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Abstract—For efficient hardware implementation of finite field arithmetic units, the use of a normal basis is advantageous. In this

paper, two classes of architectures for multipliers over the finite field GF ð2mÞ are proposed. These multipliers are of sequential type,

i.e., after receiving the coordinates of the two input field elements, they go through k, 1 � k � m, iterations (i.e., clock cycles) to finally

yield all the coordinates of the product in parallel. The value of k depends on the word size w ¼ m
k

� �
. For w > 1, these multipliers are

highly area efficient and require fewer number of logic gates even when compared with the most area efficient multipliers available in

the open literature. This makes the proposed multipliers suitable for applications where the value of m is large but space is of concern,

e.g., resource constrained cryptographic systems. Additionally, if the field dimension m is composite, i.e., m ¼ kn, then the extension

of one class of the architectures yields a highly efficient multiplier over composite fields.

Index Terms—Finite field, Massey-Omura multiplier, optimal normal basis.

�

1 INTRODUCTION

FINITE field GF ð2mÞ is a set of 2m elements where we can
add, subtract, multiply, and divide (by nonzero ele-

ments) without leaving the set. Arithmetic operations over
finite fields are widely used in error control coding and
cryptography. In both of these applications, there is a need
to design low complexity finite field arithmetic units. The
complexity of such a unit largely depends on how the field
elements are represented and there are many ways to
represent field elements. Among them, representation of
field elements using a normal basis is quite attractive for
efficient hardware implementation. A normal basis exists
for every extended finite field. Massey and Omura were the
first to propose multipliers based on the normal basis [1].

Like any finite field multiplier, a hardware implementa-
tion of a normal basis multiplier can be categorized either as
a parallel or sequential type. In a typical parallel multiplier
for GF ð2mÞ, once 2m bits of two inputs are received, m bits
of the product are obtained together at the output after
delays through various logic gates (if the multiplier is
implemented using combinational logic gates) or after
delays due to a memory access (if the multiplier is
implemented using a look-up table). Such a parallel type
multiplier (see, for example, [2], [3], [4]) requires a lot of
silicon area and is considered to be impractical for
cryptographic applications, where finite fields with very
large values of m (e.g., 4,000) are used.

On the other hand, a bit-level sequential multiplier is
much (about m times) more area efficient, but, in general,
takes m iterations (or clock cycles) for one multiplication.

Some sequential multipliers generate one bit of the product
in each of these m cycles. In another type of sequential
multipliers, all m bits of the product are incrementally
generated for m� 1 cycles and become the final form of the
product at the end of the mth cycle. These two types of
multipliers are hereafter referred to as sequential multi-
pliers with serial output (SMSO) and sequential multipliers
with parallel output (SMPO), respectively. Examples of the
former type includes Berlekamp’s bit-serial dual basis
multiplier [5] and Massey-Omura’s original bit-serial
normal basis multiplier [1], while those of the latter type
include the normal basis multiplier due to Agnew et al. [6]
and the well-known polynomial basis multiplier based on
LFSR [7]. Usually, SMPO multipliers run at a much higher
clock rate than their SMSO counterparts.

In this paper, we propose two new classes of word-level
SMPO multiplier architectures using a normal basis. These
two classes of structures are hereafter referred to as SMPOI

and SMPOII: They take k, 1 � k � m, cycles to complete the
multiplication and their critical path delay is proportional
to dlog2 m

ke. The maximum word size can be chosen based on
the available chip area. As a starting point, for one-bit long
words, i.e., k ¼ m, we simply present bit-level SMPO
structures which are referred to as b-SMPOI and
b-SMPOII. The AND gate count for the b-SMPOI structure
is bm2c þ 1 only. This implies that, if the multiplication over
GF ð2mÞ is performed using a suitable subfield GF ð2nÞ
where n > 1 and m ¼ nk, then the corresponding architec-
ture (which is referred to as n-SMPOI) will yield a highly
efficient multiplier for composite fields. To the best of our
knowledge, no such AND efficient bit-level GF ð2mÞ multi-
plier, i.e., b-SMPOI, in other field representations such as
polynomial, dual, or redundant basis exists. We then extend
the SMPO structures to word size of w bits, where 2 � w �
m and m is not a multiple of w, i.e., k ¼ dmwe, 1 � k � dm2e.
These structures are denoted as w-SMPOI and w-SMPOII. In
this paper, the gate counts of the proposed architectures are
also given and it is shown that they are better than those of
the existing architectures. Fig. 1 depicts the classification of
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the proposed five multiplier architectures under two
classes—SMPOI and SMPOII.

The organization of the remainder of this paper is as
follows: In Section 2, some preliminaries regarding the
normal basis are given and two well-known bit-level
sequential multipliers are briefly reviewed. Then, in
Section 3, we propose our bit-level SMPO architectures,
i.e., b-SMPOI and b-SMPOII. In this section, we also
compare their complexities with those of similar structures
available in the open literature. Moreover, the complexities
are compared for five specific fields recommended by the
National Institute of Standards and Technology (NIST) for
elliptic curve digital signature algorithm (ECDSA). In
Section 4, our new b-SMPOI structure is extended to
n-SMPOI for composite m ¼ kn. Its complexities are
compared with the best-known architectures for arbitrary
composite m. We also consider those composite values of m
recommended by ANSI X9.62 for ECDSA.1 In Section 5, our
new word-level SMPO architectures (w-SMPOI and
w-SMPOII) are given and their complexities are compared
for general and optimal normal bases. Finally, conclusions
are made in Section 6.

2 PRELIMINARIES

2.1 Normal Basis Representation and Multiplication

Let a normal basis of GF ð2mÞ over GF ð2Þ be

N ¼ f�; �2; � � � ; �2m�1g;

where � 2 GF ð2mÞ. It is well-known that there exists such a
normal basis for any positive integer m > 1 [8]. Using such
a basis, any field element A 2 GF ð2mÞ can be represented as
a linear combination of the elements of N , i.e.,
A ¼

Pm�1
i¼0 ai�

2i ¼ ða0; a1; � � � ; am�1Þ, whe re ai 2 GF ð2Þ,
0 � i � m� 1, are referred to as coordinates of A with
respect to N . In hardware implementation, A2 is almost free
of cost and can be easily performed by right cyclic shifts,
i.e., A2i ¼ ðam�i; am�iþ1; � � � ; am�i�1Þ. However, multiplica-
tion is not as easy as squaring.

Let A ¼ ða0; a1; � � � ; am�1Þ and B ¼ ðb0; b1; � � � ; bm�1Þ be
twoelementsofGF ð2mÞ,whereais and bis are their respective
normal basis coordinates. Let C ¼ ðc0; c1; � � � ; cm�1Þ be their
product: C ¼ AB. Then, any coordinate of C, say cm�1, is a
function u of A and B which can be obtained by a matrix
multiplication, i.e., cm�1 ¼ uðA;BÞ ¼ a �M � bT , whereM is a

binary m�m matrix known as the multiplication matrix [9],

a ¼ ½a0; a1; � � � ; am�1�, b ¼ ½b0; b1; � � � ; bm�1�, and T denotes

vector transposition. The number of 1s inM is known as the

complexity of the normal basis N [10] and is denoted as CN .

The latter determines the gate counts and, hence, time delay

for a normal basis multiplier.

Remark 1. It is well-known that CN � 2m� 1. If

CN ¼ 2m� 1, then the normal basis is called an optimal

normal basis.

Most of the existing word-level multipliers are SMSO

type. In this paper, we will present two new classes of

SMPO architectures. Below, we briefly review bit-serial

multipliers due to Massey-Omura [1] and Agnew et al. [6].

The former, which is believed to be the first normal basis

multiplier reported in the open literature, is a sequential

multiplier with serial output (SMSO), whereas the latter is a

sequential multiplier with parallel output (SMPO).

2.2 Bit-Level Sequential Multiplier with Serial
Output

In [1], Massey and Omura have shown that if the function

uðA;BÞ is implemented to generate cm�1, then the other

coordinates ofC can be obtained from the same implementa-

tion with inputs appropriately shifted in cyclic fashion, more

precisely, cm�1�i ¼ uðA2i ; B2iÞ: A block diagram of such an

architecture for SMSO is presented in Fig. 2a. In this figure, all

coordinates of A and B are first serially loaded into the shift

registers. Then, in each clock cycle, one coordinate of C from

cm�1 to c0 is generated by the u function just by cyclic shifts of

the registers. The following example is used to illustrate the

complexity of the u function. The field and the normal basis

presented in this example will be used in all architectures

presented in this paper.

Example 1. Consider the finite field GF ð25Þ generated by

the irreducible polynomial z5 þ z2 þ 1 and let � be its

root. If we choose � ¼ �5, then it can be verified that

f�; �2; �4; �8; �16g is a normal basis. Now, using Table 2

in [10], we have
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Fig. 1. The representation of the proposed SMPO architectures.

1. NIST recommended values of m for ECDSA are not composite.



M ¼

0 0 1 0 1

0 0 1 1 0

1 1 0 0 0

0 1 0 1 0

1 0 0 0 0

2
6666664

3
7777775
;

c4 ¼ a3b3 þ ða0b2 þ a2b0Þ þ ða0b4 þ a4b0Þ þ ða1b2 þ a2b1Þ
þ ða1b3 þ a3b1Þ;

ð1Þ

and the corresponding GF ð25Þ bit-serial multiplier is

shown in Fig. 2b.

In general, the number of AND gates and XOR gates of
Fig. 2a are CN and CN � 1, respectively. Also, its critical

path delay is TA þ log2 CNd eTX, where TA and TX are the

time delays due to one AND gate and one XOR gate,

respectively.
It is well-known that (1) can be rearranged to reduce

the AND gate count of the Massey-Omura multiplier

from CN to m (see, for example, [11]). This increases the

critical path of the multiplier from TA þ log2 CNd eTX to
TA þ ð log2 �d e þ log2 md eÞTX, where � is the maximum

number of 1s among all rows (or columns) of the multi-

plication matrix M. For an optimal normal basis, � ¼ 2 and

CN ¼ 2m� 1. Thus, the difference in the critical path delays

for these two variants of the Massey-Omura multipliers

disappears when an optimal normal basis is chosen. For
trade off between area and time, one can use the digit serial

multiplier (see, for example, [12]).

2.3 Bit-Level Sequential Multiplier with Parallel
Output

In [6], Agnew et al. presented another architecture for
multiplier using the normal basis. The output coordinates of
this multiplier are generated in parallel after m clock cycles
(i.e., it is a bit-level SMPO architecture). For the field and

normal basis constructed in Example 1, the corresponding
multiplier architecture is shown in Fig. 3a. In this multiplier
structure, all coordinates ci, 0 � i � 4 are obtained using (1)
as follows:

ci ¼ biaiþ1 þ biþ1ðai þ aiþ3Þ þ biþ2ðaiþ3 þ aiþ4Þ
þ biþ3ðaiþ1 þ aiþ2Þ þ biþ4ðaiþ2 þ aiþ4Þ;

ð2Þ

where the additions in the subscript indices are reduced

modulo 5. In (2), if one implements the first term, i.e., b0a1 for

c0, the second term, i.e., b2ða1 þ a4Þ for c1 and up to the final

term, i.e., b3ða1 þ a3Þ for c4; , the SMPO of Fig. 3a is obtained.

The initial contents of shift registersA andB are shown in the

figure. Details of theRi cell are shown in Fig. 3b. Initially, the

Di latches ofRis are cleared to zero and, afterm clock cycles,

theDis contain the coordinates of C ¼ AB.
The number of AND gates and XOR gates of the SMPO

can be easily obtained as m and CN , respectively. The

critical path delay of the multiplier is TA þ ð1þ log2 �d eÞTX,

where � is the maximum number of ai terms that are XORed

before being multiplied with a bi term in (2). As mentioned

earlier, this parameter � is the maximum number of 1s

among all rows (or columns) of the multiplication matrix

M. It is noted that 2 � � � m. For optimal normal bases

(which is the case in Example 1), the critical path delay is

TA þ 2TX, as shown in Fig. 3a and, for an arbitrary normal

basis, this delay is � TA þ ð1þ log2 md eÞTX.

2.4 Useful Lemmas

Before presenting our new architectures, below we present
Lemmas 1 and 2 from [4] and [13], respectively. These
lemmas will be used to formulate a multiplication algo-
rithm which will then lead to different architectures.

Lemma 1 [4]. Let C be the multiplication of A and B over

GF ð2mÞ, then
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Fig. 2. (a) Massey-Omura bit-level SMSO for GF ð2mÞ. (b) The GF ð25Þ Massey-Omura multiplier of Example 1.



C ¼

Pm�1

i¼0

aibi�
2iþ1 þ

Pm�1

i¼0

Pv
j¼1

xi;j�
2i

j ; for modd

Pm�1

i¼0

aibi�
2iþ1 þ

Pm�1

i¼0

Pv�1

j¼1

xi;j�
2i

j þ
Pv�1

i¼0

xi;v�
2i

v ; for m even;

8>>><
>>>:

ð3Þ

where xi;j ¼ aibiþj þ aiþjbi; 0 � i � m� 1; 1 � j � v.

Lemma 2 [13]. Let C be the multiplication of A and B over
GF ð2mÞ, then

C ¼

Pm�1

i¼0

aibi�
2i þ

Pm�1

i¼0

Pv
j¼1

yi;j�
2i

j ; for modd

Pm�1

i¼0

aibi�
2i þ

Pm�1

i¼0

Pv�1

j¼1

yi;j�
2i

j þ
Pv�1

i¼0

yi;v�
2i

v ; for m even;

8>>><
>>>:

ð4Þ

where

yi;j ¼ ðai þ aiþjÞðbi þ biþjÞ; 0 � i � m� 1; 1 � j � v

For proofs, the reader is referred to [4] and [13].

3 PROPOSED BIT-LEVEL SMPO ARCHITECTURES

3.1 Formulation

As before, let us consider two GF ð2mÞ elements A ¼
ða0; a1; � � � ; am�1Þ and B ¼ ðb0; b1; � � � ; bm�1Þ and let their
product be C ¼ ðc0; c1; � � � ; cm�1Þ. For 0 � i � m� 1, let

FiðA;BÞ ¼ ai�gbi�g� þ
Xv
j¼1

zi;j�j; ð5Þ

where v ¼ bm2 c, �j ¼ �1þ2j , 1 � j � v, and g 2 f0; 1g deter-
mines zi;j as follows: For 1 � j < dm2e,

zi;j ¼
ðai þ aiþjÞðbi þ biþjÞ; if g ¼ 0;
aibiþj þ aiþjbi; if g ¼ 1:

�
ð6Þ

For even values of m, we have

zi;v ¼
biðai þ aiþvÞ; if g ¼ 0;
aibiþv; if g ¼ 1:

�
ð7Þ

Note that additions and subtractions in the above subscripts
are reduced modulo m.

Now, we can state the following theorem, which is the
key equation for our new architectures.

Theorem 1. Consider three elements A, B, and C ¼ AB of

GF ð2mÞ. Then,

C ¼ ðððF 2
m�1 þ Fm�2Þ2 þ Fm�3Þ2 þ � � � þ F1Þ2 þ F0; ð8Þ

whereFi 2 GF ð2mÞ is a short form ofFiðA;BÞ as defined in (5).
Proof. Combining (3) and (4), one can obtain

C ¼
Xm�1

i¼0

ai�gbi�g�
2i þ

Xm�1

i¼0

Xv
j¼0

zi;j�
2i

j ;

where zi;j was previously defined in terms of g. Thus,

C ¼
Xm�1

i¼0

ai�gbi�g�
2i þ

Xm�1

i¼0

Xv
j¼0

zi;j�
2i

j

¼
Xm�1

i¼0

ai�gbi�g� þ
Xv
j¼0

zi;j�j

 !2i

¼
Xm�1

i¼0

F 2i

i

¼ ðððF 2
m�1 þ Fm�2Þ2 þ Fm�3Þ2 þ � � � þ F1Þ2 þ F0:

tu

In order to efficiently implement a normal basis multi-
plier based on Theorem 1, the following is useful.

Lemma 3. For FiðA;BÞ as defined in (5), one has

FiðA;BÞ ¼ FkþiðA2k ; B2kÞ; 0 � k; i � m� 1:

Proof. Let us denote A ¼ ða0; a1; � � � ; am�1Þ and
B ¼ ðb0; b1; � � � ; bm�1Þ, then the coordinates of A2k and
B2k can be obtained by k-fold right cyclic shifts, i.e., A2k ¼
ða�k; a1�k; � � � ; am�k�1Þ and B2k ¼ ðb�k; b1�k; � � � ; bm�k�1Þ,
where the indices reduced modulo m. Using (5), one can
write
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Fig. 3. (a) GF ð25Þ SMPO due to Agnew et al. [6]. (b) Details of the Ri cell.



FiðA;BÞ ¼ akþi�g�kbkþi�g�k� þ
Xv
j¼1

zkþi�k;j�j

¼ FkþiðA2k ; B2kÞ;

which completes the proof. tu
Based on Theorem 1 and the above lemma, we can now

have the following algorithm for normal basismultiplication.

Algorithm 1. (Normal Basis Multiplication)

Input: A; B 2 GF ð2mÞ given with respect to N

Output: C ¼ AB

1. Initialize X ¼ ða0; a1; � � � ; am�1Þ,
Y ¼ ðb0; b1; � � � ; bm�1Þ, D ¼ ðd0; d1; � � � ; dm�1Þ ¼ 0

2. For l ¼ 1 to m {

3. D ¼ D2 þ Fm�1ðX;Y Þ using (5)

4. X ¼ X2 and Y ¼ Y 2

5. }

6. C ¼ D

In Step 3 of this algorithm, we use the fixed function Fm�1

with varying inputs, i.e., at the lth iteration, this function is
Fm�1ðA2l�1

; B2l�1Þ. By substituting i ¼ m� l and k ¼ l� 1 into
Lemma 3, one can see that Fm�l ¼ Fm�1ðA2l�1

; B2l�1Þ. Thus,
insteadof usingFm�1; Fm�2; � � � ; F0with fixed inputsA andB,
as shown in Theorem 1, the use of only Fm�1 with varying
inputs greatly simplifies implementationofAlgorithm1.This
is discussed in the next section.

Although our subsequent discussions are centered
around hardware architecture, we would like to make
the following comments with regard to a possible
software implementation of Algorithm 1. In software,
one can generate zi;j on the fly to obtain FiðA;BÞ using
prestored �js which are fixed for a specific normal basis.
In this situation, the algorithm corresponding to the
b-SMPOI will require fewer (compared to the b-SMPOII)
number of instructions to be executed by the processor on
which the algorithm is implemented. This is because, in
the truth table of zi;j in terms of ai; aiþj; bi and biþj, there
are four and six 1s for g ¼ 0 and g ¼ 1, respectively.

Hence, Prfzi;j ¼ 1jg ¼ 0g ¼ 1
4 and Prfzi;j ¼ 1jg ¼ 1g ¼ 3

8 ,
which results in fewer XOR instructions on average.

3.2 Architectures

In order to map the above algorithm on hardware, the
structure of Fig. 4a is proposed. In the initialization step for
the multiplication operation, the coordinates of A and B are
serially loaded into the corresponding shift registers. This is
similar to Step 1 of Algorithm 1. Let DðlÞ 2 GF ð2mÞ denote
the field element after the lth iteration of Step 3 whose
normal basis coordinates are stored inm latches (denoted as
D0D1 � � �Dm�1). Then, to start the multiplication operation,
all Di latches have to be cleared corresponding to Step 1 of
the algorithm. In Fig. 4a, the cyclic shift operation at the
output of Dis performs squaring to obtain D2. Finally, the
D2 þ Fm�1 of Step 3 is realized by the Z array, the XOR
array, and an additional AND gate. The F block, which is
shown with dashed lines, realizes Fm�1 and will be used in
Section 5 of this paper. The Z array contains v number of
Z blocks which generate zm�1;j, 1 � j � v, needed for Fm�1

in (5) and the XOR array consists of XOR gates. Depending
on the value of g 2 f0; 1g, one of the two Z blocks as shown
in Fig. 4b and Fig. 4c is used. It is noted that, for m even, the
Z block for generating zm�1;v is different from both Fig. 4b
and Fig. 4c. For this case, a slightly different Z block is
needed which will generate zm�1;v corresponding to (7) and
which requires one AND gate and g 2 f0; 1g XOR gate. The
multiplier architecture containing Z blocks, as shown in
Fig. 4b and Fig. 4c, is referred to as b-SMPOI and b-SMPOII,
respectively.

Example 2. Here, we want to obtain the architectures of the
b-SMPOI=II for the field and the basis constructed in
Example 1. For this example, �1 ¼ � þ �23 and �2 ¼
�23 þ �24 and substituting these into (5) for i ¼ m� 1 ¼
4; wehaveF4 ¼ a4�gb4�g� þ z4;1ð� þ �23Þ þ z4;2ð�23 þ �24Þ.
Since the contents of the XOR array for both g ¼ 0 and
g ¼ 1 are the same, here we only consider g ¼ 0. Thus,
F4 ¼ ða4b4 þ z4;1; 0; 0; z4;1 þ z4;2; z4;2Þ. Let
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Fig. 4. (a) The structure of the proposed b-SMPOI=II over GF ð2mÞ. (b) The Z block for the b-SMPOI (g ¼ 0). (c) The Z block for the b-SMPOII (g ¼ 1).



D2 ¼ ðd4; d0; d1; d2; d3Þ;

then the output of the XOR array would be

D2 þ F4 ¼
ðd4 þ a4b4 þ z4;1; d0; d1; d2 þ z4;1 þ z4;2; d3 þ z4;2Þ;

which can be realized using five XOR gates. The
architecture of b-SMPOI is shown in Fig. 5. As seen in
the figure, the F block, which is shown with dashed
lines, generates F4. The architecture of b-SMPOII for this
example is similar to Fig. 5 except that two Z blocks in
the Z array and a4b4 in the first coordinate of F4 should
be replaced by Fig. 4b and a3b3, respectively.

3.3 Complexities

The gate complexity of the b-SMPOI=II depends on the
number of gates in the Z array and the XOR array. The
number of XOR gates and AND gates in the Z array are
easy to obtain because it consists of v identical blocks.2

These values for the proposed multipliers are shown in
Table 1.

In general, if no terms or signals are reused, then the
number of XOR gates in the XOR array of Fig. 4 is upper
bounded by 1þ

Pv
j¼1 Hð�jÞ, where Hð�jÞ is the number of

nonzero coordinates in the normal basis representation of
�j. For m being even, this value can be reduced to 1þPv�1

j¼1 Hð�jÞ þ 0:5Hð�vÞ by reusing half of the signals in-
volved in �v [4]. Also, from [4]

CN ¼
1þ 2

Pv
j¼1 Hð�jÞ; for m odd;

1þ 2
Pv�1

j¼1 Hð�jÞ þHð�vÞ; for m even:

(
ð9Þ

One can then conclude that the number of XOR gates in the
XOR array is upper bounded by 0:5ðCN þ 1Þ: Therefore,
based on the above discussions, one can obtain the gate
counts of the proposed multipliers as stated below.

Proposition 1. The gate complexities of the proposed b-SMPOI

and b-SMPOII are

#AND ¼ m

2

j k
þ 1;

#XOR � CN þ 2m� 1

2
;

and

#AND ¼ m;

#XOR � CN þ 1

2
þ m

2

j k
;

respectively.

To obtain the maximum clock rate for the proposed

multipliers, we obtain the delay of the critical path of the

Z array and the XOR array in Fig. 4a. The delay of the Z

array is TA þ TX for both SMPOI and SMPOII. Since the

output of the XOR array is

D2 þ ai�gbi�g� þ
Xv
j¼1

zi;j�j; ð10Þ

the critical path of the XOR array depends on the normal

basis representations of �j; for 1 � j � v. In the worst case,

when all �js have a common coordinate, say �2k , then the

critical path is determined by the kth coordinate of the

output of the XOR array and is equal to log2ðvþ 1Þd eTX for

k 6¼ 0 or log2ðvþ 2Þd eTX for k ¼ 0. Since v ¼ bm2c, one can

easily verify that the critical path delay is upper bounded

by TA þ log2ðmþ 4Þd eTX: Let � be the maximum number of

terms among all m coordinates in normal basis representa-

tion of (10), then the critical path of the proposed

multipliers would be TA þ ð1þ log2 �d eÞTX . For optimal
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Fig. 5. The proposed b-SMPOI of Example 2.

2. For m even, one block which generates zm�1;v is different from the
others.

TABLE 1
The Number of Gates in the Z Array



normal bases, it can be shown that � ¼ 3, which makes the
critical path of the XOR array to be log2 3d eTX ¼ 2TX , as
shown in Fig. 5.

Tables 2 and 3 compare our proposed bit-level sequential
multipliers with the existing leading ones in terms of
number of gates and latches as well as the critical path
delay for generic and optimal normal basis.

For the purpose of illustration, in Table 4, we show the
space and time complexities of the available bit-level
sequential normal basis multipliers for the five binary
fields recommended by NIST for ECDSA [17], where all
fields are represented by type t Gaussian normal basis [18].
In this table, the total space column represents the total
number of gates and latches. Using a C program, we have
obtained the parameters �, � , and CN for these fields. Our
findings show that � ¼ t and � ¼ tþ 1 for the recommended
fields whose types (i.e., values of t) are given in the table.

In order to obtain a fast sequential multiplier, we need to
reduce the number of clock cycles needed for the multi-
plication operation. In the following two sections, we
consider this issue.

4 EXTENSION TO COMPOSITE DEGREE

Composite binary extension fields have received consider-
able attention in the recent past (see, for example, [19], [20],
[21], and [22]). For such fields, the value of m is composite
and special care should be taken in choosing such values for
the cryptographic applications. In particular, in order to
avoid the recent Weil descent attack on elliptic curve
cryptosystems [23], [24], the reader is referred to references
[25] and [26] for a secure family of composite fields.

When m is a multiple of k, i.e., m ¼ nk for an integer n,
the proposed b-SMPOI can be extended to an efficient
multiplier3 for the composite field GF ð2nkÞ by performing
underlying operations over the subfield GF ð2nÞ: This
subfield-level arithmetic-based architecture is referred to
as n-SMPOI. For such an extension, one needs to simply
replace the AND and XOR gates shown in Fig. 4a and Fig. 4c
with the subfield multipliers and adders, respectively. Also,
the three bit-level m-stage registers shown in Fig. 4a are to
be replaced by n-stage registers. Thus, in each clock cycle of
the n-SMPOI structure, one bit cyclic shift is replaced with
one n-bit cyclic shift. As a result, the number of clock cycles
required for the multiplication operation is reduced from m
to k ¼ m

n .
Table 5 compares the complexities of the proposed

n-SMPOI with the best ones available in the open literature,
i.e., the multiple-bit structure proposed by Mullin [22] and
the hybrid multiplier proposed by Paar et al. [21]. The data
shown in the table for the architecture of [21] is for their
optimized multiplier with gcdðn; kÞ ¼ 1. In this table, Ck

denotes the complexity of the normal basis GF ð2mÞ over
GF ð2nÞ and Ck � 2k� 1. As shown in this table, the
n-SMPOI architecture needs only bk2c þ 1 multiplications
over the subfield GF ð2nÞ as compared to the others which
require k multiplications. In practice, a parallel subfield
adder requires only n XOR gates, whereas a parallel
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TABLE 2
Comparison of Bit-Level Sequential Normal Basis Multipliers over GF ð2mÞ

Note that, for an optimal normal basis, CN ¼ 2m� 1; otherwise, CN > 2m� 1. IMO = Improved Massey-Omura, GG = Geiselmann-Gollmann.

TABLE 3
Comparison of Critical Path Delays of Bit-Level Sequential Normal Basis Multipliers over GF ð2mÞ

Note that, for an optimal normal basis, CN ¼ 2m� 1; otherwise, CN > 2m� 1. Also, � and � are defined in Section 2.3 and 3.3, respectively.

3. Note that the b-SMPOII architecture is not suitable for such an
extension as it requires more multiplications than that of b-SMPOI

architecture over the ground field, and such ground multiplications are
usually costlier than additions.



subfield multiplier requires n2 AND gates and at most n2 þ
n XOR gates if either trinomial or pentanomial is used for

subfield multiplications [27]. However, if n is a composite

number, one can use a multiplier structure proposed in [28]

to obtain a smaller number of gates needed for the GF ð2nÞ
multiplier.

A number of composite fields are part of ANSI X9.62

[29]. For the purpose of illustrations, we have obtained the

space complexity of n-SMPOI for the composite fields

recommended in the ANSI X9.62 standard for ECDSA. In

this standard, m 2 f176; 208; 272; 304; 368g, which can be

written as m ¼ n� k, where n ¼ 16 and k 2 K;

K ¼ f11; 13; 17; 19; 23g:

Since gcdðn; kÞ ¼ 1; the complexity of the normal basis

GF ð2mÞ over GF ð2nÞ is the same as the one in GF ð2kÞ over
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TABLE 4
Comparison among Bit-Level Sequential Normal Basis Multipliers over GF ð2mÞ

for the Binary Fields Recommended by NIST for ECDSA

TABLE 5
Comparison among the Composite Field Multipliers of GF ð2mÞ over GF ð2nÞ, where m ¼ nk



GF ð2Þ [8]. Thus, one can use Table 2 in [30] to obtain the

lowest complexity of the normal basis of GF ð2kÞ over

GF ð2Þ. These complexity values are f21; 45; 81; 117; 45g for

k 2 K. It has been shown in [25] that these fields are secure

against known attacks. Also, we use the polynomial basis

multiplier proposed in [28] for subfield operations over

GF ð216Þ. Using Table 1 in [28], each GF ð216Þ multiplier

requires 144 AND gates and 258 XOR gates, which results

in the number of gates shown in Table 6. In this table, total

space complexity represents the addition of AND gates,

XOR gates, and latches. As seen in this table, the proposed

n-SMPOI architecture has only 65-71 percent of the total

space complexity of [21] and about 60 percent of that of [22].

5 NEW WORD-LEVEL SMPO STRUCTURES FOR

ARBITRARY FIELD DIMENSION

It follows from the discussions of the previous section that,

when m ¼ nk, we can reduce the number of clock cycles for

the multiplication operation from m to k by performing

underlying arithmetic over the subfield GF ð2nÞ. Each

element of GF ð2nÞ can be considered as an n-bit word. An

interesting question is then “Is it possible to have such a fast

multiplier using w-bit words where wj= m?” This is answered

in the this section.
Recall that the multiplier structure given in Fig. 4a

realizes (8) in m clock cycles. For a w-bit word, k ¼ dmwe. To
reduce this number from m to k, we need to realize w out of

m terms in (8) in each clock cycle. Then, in each clock cycle,

the three registers of Fig. 4a should be shifted by w bits. Let

LjðA;BÞ 2 GF ð2mÞ be defined as

LjðA;BÞ ¼
F 2w�1

m�1�jw þ F 2w�2

m�2�jw þ � � � þ Fm�w�jw; for 0 � j < k� 1

F 2w�1

w�1�r þ � � � þ F 2r

0 ; for j ¼ k� 1;

(

ð11Þ

where r, 0 � r � w� 1, is obtained from m ¼ wk� r and Fi

is as defined in (5). Then, using Theorem 1, the following

can be verified by noting that Lj is the short form of

LjðA;BÞ.
Corollary 1. Consider three elements A, B, and C ¼ AB of

GF ð2mÞ, where m ¼ wk� r. Then,

C2r ¼ ððL2w

0 þ L1Þ2
w

þ � � � þ Lk�2Þ2
w

þ Lk�1; ð12Þ

where Lj is defined in (11).

Thus, instead of realizing Fm�1 as we did in Fig. 4a, now

we need to realize

L0ðA;BÞ ¼ F 2w�1

m�1ðA;BÞ þ F 2w�2

m�2ðA;BÞ þ � � � þ Fm�wðA;BÞ:

Applying Lemma 3, we can realize L0 just by using one

function Fm�1 with different cyclic shifts of inputs as

follows:

L0ðA;BÞ ¼ F 2w�1

m�1ðA;BÞ þ F 2w�2

m�1ðA2; B2Þ þ � � �
þ Fm�1ðA2w�1

; B2w�1Þ:
ð13Þ

Based on the above discussion, an architecture for the word-

level multiplier is shown in Fig. 6. Like b-SMPOI=II, initially,

registers X and Y are loaded with the coordinates of A ¼
ða0; a1; � � � ; am�1Þ and B ¼ ðb0; b1; � � � ; bm�1Þ, respectively,

and the register D is cleared, i.e., D ¼ ð0; 0; � � � ; 0Þ. In this

figure, each F block realizes the Fm�1 function according to

(5) and the total number of F blocks is w. These F blocks are

denoted as F i, 0 � i � w� 1. Block CS corresponds to a

right cyclic shift and an i-fold right cyclic shift is

represented by CSi, 1 � i � w (CS1 ¼ CS). The S block is a

GF ð2mÞ adder which adds either all the inputs in the

jth clock cycle for 0 � j < k� 1 or only some of them

immediately prior to the last clock cycle, i.e., j ¼ k� 1: This

is because the representation of LjðA;BÞ in (11) for j ¼ k� 1

is different from the others, i.e., when 0 � j < k� 1. Thus,

the outputs of the m AND gates at the end of S3 are 0s just

prior to the last clock cycle.
Before starting the clock (i.e., j ¼ 0), the inputs of the top

most block Fw�1 are A and B. Thus, it generates Fm�1ðA;BÞ
and then we have F 2w�1

m�1ðA;BÞ at the output of the CSw�1

block. As seen in this figure, the inputs of block F i are

obtained from the right cyclic shift of the inputs of its upper

block, i.e., F iþ1. Similarly, at this time, one can verify that

the outputs of F i, 0 � i � w� 1 and the CSi blocks are

Fm�1ðA2w�1�i
; B2w�1�iÞ and F 2i

m�1ðA2w�1�i
; B2w�1�iÞ, respectively.

Thus, the inputs to the left side of the S block are the

GF ð2mÞ elements corresponding to the terms that appear in

(13). Since register D is initially cleared, its w-fold cyclic

shift, which is input to the S block, is zero. Thus, the output

of the S block is L0ðA;BÞ and it is loaded to register D after

the first clock cycle ðj ¼ 1Þ.
After the first clock cycle, the contents of register X and

register Y are A2w and B2w , respectively. In general, these

registers contain A2jw and B2jw after the jth clock cycle. By

repeated use of Lemma 3 in (11), one can see

LjðA;BÞ ¼ Lj�1ðA2w ; B2wÞ;
¼ L0ðA2jw ; B2jwÞ;
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TABLE 6
The Space Complexities of Composite Field Multipliers for the

Fields Recommended by ANSI X9.62



for 1 � j < k� 1: This shows that, after the jth clock cycle,

the output of the S block is LjðA;BÞ þD2w . It follows from

(12) that, after k clock cycles, register D has C2r . Thus, C can

be obtained by r-fold left cyclic shifts of register D. Also,

one can obtain coordinates of C (not C2r ) in register D by

initially loading of registersX and Y with A2�r
and B2�r

(not

A and B), respectively.
Continuing from Example 2, we illustrate the proposed

w-SMPOI for w ¼ 2. Fig. 7 depicts the structure where the

F block is shown in Fig. 5. It requires three clock cycles to

produce the result of the multiplication.

5.1 Complexities

Recall that the F block consists of the Z array, one AND

gate, and the XOR gates of the XOR array that are not

connected to register D, as seen in Fig. 4a and Fig. 5. First,

we obtain the number of XOR gates in the XOR arrays of the

F blocks and GF ð2mÞ adder S by using the total number of

nonzero line inputs to this part. For each individual F block,

the latter is 1þ
Pv

j¼1 Hð�jÞ when (5) is used. Thus,

according to (9), the total number of inputs to all n XOR

arrays and S block of Fig. 6 is upper bounded by

mþ wð1þ 0:5ðCN � 1ÞÞ. Consequently, the total number of
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Fig. 6. The architecture of word-level multiplier for arbitrary fields. CS represents the right cyclic shift and CSi is the i-fold right cyclic shifts.

Fig. 7. The proposed w-SMPOI of Example 2 for w ¼ 2.



XOR gates in the XOR arrays of F blocks and GF ð2mÞ adder
S is upper bounded by 0:5wðCN þ 1Þ.

To obtain the total number of gates of the proposed

word-level multiplier, we add the number of remaining

gates in the F blocks and at most m AND gates in S3 to the

above value. Thus, using Table 1, one can obtain the space

complexity of the word-level sequential multipliers

(w-SMPO) as follows:

Proposition 2. The gate complexities of the proposed architec-

tures of w-SMPOI and w-SMPOII are

#AND � w
m

2

j k
þ 1

� �
þm;

#XOR � w

2
ðCN þ 2m� 1Þ;

and

#AND � wmþm;

#XOR � w

2
CN þ 2

m

2

j k
þ 1

� �
;

respectively.

Remark 2. For the proposed w-SMPOI=II, with the minimum

and maximum w, i.e., w ¼ 1 and w ¼ m, respectively, r is

zero and there is no S3 block in Fig. 6. This reduces the

number of AND gates in Proposition 2 by m. Thus, these

match with the results given in Section 3 for w ¼ 1 and

the best ones available in the literature, i.e., [4] and [13],

for w ¼ m.

To obtain the critical delay of the proposed multipliers,

first we obtain the delay of F blocks, which is a TX less than

the delay of the bit-level multiplier, i.e., TA þ log2 �d eTX . It is

seen in Fig. 6 that the delays of S1, S2, and S3 are

log2ðw� rþ 1Þd eTX , TX, and TA þ log2 rd eTX , respectively.

Thus, one can state the following.

Proposition 3. The critical delay of the proposed word-level

sequential multipliers is

TA þ ð1þ log2 �d eÞTX þmaxð log2ðw� rþ 1Þd eTX; TA

þ log2 rd eTXÞ:
ð14Þ

It is noted that the last term of the critical delay given in

(14) is a function of n and r, 1 � r � w� 1. Thus, the upper

bound of critical delay is 2TA þ ð1þ log2ðw� 1Þd e þ
log2 �d eÞTX when r ¼ w� 1.

5.2 Comparison

Table 7 compares the proposed multipliers with the word-
level Massey-Omura (WLMO) multiplier, which uses
w identical bit-level Massey-Omura multipliers [1], and
the improved Massey-Omura (IMO) normal basis multi-
plier as reported in [11]. Also, this table compares our
proposed word-level multipliers with the recently proposed
ones, namely, AND efficient digit-serial (AEDS) and XOR
efficient digit-serial (XEDS) [12]. It is noted that all the
previously proposed multipliers are of SMSO type which
have 2m latches, whereas the proposed w-SMPOI=II struc-
tures are of SMPO type which need 3m latches. Using [12],
one obtains that � is the total number of 1s in the upper
triangular matrix of Mð1Þ _Mð2Þ _ � � � _MðwÞ, where MðiÞ,
1 � i � w, is the i-fold right and down circular shifts of all
entries of the multiplication matrix M and _ denotes bit-
wise OR operation. In general, � is a function of w, m, and
normal basis N and it is not easy to obtain a closed form
expression of that for an arbitrary normal basis (see [12] for
details). However, one can see that � ¼ 0:5ðCN � 1Þ for w ¼
1 and � � minðw2 ðCN � 1Þ; m

2 ðm� 1ÞÞ for w � m.
As seen in the table, the proposed w-SMPOI and

w-SMPOII structures have the least time delay. Also, they
have fewer number of gates than the first two structures in
this table. It is difficult to compare their gate complexities
with the AEDS and the XEDS structures for arbitrary
normal bases. However, this can be done for optimal
normal bases where CN ¼ 2m� 1 and the difference
between w-SMPOI (w-SMPOII) and AEDS (XEDS) is
minimum. This is shown in the following subsection.

5.3 Optimal Normal Basis

For type 1 optimal normal basis, one can simplify the

architecture of Fig. 6 by using the fact that �j ¼ �2l for

1 � j < m
2 ,where 2j þ 1 � 2l mod ðmþ 1Þ, and �v ¼ 1, v ¼ m

2

[4]. Thus, instead of using the normal basis N to represent

the outputs of the F blocks, we use redundant basis

R ¼ f�; �2; � � � ; �2m�1
; 1g. Therefore, each F block consists

of only an AND gate and a Z array whose number of

Z blocks is m
2 . The architecture of the sequential multiplier

for type 1 optimal normal basis is shown in Fig. 8. In this

figure, fi, 0 � i � w� 1, is the coordinate corresponding to

“1” in R. Two binary trees of XOR gates are represented by

BTX. The complexities of Fig. 8 are given in Table 8. Also,

the table compares the complexities of the proposed

structures with those of the available word-level multipliers

in the open literature. As seen in this table, our proposed
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TABLE 7
Comparison of Word-Level Normal Basis Multipliers



structures have less time delay and about the same gate

counts as reported in [12].

Remark 3. For type 1 optimal normal bases, m is always

even. Thus, if w is chosen as two, r will be zero.

Therefore, the number of AND gates and the upper

bound of the critical delay of the proposed w-SMPOI=II

structures given in Table 8 are reduced by mþ 1 and a

TA delay, respectively.

For type 2 optimal normal basis, we can directly obtain
the complexity of the proposed multipliers from the general
case by substituting CN ¼ 2m� 1 in Propositions 2 and 3.

These are compared with similar multipliers in Table 9. As
seen in this table, our proposed w-SMPOI=II structures have
fewer gates and less critical delay.

6 CONCLUSIONS

In this paper, we have consideredmultiplier architectures for
GF ð2mÞ using normal bases. For m being a multiple of an
integer n, we have proposed amultiplier that uses arithmetic
operations over the subfieldGF ð2nÞ. We have also proposed
twoword-level architectureswhich areveryusefulwhenm is
a prime or does not have a suitable divisor like n. For all the
proposed multipliers, architectural level details have been
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Fig. 8. The architecture of word-level multiplier for type 1 optimal normal basis. BTX represents binary tree of XOR gates.

TABLE 8
Comparison among Word-Level Sequential Multipliers for Type 1 Optimal Normal Basis

TABLE 9
Comparison of Word-Level Normal Basis Multipliers for Type 2 Optimal Normal Basis



presented and they have been compared with other similar
multipliers in terms of the number of AND gates, XOR gates,
latches, and critical pathdelays.The comparison results show
that the proposed multipliers have the least number of gates
and critical path delay. Such an improved performance has
been shown not only for arbitrary binary fields, but also for
those specific binary fields that are part of the recommenda-
tion and standard of NIST and ANSI X9.62 for the elliptic
curve digital signature algorithm.
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