Applications of Machine Learning in Wireless Communications: Deploytment, Challenges, and Applications

Serguei Primak

Department of ECE The University of Western Ontario

slprimak@uwo.ca, sergueip@gmail.com

January 15, 2020

AI/ML for COMM

Overview

Deployment

- Distribution of Network Intelligence
- ML based Air interface
- 2 AI Integration: Key areas

3 Application of AI in Wireless Networks

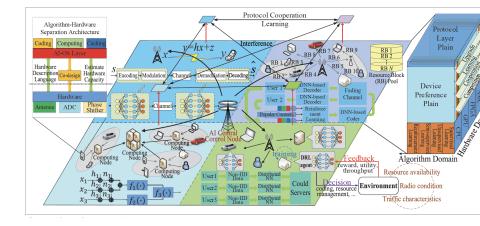
- Al for Physical layer
- AI for Resource allocation
- Al for Mobility management
- AI for Wireless Security and Localization

Examples

- Autoencoder
- Scheduling

- Wireless Network must support flexible data piplines for real-time decision making
- Must be Al-centric: instead of transporting user data support exchange of data, models, insights algorithms
- Al agent responsible for inclusion of data
- $5G \rightarrow 6G: SDR \rightarrow CogRadio \rightarrow IntelRadio$
- 5G \rightarrow 6G: Learning \rightarrow Deep Leaning \rightarrow Federated Learning
- High degree of heterogeneity in many aspects
- Need of intelligent use of communications, control, storage resources from edge to the core
- Data driven network planning and operation

ML basel Air interface, Cont'd



6G architecture (Fig 2 in [Letaief19])

Serguei Primak (ECE, UWO)

-

Comparison of Radio Technologies: SDR, CR, IR

	SDR (3/4G)	CR (4/5G	IR (6G)
Frequency band	Fixed	Adapt to	Adapt to Env'nt
		Environment	and Hardware
Spectrum Sharing	Fixed	Opportunistic	Al-enabled
Hardware capability	Pre-claimed	Pre-claimed	Online estimated
Hardware upgrade	No	No	Yes
PHY Tx/Rx	Mod/Cod/	Mod/Cod/	Deep neural net
	Det/Est	Det/Est	
MA	Predetermined	Sensing-based	Distributed ML
Protocol L3	Fixed	Fixed	Self-upgradable
Main apps	Voice,data	Multimedia, data	AI, In network Computation

Table: Table 1 in [Letaief19]

Feature: The network must no longer be built to transport *user-data only* but rather designed to support *exchange of data, models, and insights,* and it is the responsibility of the AI agents to include any necessary user data. **Goal**: To integrate intelligent functions across the wireless infrastructure, cloud, and end-user devices with the lower-layer learning agents targeting local optimization functions while higher-level cognitive agents pursuing global objectives and system-wide awareness.

- Autonomous node-level AI: self-contained proplems at a node/device; no data transfer
- Localized AI single domain network: data tfansfer within network; geographical localization
- **Global AI** centralized entity: global knowledge, collects data and knowledge from multiple domains

	Autonomous Al node level Al	Localized AI	Global Al
Benefits	Ensures privacy Less delay No data overhead	Data shared across domains Favourable for power limited devices	Global optima
Chalenges	Local optima Device power and memory limitation Computational limits	Security/privacy in data sharing Data overhead Time delays	Deployment issue Data trasnfer cost Training complexity

Table: Table 1 in [Chalitta19arXiv]

- Resource shortage and negotiating of resources
- How to distribute the models and knowledge bases over the devices
- Centralized or distributed learning?
- Offline or online learning?
- How to represent and prepare data for fast consuption by algorithms
- Short-time vs Long-time scale applications

Possible training strategies: distributed ML (*i.e.* federated learning)

Air interface: combination of parameters of wireless link, such as power, modulation, coding, pilots, ARQ, *etc* to facilitate wireless data transfer between two nodes.

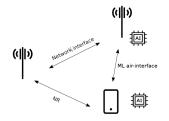
Goals: provide effcient data transmission, low energy consupmtion, acceptable delay, proper control signalling.

ML/AI suitability ML is well adapted to optimize efficiency of transmission (modulation, coding, transmit power) since lots of data being transmitted and received

ML/AI challenges Situation awarness, control channel training (no data transmitted, received)

ML/AI initial deployment Mixed with 4G assisted and 5G NR technologies, focus on efficiency of data transfer

ML basel Air interface, Cont'd



ML air Interface supported by control plane through other network 4G/5G (Fig 1 in [Chalitta19arXiv]) Human designed RAT can be used to train ML autoencoder with indicating what bits are to be expected at the receiver and feeback losses.

- **1** Big Data Analytics
- **2** Closed Loop Optimization
- Intelligent Wireless Comm

- **1** Trends and challenges
- **Omm for distributed learning: training** Federated Training
- **Omm for distributed learning: inference** Wireless MapReduce

Federated Learning

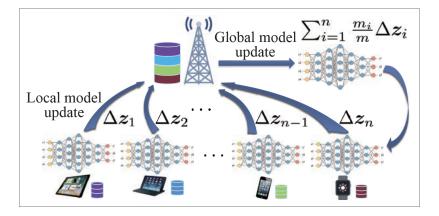
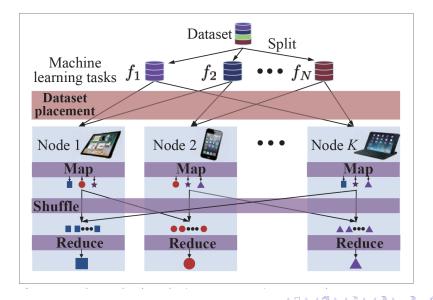


Image: A matrix of the second seco

Distributed Inference



Serguei Primak (ECE, UWO)

AI/ML for COMM

January 15, 2020 14 / 39

- Data Acquisition
- Data Security and Integrity
- Confidetial computing
- Efficient AI implementation
- Reinforcement learning in cell networks
- Efficient training process
- Al alignment
- Active learning
- Explainable AI
- Real time intelligence

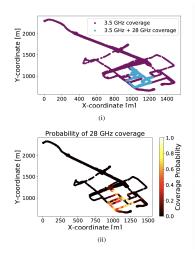
- Use: context information prediction, network changes adaptation, proactive radio resource management
- Al based solutions will be introduced along short/long term tracks
- **Short term** targets separate blocks (, modulation scheduler, mobility management, *etc.*)
- Long term cross-layer optimization based on QoE metrics, end-to-end performance, violation of OSI stack, full ML Air interface
- Importance of efficient UE measurements reporting procedures

- ML based modulations (precoder+OFDM)
- pilotless demodulation schemes
- Intelligent Surfaces (IS) control
- fast changes detection

- Generally NP-hard
- ML may provide useful heuristic instead of exact solutions
- Beam alignment
- Scheduling
- Beamforming

- Use 6 GHz and above range in NR cause huge measurement overhead
- Leverage predictive power of ML for tracking and prediction
- Use lower frequency coverage measurements to predict high frequency coverage
- Multimode positioning and localization/location estimation
- Scene dependent representation of information

Example of coverage prediction



Multiple frequency coverage map and coverage prediction using lover frequencies (Fig 4 in [Chalitta19arXiv])

Serguei Primak (ECE, UWO)

AI/ML for COMM

January 15, 2020 20 / 39

Leverage ML classification potentian for the following tasks

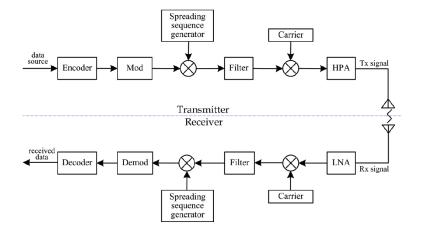
- False base station identification
- Rogue drone detection
- Rogue messaging
- Attack detection

Machine Learning Based Featureless Signalling [Shakeel18milcom]

Any features can be used by unintended receiver to detect or even decode the message. Ideal Jamming-Resilient (JR) signalling/Low Probability Detection (LPD) must satisfy the following principles

- Gaussianity (noise like) with minimum correlation
- Below noise floor (low power spectral density)
- Physical layer security
- Non-repetition
- Uncoordinated synchronization

Classical DSSS Receiver

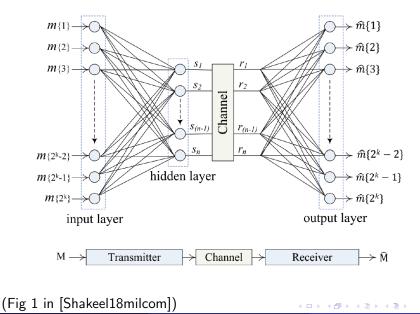


(Fig 1 in [Shakeel18milcom])

___ ▶

э

ML DSSS Receiver



Serguei Primak (ECE, UWO)

AI/ML for COMM

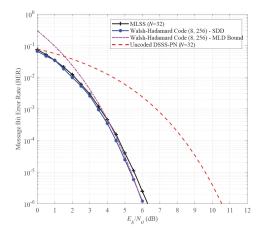
January 15, 202<u>0</u>

24 / 39

Parameter	Setting	
Training algorithm	One-step secant backpropagation	
Number of hidden layers	1	
Number of inputs- Input layer	256	
Number of neurons - Hidden layers	256	
Number of neurons - Output layers	256	
Activation function - Hidden layer	Linear	
Activation function - Output layer	Softmax	
Loss function	Cross-entropy	
Channel	AWGN	
Trained SNR	∞	
Number of trained weights	131584	

Table: Table 1 in [Shakeel18milcom]

ML DSSS Receiver BER

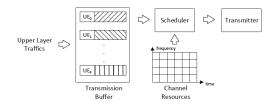


э

イロト イヨト イヨト イヨト

- De-facto off-line training
- Channle is not realistic to allow off-line training but could be used to create a code book
- No noise considered in training
- Deep network will be required for longer messages

Buffer-Aware Wireless Scheduling [Xu19arXiv]



- System consists of K UE with packet arrival intensity λ
- Each moment of time B resource blocks are available
- N time transmission intervals are considered for planning
- Multi-objective optimization problem with three performance measures
 - Jain's fairness index(JFI)
 - System Throughput (THP)
 - Packet drop rate

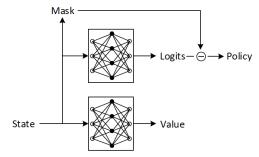
- Three objectives interrelated and cannot be optimized independently
- Pareto optimization results into a trade-off curve (Pareto Front)
- Full solution is computationally prohibitive, especially real time
- Genetic algorithms, Heuristics

Scheduling: Deep Reinforcement Learning appproach

- Model: Markov decision process (MDP): S, A, R, r
- State S: containes all UE observations: rates, buffer state, etc
- Action \mathcal{A} : indicates which UE is selected for transmission
- Reward $r = \alpha THP + \beta JFI \delta PDR$
- Actor-Critic (A2C) algorithm is used optimization (policy based Deep Reinforced Learning): directly parameterises policy π_θ(a|s)
- Updates gradient descent of expected return

$$g = \nabla_{\theta} \mathcal{E} \left[\sum_{t=0}^{\infty} \gamma^t r_t \right]$$

DRL algorithm: cont'd



AI/ML for COMM

3

DRL algorithm: cont'd

Algorithm 1 A2C algorithm

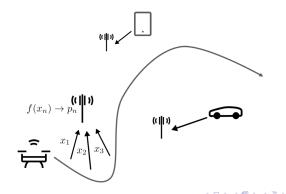
```
Initialize all environments
Initialize actor network \pi_{\theta} and critic network V_{\phi}
Initialize experience buffer E
for iteration = 1, M do
     SAMPLE_BATCH(n, \pi_{\theta})
     Update discounted reward r_i for ith experience
     Policy objective J_{\theta} = \sum_{i} (r_i - V_{\phi}(s_i)) \log \pi_{\theta}(a_i | s_i)
     Entropy term H_{\theta} = -\overline{\sum_{i}} \pi_{\theta}(a_{i}|s_{i}) \log \pi_{\theta}(a_{i}|s_{i})
     MSE of value L_{\phi} = \sum_{i} (r_i - V_{\phi}(s_i))^2
     SGD with G = -(\nabla_{\theta} J_{\theta} + \lambda_e \nabla_{\theta} H_{\theta}) + \lambda_v \nabla_{\phi} L_{\phi}
end for
function SAMPLE_BATCH(n, \pi_{\theta})
     Clear E
     for t = 1, n do
          Observe s_t
          Choose action a_t \sim \pi_{\theta}(s_t)
          Take action a_t, observe s_{t+1} and r_t
          Store (s_t, a_t, r_t, s_{t+1}) into E
     end for
end function
```

Civilian use of drones (unmanned airial vehicles)

- Precision Agriculture
- Inspection and Monitoring
- Delivery
- Photography
- Mobile base stations, sidelobe BS enhancers and relays
- **Problem:** Rogue drones can pose as legitimate UE drones, especially drone with attached registered UE like a cell phone. may cause additional interference.

Problem statement

- Detect a UE which is unauthorized drone
- Use of service area handover triggering event A3 and radio measurement
- $f(x) \rightarrow p$: $f(\odot)$ is ML model, x UE reported measurement, p probability of being a drone



- Supervised learning
- Data is generated through 3GPP model simulations (training and test sets)
- Legitimate drones are labelled as such
- Mixture of drone and land mobile UE is used
- Feature metric: RSSI, RSSI-gap, RSSI-STD
- Logistic regression

$$\rho = \frac{1}{1 + \exp\left(-\alpha - \beta_1 x_1 - \dots - \beta_n x_n\right)}$$

Results

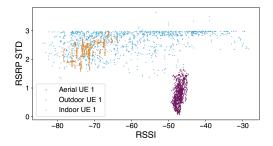
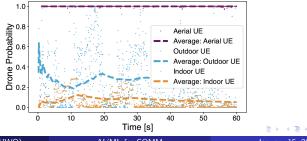


Fig. 4. {RSSI, RSRP-STD} samples for three UEs of different types



Serguei Primak (ECE, UWO)

AI/ML for COMM

Ursula Challita and Henrik A. Ryden and Hugo Tullberg (2019)

When Machine Learning Meets Wireless Cellular Networks: Deployment, Challenges, and Applications

arXiv e-print 1911.03585

Q. Cheng and Z. Shi and D. N. Nguyen and E. Dutkiewicz (2019) Sensing OFDM Signal: A Deep Learning Approach IEEE TCOM, **67**, 11, pp 7785-7798

K. B. Letaief and W. Chen and Y. Shi and J. Zhang and Y. A. Zhang (2019) The Roadmap to 6G: AI Empowered Wireless Networks IEEE Communications Magazine, **57**, 8, pp. 84-90

I. Shakeel (2018) Machine Learning Based Featureless Signalling MILCOM 2018 - 2018 IEEE Military Communications Conference (MILCOM)

H. Rydn and S. B. Redhwan and X. Lin (2019) Rogue Drone Detection: A Machine Learning Approach 2019 IEEE Wireless Communications and Networking Conference (WCNC)

 Chen Xu, Jian Wang, Tianhang Yu, Chuili Kong, Yourui Huangfu, Rong Li, Yiqun Ge, Jun Wang (2019)
 Buffer-aware Wireless Scheduling based on Deep Reinforcement Learning https://arxiv.org/abs/1911.05281

Jinho Choi, Shiva Raj Pokhrel (2019) Federated learning with multichannel ALOHA https://arxiv.org/abs/1912.06273

The End

→ < ∃ →</p>

Image: A image: A

2