
Applications of Machine Learning in Wireless
Communications: Deploytment, Challenges, and

Applications

Serguei Primak

Department of ECE
The University of Western Ontario

slprimak@uwo.ca, sergueip@gmail.com

January 15, 2020

Serguei Primak (ECE, UWO) AI/ML for COMM January 15, 2020 1 / 39



Overview

1 Deployment
Distribution of Network Intelligence
ML based Air interface

2 AI Integration: Key areas

3 Application of AI in Wireless Networks
AI for Physical layer
AI for Resource allocation
AI for Mobility management
AI for Wireless Security and Localization

4 Examples
Autoencoder
Scheduling

Serguei Primak (ECE, UWO) AI/ML for COMM January 15, 2020 2 / 39



Motivation

Wireless Network must support flexible data piplines for real-time
decision making

Must be AI-centric: instead of transporting user data support
exchange of data, models, insights algorithms

AI agent responsible for inclusion of data

5G→6G: SDR→ CogRadio→IntelRadio

5G→ 6G: Learning→ Deep Leaning → Federated Learning

High degree of heterogeneity in many aspects

Need of intelligent use of communications, control, storage resources
from edge to the core

Data driven network planning and operation
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ML basel Air interface, Cont’d

6G architecture (Fig 2 in [Letaief19])
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Comparison of Radio Technologies: SDR, CR, IR

SDR (3/4G) CR (4/5G IR (6G)

Frequency band Fixed Adapt to Adapt to Env’nt
Environment and Hardware

Spectrum Sharing Fixed Opportunistic AI-enabled
Hardware capability Pre-claimed Pre-claimed Online estimated
Hardware upgrade No No Yes
PHY Tx/Rx Mod/Cod/ Mod/Cod/ Deep neural net

Det/Est Det/Est
MA Predetermined Sensing-based Distributed ML
Protocol L3 Fixed Fixed Self-upgradable
Main apps Voice,data Multimedia, data AI, In network

Computation

Table: Table 1 in [Letaief19]
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Distribution of Network Intelligence

Feature: The network must no longer be built to transport user-data only
but rather designed to support exchange of data, models, and insights, and
it is the responsibility of the AI agents to include any necessary user data.
Goal: To integrate intelligent functions across the wireless infrastructure,
cloud, and end-user devices with the lower-layer learning agents targeting
local optimization functions while higher-level cognitive agents pursuing
global objectives and system-wide awareness.

Autonomous node-level AI: self-contained proplems at a
node/device; no data transfer

Localized AI single domain network: data tfansfer within network;
geographical localization

Global AI centralized entity: global knowledge, collects data and
knowledge from multiple domains
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Benefits and challenges at different levels of AI localization

Autonomous AI Localized AI Global AI
node level AI

Benefits Ensures privacy Data shared Global optima
Less delay across domains
No data overhead Favourable for power

limited devices

Chalenges Local optima Security/privacy Deployment issue
Device power and in data sharing Data trasnfer cost
memory limitation Data overhead Training complexity
Computational limits Time delays

Table: Table 1 in [Chalitta19arXiv]
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Architecture and Training Challenges

Resource shortage and negotiating of resources

How to distribute the models and knowledge bases over the devices

Centralized or distributed learning?

Offline or online learning?

How to represent and prepare data for fast consuption by algorithms

Short-time vs Long-time scale applications

Possible training strategies: distributed ML (i.e. federated learning)
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ML Air interface

Air interface: combination of parameters of wireless link, such as power,
modulation, coding, pilots, ARQ, etc to facilitate wireless data transfer
between two nodes.
Goals: provide effcient data transmission, low energy consupmtion,
acceptable delay, proper control signalling.

ML/AI suitability ML is well adapted to optimize efficiency of
transmission (modulation, coding, transmit power) since lots of data being
transmitted and received
ML/AI challenges Situation awarness, control channel training (no data
transmitted, received)
ML/AI initial deployment Mixed with 4G assisted and 5G NR
technologies, focus on efficiency of data transfer
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ML basel Air interface, Cont’d

ML air Interface supported by control plane through other network 4G/5G
(Fig 1 in [Chalitta19arXiv])
Human designed RAT can be used to train ML autoencoder with
indicating what bits are to be expected at the receiver and feeback losses.
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AI-enabled technologies for 6G

1 Big Data Analytics

2 Closed Loop Optimization

3 Intelligent Wireless Comm
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6G for AI applications

1 Trends and challenges

2 Comm for distributed learning: training Federated Training

3 Comm for distributed learning: inference Wireless MapReduce
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Federated Learning
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Distributed Inference
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AI Integration: Key areas

Data Acquisition

Data Security and Integrity

Confidetial computing

Efficient AI implementation

Reinforcement learning in cell networks

Efficient training process

AI alignment

Active learning

Explainable AI

Real time intelligence
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Background and Motivation

Use: context information prediction, network changes adaptation,
proactive radio resource management

AI based solutions will be introduced along short/long term tracks

Short term targets separate blocks (, modulation scheduler, mobility
management, etc.)

Long term cross-layer optimization based on QoE metrics,
end-to-end performance, violation of OSI stack, full ML Air interface

Importance of efficient UE measurements reporting procedures
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AI for Physical layer

ML based modulations (precoder+OFDM)

pilotless demodulation schemes

Intelligent Surfaces (IS) control

fast changes detection
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AI for resource allocation

Generally NP–hard

ML may provide useful heuristic instead of exact solutions

Beam alignment

Scheduling

Beamforming
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AI for Mobility management

Use 6 GHz and above range in NR cause huge measurement overhead

Leverage predictive power of ML for tracking and prediction

Use lower frequency coverage measurements to predict high frequency
coverage

Multimode positioning and localization/location estimation

Scene dependent representation of information
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Example of coverage prediction

Multiple frequency coverage map and coverage prediction using lover
freqencies (Fig 4 in [Chalitta19arXiv])
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AI for Wireless Security

Leverage ML classification potentian for the following tasks

False base station identification

Rogue drone detection

Rogue messaging

Attack detection
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Machine Learning Based Featureless Signalling
[Shakeel18milcom]

Any features can be used by unintended receiver to detect or even decode
the message. Ideal Jamming-Resilient (JR) signalling/Low Probability
Detection (LPD) must satisfy the following principles

Gaussianity (noise like) with minimum correlation

Below noise floor (low power spectral density)

Physical layer security

Non-repetition

Uncoordinated synchronization
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Classical DSSS Receiver

(Fig 1 in [Shakeel18milcom])
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ML DSSS Receiver

(Fig 1 in [Shakeel18milcom])
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ML DSSS NN settings

Parameter Setting

Training algorithm One-step secant backpropagation
Number of hidden layers 1
Number of inputs- Input layer 256
Number of neurons - Hidden layers 256
Number of neurons - Output layers 256
Activation function - Hidden layer Linear
Activation function - Output layer Softmax
Loss function Cross-entropy
Channel AWGN
Trained SNR ∞
Number of trained weights 131584

Table: Table 1 in [Shakeel18milcom]
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ML DSSS Receiver BER
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Conlusions

De-facto off-line training

Channle is not realistic to allow off-line training but could be used to
create a code book

No noise considered in training

Deep network will be required for longer messages
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Buffer-Aware Wireless Scheduling [Xu19arXiv]

System consists of K UE with packet arrival intensity λ

Each moment of time B resource blocks are available

N time transmission intervals are considered for planning

Multi-objective optimization problem with three performance
measures

1 Jain’s fairness index(JFI)
2 System Throughput (THP)
3 Packet drop rate
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Schedulings, cont’d

Three objectives interrelated and cannot be optimized independently

Pareto optimization results into a trade-off curve (Pareto Front)

Full solution is computationally prohibitive, especially real time

Genetic algorithms, Heuristics
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Scheduling: Deep Reinforcement Learning appproach

Model: Markov decision process (MDP): S,A,R, r

State S: containes all UE observations: rates, buffer state, etc

Action A: indicates which UE is selected for transmission

Reward r = αTHP + βJFI − δPDR
Actor-Critic (A2C) algorithm is used optimization (policy based Deep
Reinforced Learning): directly parameterises policy πθ(a|s)

Updates gradient descent of expected return

g = ∇θE

[ ∞∑
t=0

γtrt

]
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DRL algorithm: cont’d
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DRL algorithm: cont’d
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ML for Rogue Drone Detection [Ryden19WCNC]

Civilian use of drones (unmanned airial vehicles)

Precision Agriculture

Inspection and Monitoring

Delivery

Photography

Mobile base stations, sidelobe BS enhancers and relays

Problem: Rogue drones can pose as legitimate UE drones, especially
drone with attached registered UE like a cell phone. may cause
additional interference.
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Problem statement

Detect a UE which is unauthorized drone

Use of service area handover triggering event A3 and radio
measurement

f (x)→ p: f (�) is ML model, x UE reported measurement, p
probability of being a drone
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Contsructing the ML model

Supervised learning

Data is generated through 3GPP model simulations (training and test
sets)

Legitimate drones are labelled as such

Mixture of drone and land mobile UE is used

Feature metric: RSSI, RSSI-gap, RSSI-STD

Logistic regression

p =
1

1 + exp (−α− β1x1 − · · · − βnxn)
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Results
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The End
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