to contact are shown with arrows.

Fig. 10. The closing phase in a normal aortic heart valve function. The contact area and the wrinkled area after deformation are shown with arrows. (A) and (B) are showing
different locations for wrinkle to from during the closing phase at different cycles.

Table 3
A comparison between the performance of the approach proposed in this study versus the other conventional approach.

Model Max. principal stress Max. normalized bending moment Contact CPU time

Hybrid element [18] 636 kPa 10.5 mN Available >30 mina

High-order element (in this study) 622 kPa 12.7 mN Available <12 sb

Li et al. [14] 580 kPa 11.7 mN Not available NAc

v
n
d
o
i
e
T
c
o
m
m
t
c

e
l

a 8 parallel processors each @ 1.44 GHz, 0.99 GB of RAM.
b Processor used: @ 1.60 GHz, 0.99 GB of RAM.
c Not available.

arious locations depending on the pressure variety and the thick-
ess of the valve as thickness plays a major role in the length and
epth of wrinkles. Experimental observations approve the presence
f irregular wrinkles around the midline of the leaflet in the clos-

ng phase [25] as shown in Fig. 10. Using the proposed high-order
lement in this study, wrinkles can be simulated and analyzed.
his is novel and reported for the first time using a FE model and
learly shows the capability of the proposed element in modeling
f wrinkle using high-order FE. Table 3 outlines the CPU time, the
aximum principle stresses, the maximum normalized bending
oment and the capability of the approach used for modeling con-
act for the high-order element proposed in this study and for other
onventional approach using hyperelastic material models [14,18].

The proposed element is new and offers similar accuracy as the
quivalent nonlinear FEM solution to the same model. In a hypere-
astic material model implemented in [18], although eight parallel
processors were used, but the computational time for the stress
analysis of the heart valve leaflet (consist of ∼11,000 elements) is
always more than 30 min. The high-order element proposed in this
study which uses only one processor at 1.60 GHz and 1.00 GB of RAM
solves the same model is less than 12 s.

4. Conclusion

A new high-order element, which is anisotropic and bilinear,
has been developed to mechanically analyze a trileaflet natural aor-
tic HV. Stress pattern, maximum principal stresses, distribution of

bending moments, the contact area between to adjacent leaflets
and in-plane and out-of plane stresses in closing phase have been
calculated. The proposed element deals with less complexities thus
is much faster than the equivalent nonlinear finite element. The
technique has similar accuracy to the equivalent nonlinear FEM
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olution using the model while solutions are obtained in a fraction
f the CPU time. However, defining a strain energy density function
or soft tissues is generally quite difficult, if not impossible. This ele-

ent can be easily developed to possess any degree of anisotropy
sing a bilinear material model.

There are some limitations with the FE model. Firstly, in the
E analysis the leaflets were subjected to a uniform pressure load
n the aortic side during the valve closing phase. Fluid flow pat-
erns may vary in different regions, particularly in the vicinity
f the valve leaflets. Hence, spatially non-uniform pressure and
hear stress distributions can be induced on the surface of the
eaflets during the opening and closing phases, affecting the con-
equent deformation of the leaflets. A more realistic analysis of the
uid-induced stresses on aortic leaflet tissue will require a compre-
ensive fluid structure interaction model. Secondly, the material
arameters of the employed material model were assumed to be
omogeneous through the entire leaflet, i.e., the material model-

ng of a complete leaflet was defined by one set of the material
arameters along with the assumption of a constant leaflet thick-
ess. Lastly, the overall displacements of the valve motion and the
tress distributions on the valve leaflets from the three-dimensional
ynamic FE simulations reported in this work were qualitatively
ompared with previous studies. Quantitative validation of the
eaflet deformation in the dynamic analysis will require the material
roperty data from the biaxial tests for each leaflet of a particular
alve. This must be followed by the comparison of the predicted
ocal strain distribution on the leaflets with experimentally mea-
ured strain fields from the same valve tested under dynamic
oading.
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Appendix A. The in-plane displacement field including
rigonometric and polynomial functions are defined as follows:

=
9∑
i=1

Nui ui + sin(2��)

⎧⎪⎨
⎪⎩
L1(�)

L2(�)

L3(�)

⎫⎪⎬
⎪⎭
T⎧⎪⎨
⎪⎩
u10

u11

u12

⎫⎪⎬
⎪⎭

+sin(4��)

⎧⎪⎨
⎪⎩
L1(�)

L2(�)

L3(�)

⎫⎪⎬
⎪⎭
T⎧⎪⎨
⎪⎩
u13

u14

u15

⎫⎪⎬
⎪⎭ (A1)

9

⎧⎪ L1(�)
⎫⎪T⎧⎪ v10

⎫⎪

=
∑
i=1

Nv
i vi + sin(2��)

⎨
⎪⎩ L2(�)

L3(�)

⎬
⎪⎭
⎨
⎪⎩ v11

v12

⎬
⎪⎭

+sin(4��)

⎧⎪⎨
⎪⎩
L1(�)

L2(�)

L3(�)

⎫⎪⎬
⎪⎭
T⎧⎪⎨
⎪⎩

v13

v14

v15

⎫⎪⎬
⎪⎭ (A2)
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w =
16∑
i=1

Nwj  j + �(�)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

H1(�)

H2(�)

H3(�)

H4(�)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

T⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w5

wy5

w7

wy7

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+�(�)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

H1(�)

H2(�)

H3(�)

H4(�)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

T⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w8

wx8

w6

wx6

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+ �(�)�(�)w9 (A3)

where u are v are in-plane displacements andw is the displacement
in direction of thickness (z). Li’s and Hi’s are Lagrange and Hermit
polynomials. � and  are the first modal shape of the clamped
beam and out-of-plane bending vibrations at the center node of
the high-order element, respectively. u10, u11, u12, u13, u14, and u15
and v10, v11, v12, v13, v14, and v15 are amplitude of the sign functions
of the model. Sinusoidal terms are used to model the nonlinear in-
plane geometric effects. The quadratic Lagrange polynomials take
the form of:

L1(�) = 2�2 − 3� + 1

L2(�) = 2�2 − �
L3(�) = 4(� − �2)

(A4)

The Hermitian polynomials take the form of:

H1(�) = 1 − 3�2 − 2�3

H2(�) = a(� − 2�2 + �3)

H3(�) = 3�2 − 2�3

H4(�) = a(−�2 + �3)

(A5)

The SF for the in-plane displacement field, i.e., Nu
i

, Nv
i

and Nw
i

are
defined as follows:

Nu1 = L1(�)L2(�) Nu2 = L2(�)L1(�) Nu3 = L2(�)L2(�)

Nu4 = L1(�)L2(�) Nu5 = L3(�)L1(�) Nu6 = L2(�)L3(�)

Nu7 = L3(�)L2(�) Nu8 = L1(�)L3(�) Nu9 = L3(�)L3(�)

Nu10 = sin(2��)L1(�) Nu11 = sin(2��)L2(�) Nu12 = sin(2��)L3(�)

Nu13 = sin(4��)L1(�) Nu14 = sin(4��)L2(�) Nu15 = sin(4��)L3(�)

(A6)

For Nv
i

= Nu
i

for i ≤ 9 and the rest of SFs for the v component are

Nv
10 = sin(2��)L1(�) Nv

11 = sin(2��)L2(�) Nv
12 = sin(2��)L3(�)

Nv
13 = sin(4��)L1(�) Nv

14 = sin(4��)L2(�) Nv
15 = sin(4��)L3(�)

(A7)

and the SFs in the direction of z are

Nw1 = H1(�)H1(�) Nw2 = H2(�)H1(�) Nw3 = H1(�)H2(�)

Nw4 = H2(�)H2(�) Nw5 = H3(�)H1(�) Nw6 = H4(�)H1(�)

Nw7 = H3(�)H2(�) Nw8 = H4(�)H2(�) Nw9 = H3(�)H3(�)

Nw10 = H4(�)H3(�) Nw11 = H3(�)H4(�) Nw12 = H(�)H4(�)

Nw13 = H1(�)H3(�) Nw14 = H2(�)H3(�) Nw15 = H1(�)H4(�)

Nw = H2(�)H4(�) Nw = �(�)H1(�) Nw = �(�)H2(�)

(A8)
16 17 18

Nw19 = �(�)H3(�) Nw20 = H4(�)�(�) Nw21 = H3(�)�(�)

Nw22 = H4(�)�(�) Nw23 = H1(�)�(�) Nw24 = H2(�)�(�)

and for Nw25, we will define: Nw25 = �(�)�(�)
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A cubic Lagrange interpolation function (Nk(z)) can be written
n the form of (for the case P = 4) [2]:

N1(z) = 9
2t3

(
z − t

6

)(
z + t

6

)(
z + t

2

)
N2(z) = 27

2t3

(
z − t

2

)(
z − t

6

)(
z + t

2

)
N3(z) = 27

2t3

(
z − t

2

)(
z + t

6

)(
z + t

2

)
N4(z) = 9

2t3

(
z − t

2

)(
z + t

2

)(
2 + t

2

)
(A9)

here t is the thickness of the leaflet.
The proposed high-order element offers a complete

hree-dimensional state of stress and strain. A standard
alerkin FE is used to describe the stiffness matrix [K]
nd the mass matrix [m] as more details can be found in
20].

eferences

[1] Cataloglu A, Clark RE, Gould PL. Stress analysis of aortic valve leaflets with
smoothed geometrical data. Journal of Biomechanics 1977;10(3):153–8.

[2] Chandran KB, Kim SH, Han G. Stress distribution on the cusps of a polyurethane
trileaflet HV prosthesis in the closed position. Journal of Biomechanics
1991;24(6):385–95.

[3] Ghista DN, Reul H. Optimal prosthetic aortic leaflet valve: design parametric and
longevity analyses: development of the Avcothane-51 leaflet valve based on the
optimum design analysis. Journal of Biomechanics 1977;10(5–6):313–24.

[4] Hamid MS, Sabbah HN, Stein PD. Influence of stent height upon stresses
on the cusps of closed bioprosthetic valves. Journal of Biomechanics
1986;19(9):759–69.

[5] Rousseau EP, van Steenhoven AA, Janssen JD. A mechanical analysis of the closed
hancock heart valve prosthesis. Journal of Biomechanics 1988;21(7):545–62.

[6] Black MM, Howard IC, Huang X, Patterson EA. A three-dimensional analysis of
a bioprosthetic heart valve. Journal of Biomechanics 1991;24(9):793–801.
[7] Howard IC, Patterson EA, Yoxall A. On the opening mechanism of the aortic
valve: some observations from simulations. Journal of Medical Engineering
Technology 2003;27(6):259–66.

[8] Huang X, Black MM, Howard IC, Patterson EA. A two-dimensional finite
element analysis of a bioprosthetic heart valve. Journal of Biomechanics
1990;23(8):753–62.

[

g & Physics 31 (2009) 1110–1117 1117

[9] Patterson EA, Howard IC, Thornton MA. A comparative study of linear and
nonlinear simulations of the leaflets in a bioprosthetic heart valve during
the cardiac cycle. Journal of Medical Engineering Technology 1996;20(3):
95–108.

[10] Grande KJ, Cochran RP, Reinhall PG, Kunzelman KS. Stress variations in the
human aortic root and valve: the role of anatomic asymmetry. Annual Journal
of Biomedical Engineering 1998;26(4):534–45.

[11] Grande KJ, Cochran RP, Reinhall PG, Kunzelman KS. Mechanisms of aortic valve
incompetence in aging: a finite element model. Journal of Heart Valve Disease
1999;8(2):149–56.

12] Grande KJ, Cochran RP, Reinhall PG, Kunzelman KS. Mechanisms of aortic valve
incompetence: finite element modeling of aortic root dilatation. Annual Tho-
racic Surgery 2000;69(6):1851–7.

[13] Sun W, Abad A, Sacks MS. Simulated bioprosthetic heart valve deforma-
tion under quasi-static loading. ASME Journal of Biomechanical Engineering
2005;127(6):905–14.

[14] Li J, Lou XY, Kuang ZB. A nonlinear anisotropic model for porcine heart valves.
Journal of Biomechanics 2001;34:1279–89.

[15] Luo XY, Li WG, Li J. Geometrical stress reduction factors in anisotropic porcine
heart valves. Journal of Biomechanical Engineering 2003;125:735–44.

[16] De Hart, Peters GWM, Schreurs PGJ. Collagen fibers reduce stresses and sta-
bilize motion of aortic valve leaflets during systole. Journal of Biomechanics
2004;37:303–11.

[17] Kim H, Jia L, Sacks MS, Chandran CB. Dynamic simulation precardial bio-
prosthetic valve function. Journal of Biomechanical Engineering 2006;128:
717–27.

[18] Mohammadi H, Boughner D, Millon LE, Wan WK. Design and simulation of a
poly(vinyl alcohol)-bacterial cellulose nanocomposite mechanical aortic heart
valve prosthesis, Proceedings of the Institution of Mechanical Engineers. Part
H: Journal of Engineering in Medicine 2009;223:697–711.

[19] Koko TS, Olson D. Nonlinear analysis of stiffened plate using super element.
Journal of Numerical Methods in Engineering 1991;31:149–67.

20] Chapelle D, Bathe KJ. The finite element analysis of shells—fundamentals, com-
putational fluid and solid mechanics. Springer; 2003.

21] Hamid MS, Sabbah HN, Stein PD. Influence of stent height upon stresses on
the cusps of closed bioprosthetic valves. Journal of Biomechanics 1986;19:
759–69.

22] Vesely I, Noseworthy R. Micromechanics of the fibrosa and the ventricularis in
aortic valve leaflets. Journal of Biomechanics 1992;25:101–13.

23] Gerald F. Curves and surfaces for computer aided geometric design: a practical
guide. Boston; Toronto: Academic Press; 1993.
errors of finite element analysis in soft tissues modeling, the communications
in numerical methods in engineering, in press. Ref # CNM-Mar-09-0081.

25] Kollara A, Hartyanszky I. External subcommissural annuloplasty to prevent
regurgitation in the pulmonary autograft. Interactive Cardiovascular and Tho-
racic Surgery 2003;2:183–5.


	Advanced modeling strategy for the analysis of heart valve leaflet tissue mechanics using high-order finite element method
	Introduction
	Method
	Geometry of the valve tissue
	Material properties of the leaflet tissue
	The novel anisotropic high-order element
	Leaflets contact
	Pressure follower force

	Results
	Stress distribution on the leaflet
	Deformation of the leaflets

	Conclusion
	Conflict of interest
	Acknowledgment
	Appendix A
	References


