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Low Complexity Word-Level Sequential
Normal Basis Multipliers

Arash Reyhani-Masoleh, Member, IEEE, and M. Anwar Hasan, Senior Member, IEEE

Abstract—For efficient hardware implementation of finite field arithmetic units, the use of a normal basis is advantageous. In this
paper, two classes of architectures for multipliers over the finite field GF(2™) are proposed. These multipliers are of sequential type,

i.e., after receiving the coordinates of the two input field elements,

they go through k, 1 < k < m, iterations (i.e., clock cycles) to finally

yield all the coordinates of the product in parallel. The value of k& depends on the word size w = (ﬂ] For w > 1, these multipliers are

k

highly area efficient and require fewer number of logic gates even when compared with the most area efficient multipliers available in
the open literature. This makes the proposed multipliers suitable for applications where the value of m is large but space is of concern,
e.g., resource constrained cryptographic systems. Additionally, if the field dimension m is composite, i.e., m = kn, then the extension
of one class of the architectures yields a highly efficient multiplier over composite fields.

Index Terms—Finite field, Massey-Omura multiplier, optimal normal basis.

INTRODUCTION

1
FINITE field GF(2™) is a set of 2" elements where we can

add, subtract, multiply, and divide (by nonzero ele-
ments) without leaving the set. Arithmetic operations over
finite fields are widely used in error control coding and
cryptography. In both of these applications, there is a need
to design low complexity finite field arithmetic units. The
complexity of such a unit largely depends on how the field
elements are represented and there are many ways to
represent field elements. Among them, representation of
field elements using a normal basis is quite attractive for
efficient hardware implementation. A normal basis exists
for every extended finite field. Massey and Omura were the
first to propose multipliers based on the normal basis [1].

Like any finite field multiplier, a hardware implementa-
tion of a normal basis multiplier can be categorized either as
a parallel or sequential type. In a typical parallel multiplier
for GF(2™), once 2m bits of two inputs are received, m bits
of the product are obtained together at the output after
delays through various logic gates (if the multiplier is
implemented using combinational logic gates) or after
delays due to a memory access (if the multiplier is
implemented using a look-up table). Such a parallel type
multiplier (see, for example, [2], [3], [4]) requires a lot of
silicon area and is considered to be impractical for
cryptographic applications, where finite fields with very
large values of m (e.g., 4,000) are used.

On the other hand, a bit-level sequential multiplier is
much (about m times) more area efficient, but, in general,
takes m iterations (or clock cycles) for one multiplication.
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Some sequential multipliers generate one bit of the product
in each of these m cycles. In another type of sequential
multipliers, all m bits of the product are incrementally
generated for m — 1 cycles and become the final form of the
product at the end of the mth cycle. These two types of
multipliers are hereafter referred to as sequential multi-
pliers with serial output (SMSO) and sequential multipliers
with parallel output (SMPO), respectively. Examples of the
former type includes Berlekamp’s bit-serial dual basis
multiplier [5] and Massey-Omura’s original bit-serial
normal basis multiplier [1], while those of the latter type
include the normal basis multiplier due to Agnew et al. [6]
and the well-known polynomial basis multiplier based on
LFSR [7]. Usually, SMPO multipliers run at a much higher
clock rate than their SMSO counterparts.

In this paper, we propose two new classes of word-level
SMPO multiplier architectures using a normal basis. These
two classes of structures are hereafter referred to as SMPO;
and SMPOy. They take k, 1 < k < m, cycles to complete the
multiplication and their critical path delay is proportional
to [log, #]. The maximum word size can be chosen based on
the available chip area. As a starting point, for one-bit long
words, ie., k=m, we simply present bit-level SMPO
structures which are referred to as b-SMPO; and
b-SMPOy. The AND gate count for the b-SMPOy structure
is || + 1 only. This implies that, if the multiplication over
GF(2™) is performed using a suitable subfield GF(2")
where n > 1 and m = nk, then the corresponding architec-
ture (which is referred to as n-SMPOy) will yield a highly
efficient multiplier for composite fields. To the best of our
knowledge, no such AND efficient bit-level GF(2™) multi-
plier, i.e.,, b-SMPOy, in other field representations such as
polynomial, dual, or redundant basis exists. We then extend
the SMPO structures to word size of w bits, where 2 < w <
m and m is not a multiple of w, i.e., k=[], 1 <k < [F].
These structures are denoted as w-SMPO; and w-SMPOy;. In
this paper, the gate counts of the proposed architectures are
also given and it is shown that they are better than those of
the existing architectures. Fig. 1 depicts the classification of
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Fig. 1. The representation of the proposed SMPO architectures.

the proposed five multiplier architectures under two
classes—SMPO; and SMPOy;.

The organization of the remainder of this paper is as
follows: In Section 2, some preliminaries regarding the
normal basis are given and two well-known bit-level
sequential multipliers are briefly reviewed. Then, in
Section 3, we propose our bit-level SMPO architectures,
i.e., b-SMPO; and b-SMPOy. In this section, we also
compare their complexities with those of similar structures
available in the open literature. Moreover, the complexities
are compared for five specific fields recommended by the
National Institute of Standards and Technology (NIST) for
elliptic curve digital signature algorithm (ECDSA). In
Section 4, our new b-SMPO; structure is extended to
n-SMPO; for composite m = kn. Its complexities are
compared with the best-known architectures for arbitrary
composite m. We also consider those composite values of m
recommended by ANSI X9.62 for ECDSA.! In Section 5, our
new word-level SMPO architectures (w-SMPO; and
w-SMPOy) are given and their complexities are compared
for general and optimal normal bases. Finally, conclusions
are made in Section 6.

2 PRELIMINARIES

2.1 Normal Basis Representation and Multiplication
Let a normal basis of GF(2™) over GF'(2) be

N = {ﬂ7 ﬁ27 T 52”,71}7

where 3 € GF(2™). It is well-known that there exists such a
normal basis for any positive integer m > 1 [8]. Using such
a basis, any field element A € GF(2™) can be represented as
a linear combination of the elements of N, i.e,
A=Y" a8 = (ao, ar, -+, ap-1), where a; € GF(2),
0<i<m-—1, are referred to as coordinates of A with
respect to N. In hardware implementation, A? is almost free
of cost and can be easily performed by right cyclic shifts,
ie, A% = (am—i, Gm—i+1, -+, Gm—i—1). However, multiplica-
tion is not as easy as squaring.

Let A= (a(), at, * -+, am,l) and B = (bg, b17 HEI bm—l) be
two elements of GF'(2™), where a;s and b;s are their respective
normal basis coordinates. Let C' = (¢, c1, - - -, ¢n—1) be their
product: C' = AB. Then, any coordinate of C, say c¢,,_1, is a
function u of A and B which can be obtained by a matrix
multiplication, i.e., ¢;,—1 = u(A,B) =a-M- b’, where Misa

1. NIST recommended values of m for ECDSA are not composite.

binary m x m matrix known as the multiplication matrix [9],
'7am—1}r b= [b07 blv e
vector transposition. The number of 1s in M is known as the

a = [a, a, - ,bm—1], and T denotes

complexity of the normal basis N [10] and is denoted as Cl.

The latter determines the gate counts and, hence, time delay

for a normal basis multiplier.

Remark 1. It is well-known that Cy >2m —1. If
Cy = 2m — 1, then the normal basis is called an optimal

normal basis.

Most of the existing word-level multipliers are SMSO
type. In this paper, we will present two new classes of
SMPO architectures. Below, we briefly review bit-serial
multipliers due to Massey-Omura [1] and Agnew et al. [6].
The former, which is believed to be the first normal basis
multiplier reported in the open literature, is a sequential
multiplier with serial output (SMSO), whereas the latter is a
sequential multiplier with parallel output (SMPO).

2.2 Bit-Level Sequential Multiplier with Serial
Output

In [1], Massey and Omura have shown that if the function
u(A, B) is implemented to generate ¢,_1, then the other
coordinates of C' can be obtained from the same implementa-
tion with inputs appropriately shifted in cyclic fashion, more
precisely, ¢,,_1_; = u(A*, B*). A block diagram of such an
architecture for SMSO is presented in Fig. 2a. In this figure, all
coordinates of A and B are first serially loaded into the shift
registers. Then, in each clock cycle, one coordinate of C from
¢m—1 t0 ¢ is generated by the u function just by cyclic shifts of
the registers. The following example is used to illustrate the
complexity of the u function. The field and the normal basis
presented in this example will be used in all architectures
presented in this paper.

Example 1. Consider the finite field GF(2°) generated by
the irreducible polynomial z° + 2% +1 and let a be its
root. If we choose 3 = o, then it can be verified that
{B, 32, B*, 8%, 3%} is a normal basis. Now, using Table 2
in [10], we have
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Fig. 2. (a) Massey-Omura bit-level SMSO for GF(2™). (b) The GF(2°) Massey-Omura multiplier of Example 1.

00101
00110
M=|[110 0 0],
01010
10000

Cy = CL3b3 + ((lobz + CLQb()) + (Cl[)b4 + a4b0) + (a1b2 + G,le)
+ (a1b3 + agbl),
(1)

and the corresponding GF(2°) bit-serial multiplier is
shown in Fig. 2b.

In general, the number of AND gates and XOR gates of
Fig. 2a are Cy and Cy — 1, respectively. Also, its critical
path delay is T4 + [log, Cn]Tx, where T4 and Tx are the
time delays due to one AND gate and one XOR gate,
respectively.

It is well-known that (1) can be rearranged to reduce
the AND gate count of the Massey-Omura multiplier
from Cy to m (see, for example, [11]). This increases the
critical path of the multiplier from T4 + [log, Cx|Tx to
Ta + ([log, p] + [log,m])Tx, where p is the maximum
number of 1s among all rows (or columns) of the multi-
plication matrix M. For an optimal normal basis, p = 2 and
Cy = 2m — 1. Thus, the difference in the critical path delays
for these two variants of the Massey-Omura multipliers
disappears when an optimal normal basis is chosen. For
trade off between area and time, one can use the digit serial
multiplier (see, for example, [12]).

2.3 Bit-Level Sequential Multiplier with Parallel
Output

In [6], Agnew et al. presented another architecture for

multiplier using the normal basis. The output coordinates of

this multiplier are generated in parallel after m clock cycles

(i-e., it is a bit-level SMPO architecture). For the field and

normal basis constructed in Example 1, the corresponding
multiplier architecture is shown in Fig. 3a. In this multiplier
structure, all coordinates ¢;, 0 < i < 4 are obtained using (1)
as follows:

¢ = biaip1 + biy1(a; + aiy3) + biva(airs + airs)

+ bi3(ai1 + aive) + bira(aive + aiya),

(2)

where the additions in the subscript indices are reduced
modulo 5. In (2), if one implements the first term, i.e., bya; for
co, the second term, i.e., bs(a; + a4) for ¢; and up to the final
term, i.e., b3(a; + as) for c4,, the SMPO of Fig. 3a is obtained.
The initial contents of shift registers A and B are shown in the
figure. Details of the R; cell are shown in Fig. 3b. Initially, the
D; latches of R;s are cleared to zero and, after m clock cycles,
the D;s contain the coordinates of C = AB.

The number of AND gates and XOR gates of the SMPO
can be easily obtained as m and Cy, respectively. The
critical path delay of the multiplier is T4 + (1 + [log, p])Tx,
where p is the maximum number of a; terms that are XORed
before being multiplied with a b; term in (2). As mentioned
earlier, this parameter p is the maximum number of 1s
among all rows (or columns) of the multiplication matrix
M. It is noted that 2 < p <m. For optimal normal bases
(which is the case in Example 1), the critical path delay is
T4 + 2T, as shown in Fig. 3a and, for an arbitrary normal
basis, this delay is < T4 + (1 + [log, m])Tx.

2.4 Useful Lemmas

Before presenting our new architectures, below we present
Lemmas 1 and 2 from [4] and [13], respectively. These
lemmas will be used to formulate a multiplication algo-
rithm which will then lead to different architectures.

Lemma 1 [4]. Let C be the multiplication of A and B over
GF(2™), then
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Fig. 3. (a) GF(2°) SMPO due to Agnew et al. [6]. (b) Details of the R; cell.

m—1 -1 v

Za@bﬂwl—l—zzxu]: for modd
C = i=0 i= 0],
m—1 m— v—1
> ab 52:+1+ZZ;1:7]6 +Z;z:”,g, for meven,
i=0 i—0 =1
(3)

where Tij = a,;bz-ﬂ- + a7;+jb,;, 0 < 1 <m-— 1, 1 < ] <.

Lemma 2 [13]. Let C be the multiplication of A and B over
GF(2™), then

m—1 : m—1 v ;
> aibif* + 30 Y yiio7, for modd
C = =0 i=0 j=1

- m—1 m—1v—1
> a;b 8 +ZZy215 +Zyw1,7 for meven,
=0 =0 j=1

(4)
where
yij = (ai+aij)(bi+biyj), 0<i<m—1,1<j<w

For proofs, the reader is referred to [4] and [13].

3 PRoPOSED BIT-LEVEL SMPO ARCHITECTURES

3.1 Formulation
As before, let us consider two GF(2") elements A =

(ag, a1, +++, am-1) and B = (bg, by, -+, by,—1) and let their
product be C' = (g, ¢1, -+, ¢m-1). For 0 <i <m —1, let
F(A,B) = ai-ghigB+ ) 26, (5)

J=1

where v = |2, 6; =", 1 <j<v, and g€ {0,1} deter-
mines z;; as follows: For 1 < j <[],

L @it aig)(bi 4 biyy), i g =0, (©)
S aibigg + aigibs, ifg=1
For even values of m, we have
[ bi(a; + aiy), ifg=0,
v = { a;bity, ifg=1. 0

Note that additions and subtractions in the above subscripts
are reduced modulo m.

Now, we can state the following theorem, which is the
key equation for our new architectures.

Theorem 1. Consider three elements A, B, and C = AB of
GF(2™). Then,
=((F2 4+ Fpa)’ + Fus)’ + -+ P+ F,  (8)
where F; € GF(2™) is a short form of F;(A, B) as defined in (5).
Proof. Combining (3) and (4), one can obtain

m—1 v

C= anzq62+ZZZz/ja

i i=0 j=0

3

Iy
o

where z; ; was previously defined in terms of g. Thus,

m—1 v

C= Zm gbi- gﬁ +ZZZ7]62

=0 j=

m—1

9i

—Z(az gYi— qﬁ“l‘zzz} )
m—1

:ZFL?’

= ((F2_ 1+ Fuoa) + Fs)’ + -+ F1)’ + Fy.

a

In order to efficiently implement a normal basis multi-
plier based on Theorem 1, the following is useful.

Lemma 3. For F;(A, B) as defined in (5), one has

F(A,B) = Fi(A,BY), 0<ki<m-—1.
Proof. Let us denote A= (ap, a1, "+, am—1) and
B = (by, by, -, by_1), then the coordinates of A% and

2" can be obtained by k-fold right cyclic shifts, i.e., A2 =
(a—k, @1ogy -+ amop1) and B2 = (b_g, bi_g, ==+, byp1),
where the indices reduced modulo m. Using (5), one can
write
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Fig. 4. (a) The structure of the proposed b-SMPOy,;; over GF(2™). (b) The Z block for the b-SMPO; (g = 0). (c) The Z block for the b-SMPOy; (g = 1).

v
Fi(A, B) = ajyig-1bryi—g-18 + Z Zkvi-kjOj

J=1
= Fk+i (A2k> BQk)>

which completes the proof. ]

Based on Theorem 1 and the above lemma, we can now
have the following algorithm for normal basis multiplication.

Algorithm 1. (Normal Basis Multiplication)
Input: A, B € GF(2™) given with respect to N
Output: C = AB
1. Initialize X = (ag, a1, , Gm-1),
Y = (bo, b1, bu—1), D= (do, d1,- -, dp—1) =0
Fori=1tom{
D = D?+ F,_1(X,Y) using (5)
X=X’and Y =Y?
}
C=D

In Step 3 of this algorithm, we use the fixed function F,,_,
with varying inputs, i.e., at the Ith iteration, this function is
F, (A" B?"). By substitutingi = m — land k = [ — 1into
Lemma 3, one can see that F,,_; = F,,_1(A2 "', B*"). Thus,
instead of using F},,_1, Fi—2, - - -, Fy with fixed inputs Aand B,
as shown in Theorem 1, the use of only F,,_; with varying
inputs greatly simplifies implementation of Algorithm 1. This
is discussed in the next section.

Although our subsequent discussions are centered
around hardware architecture, we would like to make
the following comments with regard to a possible
software implementation of Algorithm 1. In software,
one can generate z;; on the fly to obtain Fj(A, B) using
prestored 6;s which are fixed for a specific normal basis.
In this situation, the algorithm corresponding to the
b-SMPO; will require fewer (compared to the b-SMPOy)
number of instructions to be executed by the processor on
which the algorithm is implemented. This is because, in
the truth table of z;; in terms of a;,a;rj, b; and b, there
are four and six 1s for ¢=0 and g=1, respectively.

SRR IR

Hence, Pr{z;=1/g=0} =7 and Pr{z;=1lg=1}

which results in fewer XOR instructions on average.

=3
=2,

3.2 Architectures

In order to map the above algorithm on hardware, the
structure of Fig. 4a is proposed. In the initialization step for
the multiplication operation, the coordinates of A and B are
serially loaded into the corresponding shift registers. This is
similar to Step 1 of Algorithm 1. Let D(I) € GF(2™) denote
the field element after the [th iteration of Step 3 whose
normal basis coordinates are stored in m latches (denoted as
DyD; --- Dy,—1). Then, to start the multiplication operation,
all D; latches have to be cleared corresponding to Step 1 of
the algorithm. In Fig. 4a, the cyclic shift operation at the
output of D;s performs squaring to obtain D?. Finally, the
D? + F,,1 of Step 3 is realized by the Z array, the XOR
array, and an additional AND gate. The F' block, which is
shown with dashed lines, realizes F;,_; and will be used in
Section 5 of this paper. The Z array contains v number of
Z blocks which generate z,,—1;, 1 < j < v, needed for F,,_;
in (5) and the XOR array consists of XOR gates. Depending
on the value of g € {0,1}, one of the two Z blocks as shown
in Fig. 4b and Fig. 4c is used. It is noted that, for m even, the
Z block for generating z,,-1, is different from both Fig. 4b
and Fig. 4c. For this case, a slightly different Z block is
needed which will generate z,,_;, corresponding to (7) and
which requires one AND gate and g € {0,1} XOR gate. The
multiplier architecture containing Z blocks, as shown in
Fig. 4b and Fig. 4c, is referred to as b-SMPOy and b-SMPOy;,
respectively.

Example 2. Here, we want to obtain the architectures of the
b-SMPOy;; for the field and the basis constructed in
Example 1. For this example, 6; =+ ﬂ23 and &, =
3% 4+ % and substituting these into (5) for i =m — 1 =
4, wehave Fy = a4,gb4,gﬂ + 241 (ﬂ + 523) + 242 (ﬂQS + ﬂ24).
Since the contents of the XOR array for both g =0 and
g =1 are the same, here we only consider g = 0. Thus,
F, = (a4b4 + 241, 0, 0, 241 + 242, Z4<2). Let
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Fig. 5. The proposed b-SMPO; of Example 2.

D2 = (d4ﬂ d0> d17 d?a d3)7

then the output of the XOR array would be

D>+ F =
(ds + aabs + 241, do, di, do+ 241 + 242, ds+ 242),

which can be realized using five XOR gates. The
architecture of b-SMPOy is shown in Fig. 5. As seen in
the figure, the F' block, which is shown with dashed
lines, generates Fj. The architecture of b-SMPOy; for this
example is similar to Fig. 5 except that two Z blocks in
the Z array and a4b4 in the first coordinate of F; should
be replaced by Fig. 4b and a3bs, respectively.

3.3 Complexities

The gate complexity of the b-SMPO;; depends on the
number of gates in the Z array and the XOR array. The
number of XOR gates and AND gates in the Z array are
easy to obtain because it consists of v identical blocks.?
These values for the proposed multipliers are shown in
Table 1.

In general, if no terms or signals are reused, then the
number of XOR gates in the XOR array of Fig. 4 is upper
bounded by 1+ 377, H(5;), where H(§;) is the number of
nonzero coordinates in the normal basis representation of
0;. For m being even, this value can be reduced to 1+
Z” L H(6;) + 0.5H(é,) by reusing half of the signals in-
Volved in 6, [4]. Also, from [4]

o 1+2Z;’1H( i) for m odd,

N= 1+2370 L H(6;) + H(5,), form even.
One can then conclude that the number of XOR gates in the
XOR array is upper bounded by 0.5(Cx + 1). Therefore,

based on the above discussions, one can obtain the gate
counts of the proposed multipliers as stated below.

(9)

Proposition 1. The gate complexities of the proposed b-SMPOx
and b-SMPOy; are

2. For m even, one block which generates z,,_1, is different from the
others.

103

Doy D3 Dy

YAND = gJ +1,

#XOR§70N+§m_1,
and
#AND =m
Cy+1 m
< -
#XOR< ==+ |7,
respectively.

To obtain the maximum clock rate for the proposed
multipliers, we obtain the delay of the critical path of the
Z array and the XOR array in Fig. 4a. The delay of the Z
array is T4 + Tx for both SMPO; and SMPOy. Since the
output of the XOR array is

D? + ai,gbi,gﬁ + Z 2’7;‘]‘5]', (10)
=1
the critical path of the XOR array depends on the normal
basis representations of §;, for 1 < j < v. In the worst case,
when all §;s have a common coordinate, say %, then the
critical path is determined by the kth coordinate of the
output of the XOR array and is equal to [log,(v + 1)]|Tx for
k#0 or [logy(v+2)]Tx for k=0. Since v = |%|, one can
easily verify that the critical path delay is upper bounded
by T4 + [logy(m + 4)]Tx. Let 7 be the maximum number of
terms among all m coordinates in normal basis representa-
tion of (10), then the critical path of the proposed
multipliers would be T4 + (1 + [log, 7])Tx. For optimal

TABLE 1
The Number of Gates in the Z Array
Multiplier | #XOR | #AND |
b-SMPO; | m—1 v
b-SMPOq; v m—1
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TABLE 2
Comparison of Bit-Level Sequential Normal Basis Multipliers over GF'(2™)
Sequential #AND #XOR Total gate count #Latches | Output
Multiplier gates gates generic N | optimal N format
Massey-Omura[1] Cn Cy—1 208 — 1 4m —3 2m serial
IMO [11] m Cy—1 m+Cy—1 3m—2 2m serial
Beth-Gollmann [14] m Cn m+ Cn 3m—1 2m parallel
GG [15] m | <SRy |nl|clytnt 18] | <2m+ | 2] 3m | parallel
Feng [16] 2m—1 | <Cy+m-—1 <Cn+3m-—2 <b5m-—3 3m —2 | parallel
Agnew et al. [6] m Cn m+ Cy Im—1 3m parallel
b-SMPO; 2] +1 < CN"';m_l < CN+§m+1 + 15 | £2m+ | T 3m parallel
b-SMPOy; m <ttt go]|ccutomil 4 2] <2m+ (2 3m parallel

Note that, for an optimal normal basis, Cy = 2m — 1, otherwise, Cy > 2m — 1. IMO = Improved Massey-Omura, GG = Geiselmann-Gollmann.

TABLE 3
Comparison of Critical Path Delays of Bit-Level Sequential Normal Basis Multipliers over GF(2™)

| multiplier l generic N | optimal NV | upper bound |

Massey-Omural1] Ta + [logy, Cn] Tx Ta+ (1+ [log, m])Tx < Ty +2[logym| Tx
IMO [11] Ta + ([log, p] + [logo m])Tx | Ta + (1 + [logy m])Tx < Ta + 2[log, m] Tx

Beth-Gollmann [14] Ta+ (14 [logy pl)Tx Ta+2Tx < T+ (14 [logy, m])Tx

GG [15] Ty + (1 -+ —logz T )TX Ts + 3T < Ty + |—10g2(m + 4)-| Tx

Feng [16] Ty + (3 + —10g2 P )TX Ty +4Tx <Ta+ (3 + _10g2 m| )TX

Agnew et al. [6] Ta+ (14 [log, p|)Tx Ty +2Tx < T+ (14 [logym])Tx

b—SMPOI Ty + (1 + —logz T )TX Ty +3Tx < Tx + _logz(m + 4)_ Tx

b-SMPOy Ta+ (1+ [log, 7])Tx Ty +3Tx < Ta + [logy(m+4)] Tx

Note that, for an optimal normal basis, Cy = 2m — 1;

normal bases, it can be shown that 7 = 3, which makes the
critical path of the XOR array to be [log, 3]Tx = 2T, as
shown in Fig. 5.

Tables 2 and 3 compare our proposed bit-level sequential
multipliers with the existing leading ones in terms of
number of gates and latches as well as the critical path
delay for generic and optimal normal basis.

For the purpose of illustration, in Table 4, we show the
space and time complexities of the available bit-level
sequential normal basis multipliers for the five binary
fields recommended by NIST for ECDSA [17], where all
fields are represented by type ¢t Gaussian normal basis [18].
In this table, the total space column represents the total
number of gates and latches. Using a C program, we have
obtained the parameters p, 7, and Cy for these fields. Our
findings show that p =t and 7 = ¢ + 1 for the recommended
fields whose types (i.e., values of t) are given in the table.

In order to obtain a fast sequential multiplier, we need to
reduce the number of clock cycles needed for the multi-
plication operation. In the following two sections, we
consider this issue.

4 EXTENSION TO CoMPOSITE DEGREE

Composite binary extension fields have received consider-
able attention in the recent past (see, for example, [19], [20],
[21], and [22]). For such fields, the value of m is composite
and special care should be taken in choosing such values for
the cryptographic applications. In particular, in order to
avoid the recent Weil descent attack on elliptic curve
cryptosystems [23], [24], the reader is referred to references
[25] and [26] for a secure family of composite fields.

otherwise, Cy > 2m — 1. Also, p and T are defined in Section 2.3 and 3.3, respectively.

When m is a multiple of &, i.e., m = nk for an integer n,
the proposed b-SMPO; can be extended to an efficient
multiplier’ for the composite field GF(2"") by performing
underlying operations over the subfield GF(2"). This
subfield-level arithmetic-based architecture is referred to
as n-SMPO;. For such an extension, one needs to simply
replace the AND and XOR gates shown in Fig. 4a and Fig. 4c
with the subfield multipliers and adders, respectively. Also,
the three bit-level m-stage registers shown in Fig. 4a are to
be replaced by n-stage registers. Thus, in each clock cycle of
the n-SMPOy structure, one bit cyclic shift is replaced with
one n-bit cyclic shift. As a result, the number of clock cycles
required for the multiplication operation is reduced from m
tok="1

Table 5 compares the complexities of the proposed
n-SMPOy with the best ones available in the open literature,
i.e., the multiple-bit structure proposed by Mullin [22] and
the hybrid multiplier proposed by Paar et al. [21]. The data
shown in the table for the architecture of [21] is for their
optimized multiplier with ged(n,k) = 1. In this table, Cj
denotes the complexity of the normal basis GF(2™) over
GF(2") and Cj>2k—1. As shown in this table, the
n-SMPO; architecture needs only [£| + 1 multiplications
over the subfield GF(2") as compared to the others which
require k multiplications. In practice, a parallel subfield
adder requires only n XOR gates, whereas a parallel

3. Note that the b-SMPOy; architecture is not suitable for such an
extension as it requires more multiplications than that of b-SMPO;
architecture over the ground field, and such ground multiplications are
usually costlier than additions.
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TABLE 4
Comparison among Bit-Level Sequential Normal Basis Multipliers over GF(2™)
for the Binary Fields Recommended by NIST for ECDSA

m,t Sequential #AND | #XOR | #Latches | Total Time
Multiplier gates gates space delay
Massey-Omura[1] 645 644 326 1615 | T4 + 10T
MO [11] 163 | 644 326 | 1133 | Ta + 107
Beth-Gollmann [14] 163 645 326 1134 | T4+ 3Tx
GG [15] 163 404 489 1056 Ty + 4Ty
163, 4 Feng [16] 325 807 487 1619 Ty + 5Ty
Agnew et al. [6] 163 645 489 1297 | Ty + 3Ty
b-SMPO; 82 485 489 1056 Ty+4Tx
b-SMPOy; 163 | 404 489 1056 | Ty + 4Tx
Massey-Omurall] 465 464 466 1395 | Ty + 9Ty
MO [11] 233 | 464 466 | 1163 | Ta+ 97x
Beth-Gollmann [14] 233 465 466 1164 | T4+ 2Tx
GG [13] 233 | 349 699 | 1281 | T+ 3Ty
233, 2 Feng [16] 465 697 697 1859 | Ty +4Tx
Agnew et al. [6] 233 465 699 1397 | Ty + 2Ty
b-SMPOq 117 465 699 1281 Ty+3Tx
b-SMPOy; 233 349 699 1281 | Ty + 3Tx
Massey-Omura|1] 1677 1676 566 3919 | Ty + 11Ty
MO [11] 283 | 1676 566 | 2525 | Ta + 12Tx
Beth-Gollmann [14] 283 1677 566 2526 | T4 +4Tx
GG [13] 283 | 980 49 | 2112 | T+ 4Ty
283, 6 Feng [16] 565 1959 847 3371 Ty + 6Tx
Agnew et al. [6] 283 1677 849 2809 | T4 +4Tx
b-SMPOq 142 1121 849 2112 T+ 4Ty
b-SMPOq; 283 980 849 2112 Ty + 4T
Massey-Omura[1] 1629 1628 818 4075 | Ty + 11Ty
MO [11] 109 | 1628 818 | 2855 | Ta + 117
Beth-Gollmann [14] 409 1629 818 2856 | T4+ 3Ty
GG [15] 409 1019 1227 2655 Ts+4Tx
409, 4 Feng [16] 817 2037 1225 4079 Ts+ 5Ty
Agnew et al. [6] 409 1629 192% 3265 | Ta+ 3Tx
b-SMPOq 205 1223 1227 2655 Ty + 4Ty
b-SMPOq; 409 1019 1227 2655 Ty +4Tx
Massey-Omura|1] 5637 5636 1142 12415 | T4 + 13Ty
IMO [11] 571 5636 1142 7349 | Ty + 14T
Beth-Gollmann [14] 571 5637 1142 7350 | T4+ 5T
GG [13] 571 | 3104 | 1713 | 5383 | Ta+51x
571, 10 Feng [16] 1141 6207 1711 9059 | Tu+ TTx
Agnew et al. [6] 571 5637 1713 7921 | T4+ 5Tx
b-SMPOq 286 3389 1713 5388 Ts+ 5Ty
b-SMPOq; 571 3104 1713 5388 Ty + 5Ty
TABLE 5
Comparison among the Composite Field Multipliers of GF(2™) over GF'(2"), where m = nk
Multiplier # GF(2") | # GF(2") | #Latches | # Clock | Type of
multipliers adders cycles basis
Mullin [22] k Ci 3m k normal
Paar et al. [21] k k 2m + k k polynomial
n-SMPOq L%J +1 < Q‘fﬁ 3m k normal

subfield multiplier requires n* AND gates and at most n? +
n XOR gates if either trinomial or pentanomial is used for
subfield multiplications [27]. However, if n is a composite
number, one can use a multiplier structure proposed in [28]
to obtain a smaller number of gates needed for the GF(2")

multiplier.
A number of composite fields are part of ANSI X9.62

[29]. For the purpose of illustrations, we have obtained the

space complexity of n-SMPO; for the composite fields
recommended in the ANSI X9.62 standard for ECDSA. In
this standard, m € {176, 208,272,304, 368}, which can be
written as m = n x k, where n = 16 and k € K,

K = {11,13,17,19,23}.

Since ged(n, k) =1, the complexity of the normal basis
GF(2™) over GF(2") is the same as the one in GF(2¥) over
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TABLE 6
The Space Complexities of Composite Field Multipliers for the
Fields Recommended by ANSI X9.62

m word-serial # AND | # XOR | #Latches | Total space
(k,Cy) multiplier gates gates complexity
Mullin [22] 1584 3174 528 5286
176 Paar et al. [21] | 1584 3014 363 4961
(11,21) n-SMPO; 864 1848 528 3240
Mullin [22] 1872 4074 624 6570
208 Paar et al. [21] | 1872 3562 429 5863
(13,45) n-SMPO; 1008 2324 624 3956
Mullin [22] 2448 5682 816 8946
272 Paar et al. [21] | 2448 4658 561 7667
(17,81) n-SMPO; 1296 3180 816 5292
Mullin [22] 2736 6774 912 10422
304 Paar et al. [21] 2736 5206 627 8569
(19,117) n-SMP Oy 1440 3752 912 6104
Mullin [22] 3312 6654 1104 11070
368 Paar et al. [21] 3312 6302 759 10373
(23,45) n-SMPO; 1728 3744 1104 6576

GF(2) [8]. Thus, one can use Table 2 in [30] to obtain the
lowest complexity of the normal basis of GF(2*) over
GF(2). These complexity values are {21,45,81,117,45} for
k € K. It has been shown in [25] that these fields are secure
against known attacks. Also, we use the polynomial basis
multiplier proposed in [28] for subfield operations over
GF(2'%). Using Table 1 in [28], each GF(2'%) multiplier
requires 144 AND gates and 258 XOR gates, which results
in the number of gates shown in Table 6. In this table, total
space complexity represents the addition of AND gates,
XOR gates, and latches. As seen in this table, the proposed
n-SMPO; architecture has only 65-71 percent of the total
space complexity of [21] and about 60 percent of that of [22].

5 NeEw WOoRD-LEVEL SMPO STRUCTURES FOR
ARBITRARY FIELD DIMENSION

It follows from the discussions of the previous section that,
when m = nk, we can reduce the number of clock cycles for
the multiplication operation from m to k by performing
underlying arithmetic over the subfield GF(2"). Each
element of GF(2") can be considered as an n-bit word. An
interesting question is then “Is it possible to have such a fast
multiplier using w-bit words where w|m?” This is answered
in the this section.

Recall that the multiplier structure given in Fig. 4a
realizes (8) in m clock cycles. For a w-bit word, k = [Z]. To
reduce this number from m to k, we need to realize w out of
m terms in (8) in each clock cycle. Then, in each clock cycle,
the three registers of Fig. 4a should be shifted by w bits. Let
L;(A,B) € GF(2™) be defined as

L;(A,B) =
{ F'rz::i—jw + F?%U:;—j111 +oet F’”—’LU—.TU”
w-1 r
Fioi, 4+ 1,

for0<j<k-—1
forj=k—1,
(11)

where r, 0 < r < w — 1, is obtained from m = wk — r and F;
is as defined in (5). Then, using Theorem 1, the following
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can be verified by noting that L; is the short form of
L;(A,B).

Corollary 1. Consider three elements A, B, and C = AB of
GF(2™), where m = wk — r. Then,

C¥ = (L5 + L)+ + L) + L,
where Lj is defined in (11).

(12)

Thus, instead of realizing F,,_; as we did in Fig. 4a, now
we need to realize

Lo(A, B) = F2" (A, B)

m—1

+ F2 (A, B) + -+ F,_(A, B).

Applying Lemma 3, we can realize L; just by using one
function Fj,_; with different cyclic shifts of inputs as
follows:

Lo(A, B) = F2" (A, B) + F2 (A B?) + -+

(13)
+ mel (A ) B )

Based on the above discussion, an architecture for the word-
level multiplier is shown in Fig. 6. Like b-SMPOyy, initially,
registers X and Y are loaded with the coordinates of A =
(ag, a1, -+, ap—1) and B = (by, b1, - -+, by—1), respectively,
and the register D is cleared, i.e., D= (0, 0,---, 0). In this
figure, each F block realizes the F},_; function according to
(5) and the total number of F blocks is w. These F blocks are
denoted as F;, 0 <i <w— 1. Block CS corresponds to a
right cyclic shift and an i-fold right cyclic shift is
represented by CS 1<i<w (CS1 = CS). The S block is a
GF(2™) adder which adds either all the inputs in the
jth clock cycle for 0 < j<k—1 or only some of them
immediately prior to the last clock cycle, i.e., j = k — 1. This
is because the representation of L;(A, B) in (11) for j =k — 1
is different from the others, i.e.,, when 0 < j < k — 1. Thus,
the outputs of the m AND gates at the end of S; are Os just
prior to the last clock cycle.

Before starting the clock (i.e., j = 0), the inputs of the top
most block F,,_; are A and B. Thus, it generates F,,_;(A, B)
and then we have F2" (A, B) at the output of the CS"™!
block. As seen in this figure, the inputs of block F; are
obtained from the right cyclic shift of the inputs of its upper
block, i.e., F;;;. Similarly, at this time, one can verify that
the outputs of F;, 0 <i<w-—1 and the CS’ blocks are
F (A2 B ) and F2_(A*"",B*"), respectively.
Thus, the inputs to the left side of the S block are the
GF(2™) elements corresponding to the terms that appear in
(13). Since register D is initially cleared, its w-fold cyclic
shift, which is input to the S block, is zero. Thus, the output
of the S block is Ly(A, B) and it is loaded to register D after
the first clock cycle (j = 1).

After the first clock cycle, the contents of register X and
register Y are A?" and B*', respectively. In general, these
registers contain A% and B*" after the jth clock cycle. By
repeated use of Lemma 3 in (11), one can see

Li(A,B) = Lj (A%, B"),
= Ly(4*",B*"),
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Fig. 7. The proposed w-SMPO; of Example 2 for w = 2.

for 1 < j < k— 1. This shows that, after the jth clock cycle,
the output of the S block is L;(A, B) + D*". It follows from
(12) that, after k clock cycles, register D has C*. Thus, C can
be obtained by r-fold left cyclic shifts of register D. Also,
one can obtain coordinates of C' (not C?) in register D by
initially loading of registers X and Y with A% and B? " (not
A and B), respectively.

Continuing from Example 2, we illustrate the proposed
w-SMPO; for w = 2. Fig. 7 depicts the structure where the
F block is shown in Fig. 5. It requires three clock cycles to
produce the result of the multiplication.

5.1 Complexities

Recall that the F' block consists of the Z array, one AND
gate, and the XOR gates of the XOR array that are not
connected to register D, as seen in Fig. 4a and Fig. 5. First,
we obtain the number of XOR gates in the XOR arrays of the
F blocks and GF(2™) adder S by using the total number of
nonzero line inputs to this part. For each individual F block,
the latter is 1+ 7, H(6;,) when (5) is used. Thus,
according to (9), the total number of inputs to all n XOR
arrays and S block of Fig. 6 is upper bounded by
m+ w(l+ 0.5(Cy — 1)). Consequently, the total number of
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TABLE 7
Comparison of Word-Level Normal Basis Multipliers
I Multipliers | #AND | #XOR I Critical Delay | Output |

WLMO [1] wCn w(Cn — 1) Ta + [og, O Tx serial

IMO [11] wm w(Cy — 1) Ta + ([logy p] + [log, m])Tx serial

AEDS [12 v+ w 2y4+ 3 (Cy —1) Ta + [logy Cn | Tx serial

XEDS [12 2v + w Y+ 5(Cv—-1) T + [log, Cn] Tx serial

w-SMPO; [ w([Z]+1)+m | 2(Cy+2m—1) [ <2Tx+ (1+ [logy(w — 1)] + [log, 7])Tx | parallel
w-SMPOpg wm+m L(Cnv+2]2Z]+1) | <2T4 + (1 + [logy(w — 1)] + [log, 7])Tx | parallel

XOR gates in the XOR arrays of F' blocks and GF(2™) adder

S is upper bounded by 0.5w(Cy + 1).
To obtain the total number of gates of the proposed

word-level multiplier, we add the number of remaining

gates in the F' blocks and at most m AND gates in S; to the

above value. Thus, using Table 1, one can obtain the space

complexity of the word-level sequential multipliers

(w-SMPO) as follows:

Proposition 2. The gate complexities of the proposed architec-
tures of w-SMPOy and w-SMPOy; are

LAND < w(gJ + 1) +m,
#XOR < %(CN +2m - 1),
and

#AND < wm + m,

#XOR < % (CN + 2% n 1),

respectively.

Remark 2. For the proposed w-SMPOy;;, with the minimum
and maximum w, i.e.,, w = 1 and w = m, respectively, r is
zero and there is no S3 block in Fig. 6. This reduces the
number of AND gates in Proposition 2 by m. Thus, these
match with the results given in Section 3 for w =1 and
the best ones available in the literature, i.e., [4] and [13],
for w=m.

To obtain the critical delay of the proposed multipliers,
first we obtain the delay of F' blocks, which is a T’x less than
the delay of the bit-level multiplier, i.e., T4 + [log, 7| T. It is
seen in Fig. 6 that the delays of S;, S and S; are
[logy(w —r+1)|Tx, Tx, and T4 + [log, 7|Tx, respectively.
Thus, one can state the following.

Proposition 3. The critical delay of the proposed word-level
sequential multipliers is

Ty + (14 [logy 7])Tx + max([logy(w — r + 1)]Tx, T

"+ logy r|T¥). a4

It is noted that the last term of the critical delay given in
(14) is a function of n and r, 1 <r < w — 1. Thus, the upper
bound of critical delay is 274 + (1 + [logy(w —1)] +
[log, 7])Tx when r = w — 1.

5.2 Comparison

Table 7 compares the proposed multipliers with the word-
level Massey-Omura (WLMO) multiplier, which uses
w identical bit-level Massey-Omura multipliers [1], and
the improved Massey-Omura (IMO) normal basis multi-
plier as reported in [11]. Also, this table compares our
proposed word-level multipliers with the recently proposed
ones, namely, AND efficient digit-serial (AEDS) and XOR
efficient digit-serial (XEDS) [12]. It is noted that all the
previously proposed multipliers are of SMSO type which
have 2m latches, whereas the proposed w-SMPOy; struc-
tures are of SMPO type which need 3m latches. Using [12],
one obtains that v is the total number of 1s in the upper
triangular matrix of MDY vM®P v v M®), where M),
1 <i <w, is the i-fold right and down circular shifts of all
entries of the multiplication matrix M and Vv denotes bit-
wise OR operation. In general, v is a function of w, m, and
normal basis N and it is not easy to obtain a closed form
expression of that for an arbitrary normal basis (see [12] for
details). However, one can see that v = 0.5(Cy — 1) for w =
1 and v < min(%(Cy — 1), 2(m — 1)) for w < m.

As seen in the table, the proposed w-SMPO; and
w-SMPOy; structures have the least time delay. Also, they
have fewer number of gates than the first two structures in
this table. It is difficult to compare their gate complexities
with the AEDS and the XEDS structures for arbitrary
normal bases. However, this can be done for optimal
normal bases where Cy =2m —1 and the difference
between w-SMPO; (w-SMPOp) and AEDS (XEDS) is
minimum. This is shown in the following subsection.

5.3 Optimal Normal Basis

For type 1 optimal normal basis, one can simplify the
architecture of Fig. 6 by using the fact that ¢; = 32 for
1<j<2,where2’ +1=2" mod (m+1),andé, =1,
[4]. Thus, instead of using the normal basis N to represent
the outputs of the F' blocks, we use redundant basis
R={B, 3, ---, 82", 1}. Therefore, each F block consists
of only an AND gate and a Z array whose number of
Z blocks is %. The architecture of the sequential multiplier
for type 1 optimal normal basis is shown in Fig. 8. In this
figure, f;, 0 < i < w — 1, is the coordinate corresponding to
“1” in R. Two binary trees of XOR gates are represented by
BTX. The complexities of Fig. 8 are given in Table 8. Also,
the table compares the complexities of the proposed
structures with those of the available word-level multipliers
in the open literature. As seen in this table, our proposed

m
2
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Fig. 8. The architecture of word-level multiplier for type 1 optimal normal basis. BTX represents binary tree of XOR gates.

TABLE 8
Comparison among Word-Level Sequential Multipliers for Type 1 Optimal Normal Basis

| Multiplier | # AND | #+ XOR | Critical Delay |
WLMO [1] w(2m —1) w(2m —2) Ta+ (14 [log,m])Tx
IMOJ11] wm w(2m — 2) Ty + (14 [logym|)Tx
AEDS [12] (w+1)% (w+1)(1.5m —2)+1 Ta+ (14 [log,m])Tx
XEDS [12] | w(m—1)+m (w+1)(m—1) Ty + (14 [logym])Tx
w-SMPO; | = +m+w+1 ML mtw—1 < 2Ty + (3 + [logy (w — 1)])Tx
w-SMPOy | wum+m+w+1 wm+m+4w-—1 <2Tx + (3 + [logy(w — 1)) Tx

TABLE 9
Comparison of Word-Level Normal Basis Multipliers for Type 2 Optimal Normal Basis

| Multipliers | #AND | #XOR ’ Critical Delay |
WLMO [1] w(2m — 1) w(2m — 2) Ta+ (14 [log, m])Tx
IMO [11] wm w(2m — 2) Ts+ (14 [log,m])Tx
AEDS [12] | w(m — 0.5w + 0.5) w(3m —w —2) Ta+ (14 [log, m])Tx
XEDS [12] w(2m —n) w(2m — 0.5w — 1.5) T+ (14 [log,m])Tx
w-SMPO; | w([Z]+1)+m w(2m — 1) < 2T + (34 [logy(w — 1)) Tx
w-SMPOyg wm +m wim + [2]) < 2Ta + (3 + [logy(w — 1)])Tx

structures have less time delay and about the same gate
counts as reported in [12].

Remark 3. For type 1 optimal normal bases, m is always
even. Thus, if w is chosen as two, r will be zero.
Therefore, the number of AND gates and the upper
bound of the critical delay of the proposed w-SMPOy
structures given in Table 8 are reduced by m + 1 and a
T4 delay, respectively.

For type 2 optimal normal basis, we can directly obtain
the complexity of the proposed multipliers from the general
case by substituting Cy = 2m — 1 in Propositions 2 and 3.

These are compared with similar multipliers in Table 9. As
seen in this table, our proposed w-SMPOyy; structures have
fewer gates and less critical delay.

6 CONCLUSIONS

In this paper, we have considered multiplier architectures for
GF(2™) using normal bases. For m being a multiple of an
integer n, we have proposed a multiplier that uses arithmetic
operations over the subfield GF'(2"). We have also proposed
twoword-level architectures which are very useful when m is
a prime or does not have a suitable divisor like n. For all the
proposed multipliers, architectural level details have been
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presented and they have been compared with other similar
multipliers in terms of the number of AND gates, XOR gates,
latches, and critical path delays. The comparison results show
that the proposed multipliers have the least number of gates
and critical path delay. Such an improved performance has
been shown not only for arbitrary binary fields, but also for
those specific binary fields that are part of the recommenda-
tion and standard of NIST and ANSI X9.62 for the elliptic
curve digital signature algorithm.
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