
Fast Normal Basis Multiplication Using
General Purpose Processors

Arash Reyhani-Masoleh, Member, IEEE, and M. Anwar Hasan, Senior Member, IEEE

Abstract—For cryptographic applications, normal bases have received considerable attention, especially for hardware

implementation. In this article, we consider fast software algorithms for normal basis multiplication over the extended binary field

GFð2mÞ. We present a vector-level algorithm which essentially eliminates the bit-wise inner products needed in the conventional

approach to the normal basis multiplication. We then present another algorithm which significantly reduces the dynamic instruction

counts. Both algorithms utilize the full width of the data-path of the general purpose processor on which the software is to be executed.

We also consider composite fields and present an algorithm which can provide further speed-ups and an added flexibility toward

hardware-software codesign of processors for very large finite fields.

Index Terms—Finite field multiplication, normal basis, software algorithms, ECDSA, composite fields.

�

1 INTRODUCTION

THE extended binary finite field GFð2mÞ of degree m is
used in important cryptographic operations, such as

key exchange, signing, and verification. For today’s security
applications, the minimum values of m are considered to be
l60 in the elliptic curve cryptography and 1,024 in the
standard discrete log-based cryptography. Elliptic curve
crypto-systems, which were proposed by Koblitz [15] and
Miller [23] independently, use relatively smaller field sizes,
but require a considerable amount of field arithmetic for
each group operation (i.e., addition of two points). In such
crypto-systems, often the most complicated and expensive
module is the finite field arithmetic unit. As a result, it is
important to develop suitable finite field arithmetic algo-
rithms and architectures that can meet the constraints of
various implementation technologies, such as hardware
and software.

For cryptographic applications, the most frequently used

GFð2mÞ arithmetic operations are addition and multiplica-

tion. Compared to the former, the latter is a much more

complicated and time-consuming operation. The complex-

ity of GFð2mÞ multiplication very much depends on how

the field elements are represented. For hardware imple-

mentation of a multiplier, the use of normal bases has

received considerable attention and a number of hardware

architectures and implementations have been reported (see,

for example, [1], [2], [19], [10], [35]). Unlike hardware, so far

software implementation of a GFð2mÞ multiplier using

normal bases has not been that popular. This is mainly due

to a number of practical considerations. Most importantly,
normal basis multiplication algorithms require inner pro-
ducts or matrix multiplications over the ground field GF(2).
Such computations are not directly supported by most of
today’s general purpose processors. These computations
require bit-by-bit logical AND and XOR operations, which
are not efficiently implemented using the instruction set
supported by the processors. Also, when a high-level
programming language such as C is used, the cyclic shifts
needed for field squaring operations are not as efficient as
they are in hardware.

In this paper, we consider algorithms for fast software
normal basis (NB) multiplication on general purpose
processors. We discuss how the conventional bit-level
algorithm for normal basis multiplication fails to utilize
the full data-path of the processor and makes its software
implementation inefficient. In view of this, a vector-level
normal basis multiplication algorithm is presented which
eliminates the matrix multiplication over GF(2) and sig-
nificantly reduces the number of dynamic instructions. We
then derive another scheme for normal basis multiplication
to further improve the speed. We present implementation
results of these schemes for the five fields recommended by
NIST for NB multiplication in ECDSA (elliptic curve digital
signature algorithm) [25], i.e., m ¼ 163, 233, 283, 409, 571.
For example, it takes 99�s and requires only 322 bytes of
memory for a GF ð2163Þ multiplication using NB on
Pentium III 533 MHz PC. We also consider normal basis
multiplication over certain special classes of composite
fields. We show that normal basis multipliers over such
composite fields can provide an additional speed-up. For
example, it requires 114�s and 25 bytes of memory for
multiplication over GF ð2299Þ. Composite fields also offer a
great deal of flexibility toward hardware-software codesign
of very large finite field processors.

The organization of this article is as follows: In Section 2,
the NB representation and its conventional multiplication
algorithm are presented. This algorithm has been proposed
by NIST for NB multiplication in ECDSA [25] where all

IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 11, NOVEMBER 2003 1379

. A. Reyhani-Masoleh is with the Centre for Applied Cryptographic
Research, Department of Combinatorics and Optimization, University of
Waterloo, Waterloo, Ontario, Canada N2L 3G1.
E-mail: areyhani@math.uwaterloo.ca.

. M.A. Hasan is with the Department of Electrical and Computer
Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L
3G1. E-mail: ahasan@ece.uwaterloo.ca.

Manuscript received 26 July 2001; revised 16 Sept. 2002; accepted 24 Jan.
2003.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 114607.

0018-9340/03/$17.00 � 2003 IEEE Published by the IEEE Computer Society

recommended values of m are prime. Then, in Section 3, we
extend NIST’s algorithm to a vector-level multiplication
algorithm which uses the full width of the data-path of the
processor. In Section 4, a more efficient algorithm for
NB multiplication is presented. In this section, this algo-
rithm is also compared with other algorithms. Then, we
present an algorithm for multiplication over finite fields
GF ð2mÞ with composite values of m in Section 5. Finally, a
few concluding remarks are given in Section 6.

2 PRELIMINARIES

2.1 Normal Basis Representation

It is well-known that there exists a normal basis in the field
GF ð2mÞ over GF ð2Þ for all positive integers m. By finding
an element � 2 GF ð2mÞ such that f�; �2; � � � ; �2m�1g is a basis
of GF ð2mÞ over GF ð2Þ, any element A 2 GF ð2mÞ can be
represented as

A ¼
Xm�1

i¼0

ai�
2i ¼ a0� þ a1�

2 þ � � � þ am�1�
2m�1

;

where ai 2 GF ð2Þ, 0 � i � m� 1, is the ith coordinate of A.
In this paper, this normal basis representation of A will be
written in short as A ¼ ða0; a1; � � � ; am�1Þ. Now, consider the
following matrix:

M ¼ �2iþ2j
h im�1

i;j¼0
; ð1Þ

whose entries belong to GFð2mÞ. Writing these entries with
respect to the NB, one obtains the following:

M ¼ M0� þM1�
2 þ � � � þMm�1�

2m�1

; ð2Þ

where Mis are m�m multiplication matrices whose entries
belong to GF ð2Þ. Following [23], we now give the definition
of the complexity of an NB as follows.

Definition 1. The numbers of 1s in all Mis are equal. Let us
define this number by

CN ¼ HðMiÞ; 0 � i � m� 1; ð3Þ

which is known as the complexity of the NB. In (3), HðMiÞ
refers to the Hamming weight, i.e., the number of 1s, in Mi.

It is well-known that CN � 2m� 1 [23]. When
CN ¼ 2m� 1, the NB is called an optimal normal basis
(ONB). Two types of ONBs were constructed byMullin et al.
[23]. Gao and Lenstra [7] showed that these two types are all
the ONBs in GF ð2mÞ. As an extension of the work on ONBs,
Ash et al. in [4] proposed low complexity normal bases of
type t, where t is a positive integer. These low complexity
bases are referred to as Gaussian Normal Basis (GNB). When
t ¼ 1 and 2, the GNBs become the two types of ONBs of [4].
For GF ð2mÞ, a GNB exists if m is not divisible by 8. A type t
GNB for GF ð2mÞ exists if and only if p ¼ tmþ 1 is prime
and gcdðtmk ; mÞ ¼ 1, where k is the multiplicative order of
2 modulo p [12].

2.2 Conventional NB Multiplication Algorithm

Below, we give the conventional algorithm for normal basis
multiplication. This algorithm is for t even only (the reader is

referred to [11] for an algorithmwith todd). The case of t even
is of particular interest for implementing high speed crypto-
systems based on Koblitz curves. Such curves with points
over GF ð2mÞ exist for m ¼ 163, 233, 283, 409, 571, where
normal bases have t even. LetA ¼ ða0; a1; � � � ; am�1Þ andB ¼
ðb0; b1; � � � ; bm�1Þ be the elements of GF ð2mÞ, then the ith
coordinate of the product C ¼ AB is computed as [13]:

ci ¼
Xp�2

n¼1

aF ðnþ1ÞþibF ðp�nÞþi; 0 � i � m� 1: ð4Þ

In (4), p ¼ tmþ 1 and

F ð2iuj mod pÞ ¼ i; 0 � i � m� 1; 0 � j < t; ð5Þ

where u is an integer of order t mod p. In order to realize
(4), the following algorithm can be used [11] where ci is
computed in the inner loop of this algorithm. Note that, in
the following algorithm, A � i (resp. A � i) denotes the
i-fold left (resp. right) cyclic shifts of the coordinates of A.
The algorithm uses the fact that the ðiþ jÞth coordinate of A
(i.e., aiþj) is equal to the jth coordinate of A � i. It also
requires the input sequence F ð1Þ; F ð2Þ; � � � ; F ðp� 1Þ to be
precomputed using (5).

Algorithm 1. (Bit-Level NB Multiplication)

Input: A; B 2 GF ð2mÞ; F ðnÞ 2 ½0; m� 1� for
1 � n � p� 1

Output: C ¼ AB

1. Initialize C ¼ ðc0; c1; � � � ; cm�1Þ :¼ 0

2. For i ¼ 0 to m� 1 {

3. For n ¼ 1 to p� 2 {

4. ci :¼ ci þ aF ðnþ1ÞbF ðp�nÞ
5. }

6. A � 1; B � 1

7. }

Software implementation of Algorithm 1 is not very
efficient for the following reasons: First, in each execution of
line 4, one coordinate of each of A and B are accessed. These
accesses are such that their software implementation is
rather unsystematic and typically requires more than one
instruction. Second, in line 4, the mod 2 multiplication of the
coordinates, which is implemented by bit-level logical AND
operation, is performed mðp� 2Þ times in total and the
mod 2 addition, which is implemented by bit-level logical
XOR operation, is performed 1

4mðp� 2Þ times, on average,
assuming that A and B are two random inputs. In the
C programming language, these mod 2 multiplication and
addition operations correspond to aboutmðp� 2Þ AND and
1
4mðp� 2Þ XOR instructions,1 respectively. It is worth
mentioning here that, although each XOR/AND instruction
of the processor is capable of working on 16 or 32-bit words
(i.e., the processor’s data-path is 16/32 bits wide), the above
algorithm does not make use of the full data-path.

3 VECTOR-LEVEL NB MULTIPLICATION

In this section, we discuss improvements to Algorithm 1.
One crucial improvement is that most arithmetic operations

1380 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 11, NOVEMBER 2003

1. These are dynamic instructions which the underlying processor needs
to execute.

are done on vectors instead of bits. This enables us to use
the full data-path of the processor on which the software is
executed. The assumption of Algorithm 1 that t is even is
also used in the remaining discussion of this section. The
case of t odd is considered in Appendix A.

Lemma 1. For GNB of type t, where t is even, the sequence F ðnÞ
of p� 1 integers as defined above is mirror symmetric around
the center, i.e., F ðnÞ ¼ F ðp� nÞ, 1 � n � p� 1.

Proof. In (5), t is the smallest nonzero integer such that
ut mod p ¼ 1. Then, u

t
2 mod p must be equal to �1. For

0 � i � m� 1 and 0 � j � t� 1, letn ¼ 2iuj mod p. Then,
F ðnÞ ¼ F ð2iuj mod pÞ ¼ i. Also, F ð2iut

2þj mod pÞ ¼ i.
Thus,

F ðnÞ ¼ F ð2iut
2þj mod pÞ ¼ F ð�2iuj mod pÞ ¼ F ðp� nÞ:

ut

From (5) and Lemma 1, one has F ð1Þ ¼ F ðp� 1Þ ¼ 0. For
1 � n � p� 2, let us define

�F ðnÞ ¼ F ðnþ 1Þ � F ðnÞ mod m: ð6Þ

Now, we have the following corollary.

Corollary 1. For �F ðnÞ as defined above and for t even, the
following holds:

�F ðp� nÞ ¼ m��F ðn� 1Þ mod m; 1 � n � p� 2:

Proof. Using (6), one obtains F ðnþ 1Þ ¼
Pn

i¼1 �F ðiÞ.
Applying Lemma 1 into (6), one can also write

�F ðp� nÞ ¼ ��F ðn� 1Þ mod m; 2 � n � p� 1;

which results in

�F ðp� nÞ ¼ m��F ðn� 1Þ; 2 � n <
p� 1

2
;

and �F
p� 1

2

� �
¼ 0:

ut

Using Lemma 1 and (6), one can write (4) as follows:

ci ¼
Xp�2

n¼1

aF ðnþ1ÞþibF ðnÞþi; 0 � i � m� 1; ð7Þ

¼
Xp�2

n¼1

aF ðnÞþ�F ðnÞþibF ðnÞþi; 0 � i � m� 1: ð8Þ

For a particular GNB, the values of�F ðnÞ, 1 � n � p� 2,
are fixed and are to be determined only once, i.e., at the time
of choosing the basis. Additionally, Corollary 1 implies that
it is sufficient to store only half (i.e., p�1

2) of these �F ðnÞs.

We now state the vector-level algorithm for t even as

follows:

Algorithm 2. (Vector-Level NB Multiplication for t even)

Input: A; B 2 GF ð2mÞ, �F ðnÞ 2 ½0;m� 1�, 1 � n � p� 1

Output: C ¼ AB

1. Initialize SA :¼ A; SB :¼ B; C :¼ 0

2. For n ¼ 1 to p� 2 {

3. SA � �F ðnÞ
4. R :¼ SA 	 SB

5. C :¼ C þR

6. SB � �F ðnÞ
7. }

In line 4 of Algorithm 2, for X; Y 2 GF ð2mÞ, X 	 Y

denotes the bit-wise AND operation between coordinates of

X and Y , i.e., X 	 Y ¼ ðx0y0; x1y1; � � � ; xm�1ym�1Þ. The

following example can be used to illustrate the operation of

this algorithm.

Example 1. For the type 2 GNB in GF ð25Þ, one has p ¼ 11

and u ¼ 10. Thus, the values of F ðnÞ, 1 � n � 10, using

(5) are given in Table 1. By using (4), the coordinates of C

are obtained as:

ci ¼ aiþ1bi þ aiþ3biþ1 þ aiþ2biþ3 þ aiþ4biþ2 þ aiþ4biþ4

þ aiþ2biþ4 þ aiþ3biþ2 þ aiþ1biþ3 þ aibiþ1; 0 � i � m� 1:

ð9Þ

Also, using (6), one can obtain the values of �F ðnÞ. The
results are also shown in Table 1.

Here, the multiplication of A ¼ ð01110Þ and B ¼
ð10101Þ is shown using Algorithm 2. Table 2 shows
contents of various variables of the algorithm as they are
updated. The row with n being “-” is for the initialization
step (i.e., line 1) of the algorithm.

In order to obtain an overall computation time for a

GF ð2mÞ multiplication using Algorithm 2, the coordinates

of the field elements can be divided into dm!e units where

! corresponds to the data-path width of the processor.

Here (and in the rest of the paper), we assume that the

processor can perform bit-wise XOR and AND of two

!-bit operands using one single XOR instruction and one

REYHANI-MASOLEH AND HASAN: FAST NORMAL BASIS MULTIPLICATION USING GENERAL PURPOSE PROCESSORS 1381

TABLE 1
Values of F of Type 2 GNB for GF ð25Þ

TABLE 2
Contents of Variables in Algorithm 2 for Multiplication

of A ¼ ð01110Þ and B ¼ ð10101Þ

single AND instruction, respectively. Since the loop in

Algorithm 2 has p� 2 iterations, the total number of bit-

wise AND and bit-wise XOR instructions are the same

and is ðp� 2Þdm!e ¼ ðtm� 1Þdm!e. Also, this algorithm needs

2ðp� 2Þdm!e ¼ 2ðtm� 1Þdm!e cyclic shifts. We assume that an

i-fold, 1 � i < !, left/right shift can be emulated in the

C programming language using a total of � instructions.

The value of � is typically 4 when simple logical instruc-

tions, such as AND, SHIFT, and OR, are used. We can now

state the following.

Proposition 1. The dynamic instruction count for Algorithm 2 is

given by

#Instructions
 2ð1þ �Þ tm� 1ð Þ m

!

l m
:

For type II optimal normal bases, where t ¼ 2, the
following remark can be made. However, for multiplication

using type I optimal normal bases, one should use
Algorithm 6 in Appendix A.

Remark 1. For type II optimal normal bases, the dynamic

instruction counts for Algorithm 2 is 2ð1þ �Þð2m� 1Þdm!e.

4 EFFICIENT NB MULTIPLICATION OVER GF ð2mÞ
Although the previous algorithm utilizes the full data-path
of the processor for NB multiplication and is very suitable
and efficient for software implementation, below we
present another algorithm which is even more efficient

and requires fewer instructions and memory accesses. Also,
the cost of this efficient algorithm in terms of dynamic
instruction counts and memory requirements is analyzed
and then they are compared with those of similar other
algorithms.

4.1 Algorithm

For the normal basis f�; �21 ; � � � ; �2m�1g, let

�j ¼ �1þ2j ; j ¼ 1; � � � ; v;

where v ¼ dm�1
2 e. Then, one has the following result from [32].

Lemma 2. Let A and B be two elements of GF ð2mÞ and C be

their product. Then,

C ¼

Pm�1

i¼0

aibi�
2iþ1 þ

Pv
j¼1

xi;j�
2i

j

 !" #
; for modd

Pm�1

i¼0

aibi�
2iþ1 þ

Pv�1

j¼1

xi;j�
2i

j

 !
þ aibvþi�

2i

v

" #
; for m even;

8>>>><
>>>>:

where ais and bis are the NB coordinates of A and B,

respectively. Also, indices and exponents are reduced

mod m and

xi;j ¼ aibiþj þ aiþjbi; 1 � j � v; 0 � i � m� 1: ð10Þ

Let hj, 1 � j � v, be the number of 1s in the normal basis
representation of �j. Let wj;1; wj;2; � � � ; wj;hj

denote the
positions of 1s in the normal basis representation of �j, i.e.,

�j ¼
Xhj

k¼1

�2wj;k ; 1 � j � v; ð11Þ

where 0 � wj;1 < wj;2 < � � � < wj;hj
� m� 1. Now, using (11)

into Lemma 2, we have the following for m odd:

C ¼
Xm�1

i¼0

aibi�
2iþ1 þ

Xm�1

i¼0

Xv
j¼1

xi;j

Xhj

k¼1

�2wj;k

 !2i

¼
Xm�1

i¼0

aibi�
2iþ1 þ

Xm�1

i¼0

Xv
j¼1

xi;j

Xhj

k¼1

�2iþwj;k

 !

¼
Xm�1

i¼0

aibi�
2iþ1 þ

Xv
j¼1

Xhj
k¼1

Xm�1

i¼0

xi;j�
2iþwj;k

 !
:

ð12Þ

Also, for even values of m, one has v ¼ m
2 and �v ¼ �2

m
2

v . This

implies that, in the normal basis representation of �v, its ith

coordinate is equal to its ðm2 þ i mod mÞth coordinate. Thus,

hv is even and one can write

�v ¼
Xhv2
k¼1

ð�2wv;k þ �2wv;kþv

Þ; v ¼ m

2
: ð13Þ

Now, using (13) into Lemma 2 (for m even) and using (12),
we have the following theorem, where all indices and
exponents are reduced modulo m.

Theorem 1. Let A and B be two elements of GF ð2mÞ and C be
their product. Then,

C ¼
Pm�1

i¼0

aibi�
2iþ1 þ

Pv
j¼1

Phj

k¼1

Pm�1

i¼0

xi;j�
2iþwj;k

� �
; for modd

Pm�1

i¼0

aibi�
2iþ1 þ

Pv�1

j¼1

Phj

k¼1

Pm�1

i¼0

xi;j�
2iþwj;k

� �
þ F; for meven;

8>>>><
>>>>:

ð14Þ

where

F ¼
Xhv2
k¼1

Xv�1

i¼0

xi;vð�2iþwv;k þ �2iþwv;kþv

Þ; and v ¼ m

2
:

Note that, for a normal basis, the representation of �j is
fixed and so is wj;k, 1 � j � v, 1 � k � hj. Now, define

�wj;k ¼4 wj;k � wj;k�1; 1 � j � v; 1 � k � hj; wj;0 ¼ 0;

ð15Þ

where wj;ks are as given in (11). For a particular normal
basis, all wj;ks are fixed. Hence, all �wj;ks need to be
determined only at the time of choosing the basis. Using
�wj;ks, below we present an efficient NB (ENB) multi-
plication algorithm over GF ð2mÞ for odd values of m. The
corresponding algorithm for even values of m is shown in
Appendix B. An efficient scheme to compute �wj;ks can be
found in [29].

Algorithm 3. (ENB Multiplication for m Odd)

Input: A; B 2 GF ð2mÞ, �wj;k 2 ½0;m� 1�, 1 � j � v,

1 � k � hj, v ¼ m�1
2

1382 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 11, NOVEMBER 2003

Output: C ¼ AB

1. Initialize C :¼ A	B, SA :¼ A, SB :¼ B

2. C � 1

3. For j ¼ 1 to v {

4. SA � 1, SB � 1

5. TA :¼ A	 SB, TB :¼ B	 SA

6. R :¼ TA þ TB

7. For k ¼ 1 to hj {

8. R � �wj;k

9. C :¼ C þR

10. }

11. }

In the above algorithm, shifted values of A and B are

stored in SA and SB, respectively. In line 6, R 2 GF ð2mÞ
contains ðx0;j; x1;j; � � � ; xm�1;jÞ, i.e.,

Pm�1
i¼0 xi;j�

2i . Also, the

right cyclic shift of R in line 8 corresponds toPm�1
i¼0 xi;j�

2iþwj;k
. After the final iteration, C is the normal

basis representation of the required product AB. To

illustrate the operation of the above algorithm and compare

it with the previous algorithm, we present Example 1 as

follows.

Example 2. Consider the finite field GF ð25Þ generated by

the irreducible polynomial F ðzÞ ¼ z5 þ z2 þ 1 and let �

be its root, i.e., F ð�Þ ¼ 0. We choose � ¼ �5, then

f�; �2; �4; �8; �16g is a type 2 GNB. Here, m ¼ 5 and

v ¼ 5�1
2 ¼ 2. Using Table 2 in [24], one has

�1 ¼ �3 ¼ � þ �8; h1 ¼ 2; ½w1;k�h1

k¼1 ¼ ½0; 3�;
�2 ¼ �5 ¼ �8 þ �16; h2 ¼ 2; ½w2;k�h2

k¼1 ¼ ½3; 4�:

Let

A ¼ �2 þ �4 þ �8 ¼ ð01110Þ

and

B ¼ � þ �4 þ �16 ¼ ð10101Þ;

which are the same two field elements we used in
Example 1. Table 3 shows contents of various variables

of the algorithm as they are updated (see Table 2 for

comparison). The row with j being “-” is for the

initialization step (i.e., line 1) of the algorithm.

As can be seen in Algorithm 3, all �wj;ks have to be

precomputed and it is done only once when the basis is

chosen. In the above example, they are determined by

calculating �js, which is essentially a multiplication process
all by itself. For this multiplication, one can use either
Algorithm 1 or Algorithm 2.

4.2 Cost and Comparison

In an effort to determine the cost of Algorithm 3, we give

the dynamic instruction counts for its software implemen-

tation. We also consider the number of memory accesses to

read the precomputed values of �wj;k. For software

implementation of the above algorithm, one would heavily

rely on instructions, such as, XOR, AND, and others which

can be used to emulate cyclic shifts (in the C like

programming language). XOR instructions are needed in

lines 6 and 9, which are repeated v and
Pv

j¼1 hj times,

respectively. Since v ¼ m�1
2 and

Pv
j¼1 hj ¼ CN�1

2 [18], the

total number of XOR instructions is 1
2 ðCN þm� 1Þdm!e.

Because of the 	 operations in lines 1 and 5, one can also see

that the above algorithm requires mdm!e AND instructions.

We assume that each i-fold cyclic shift, 1 � i � m� 1, in

lines 2, 4, and 8 needs �dm!e instructions, where � is as

defined earlier. In Algorithm 3, the number of cyclic shifts

in lines 2, 4, and 8 are 1, 2v, and
Pv

j¼1 hj, respectively. Thus,

the total number of cyclic shifts in this algorithm is 1þ
2vþ

Pv
j¼1 hj ¼ 1

2 ðCN þ 2m� 1Þ and, so, the total number of

instructions to emulate cyclic shifts used in Algorithm 3 is
�
2 ðCN þ 2m� 1Þdm!e. Based on the above discussion, we have

the following.

Proposition 2. The dynamic instruction count for Algorithm 3 is
given by

#Instructions
 1þ �

2
CN þ 3þ 2�

2
m� 2þ �

2

� �
m

!

l m
: ð16Þ

It is noted that the type I ONB only exists when m is
even. For this type of bases, an algorithm and its instruction
count are presented in Appendix B. For type II ONBs,
where the value of m is odd, one can obtain the total
instruction for Algorithm 3 by substituting CN ¼ 2m� 1
into (16). However, for the even values of m, where type II
ONBs exist, one can use an algorithm presented in
Appendix B to further reduce the instruction count. Now,
we can state the following.

Remark 2. The dynamic instruction count for ENBmultiplication
algorithm when the finite field is defined for type II optimal
normal bases is at most ðð2:5þ 2�Þm� ð1:5þ �ÞÞdm!e.

For software implementation of Algorithm 3, if the loops
are not unrolled and the values of �wj;ks are not hard-
coded, one needs to store �wj;k, 1 � j � v, 1 � k � hj. Since
the total number of �wj;ks is

Pv
j¼1 hj and each �wj;k 2

½0;m� 1� needs dlog2 me bits of memory, a total of about
CN�1

2 dlog2 me bits of memory is needed to store the
precomputed �wj;ks.

Table 4 compares the number of dynamic instructions of
the three algorithms we have described so far. As can be
seen in Table 4, both our proposed schemes (i.e.,
Algorithms 2 and 3) are superior to the conventional bit-
level multiplication scheme (i.e., Algorithm 1). Also, this

REYHANI-MASOLEH AND HASAN: FAST NORMAL BASIS MULTIPLICATION USING GENERAL PURPOSE PROCESSORS 1383

TABLE 3
Contents of Variables in Algorithm 3 for Multiplication

of A ¼ ð01110Þ and B ¼ ð10101Þ

table gives memory sizes and numbers of memory accesses
of these algorithms. The final row of this table gives
approximate improvement factors of Algorithm 3 to
Algorithm 2. A more detailed comparison of these two
algorithms is given in Table 5 and for the five binary fields
recommended by NIST for ECDSA (elliptic curve digital
signature algorithm) [26].

These algorithms have been coded in software using the
C programming language. Table 5 also shows timing (in �s)
for these codes executed on Pentium III 533 MHz PC. The
PC has 64 M bytes of RAM, 32 K bytes of L1 cache, and
512 K bytes of L2 cache. Our codes are parameterized in the
sense that they can be used for various m and t without
major modifications. For high speed implementation, the
codes can be optimized for special values of m and t.

Agnew et al. in [1] have proposed a bit-serial architecture
for the NB multiplication. Although their work has been
targeted to hardware implementation, the main idea can be
used for software implementation similar to the vector-level
method proposed here. For such a software implementation
of [1], one would require ðCN � 1Þdm!e XOR instructions,
mdm!e AND instructions, and �ðCN þm� 1Þdm!e other
instructions. Thus, the dynamic instruction count would
be ð�þ 1ÞðCN þm� 1Þdm!e, which is about twice that in
Algorithm 3 (see Proposition 2). In [32], one can find
software implementation of the NB multiplication for two
special cases, namely, two optimal normal bases. The
method used in [32] is similar to that of the NB multi-
plication of [1].

Very recently, another NB multiplication algorithm
suitable for software implementation has been proposed
[24]. This algorithm is quite different from the ones
discussed here. It uses much more memory, but, with
respect to computational time, it is expected to be better
than the algorithm presented here and it is possible to
combine the work of [24] with that of this article to further
improve the performance of NB multiplication in software.

Some of the recently proposed polynomial basis multi-
plication algorithms, for example, [9], [17], create a look-up
table on the fly based on one of the inputs (say A) and yield
significant speed-ups by processing a group of bits of the
other input (i.e., B) at a time. At this point, it is not clear
whether such a group-level processing of B can be
incorporated into our Algorithm 3. However, if m is a
composite number, then one can essentially achieve a
similar kind of group-level processing by performing
computations in the subfields. This idea is explored in the
following section.

5 EFFICIENT COMPOSITE FIELD NB
MULTIPLICATION ALGORITHM

In this section, we consider multiplications in the finite field
GFð2mÞ, where m is a composite number. These fields are
referred to as composite fields and have been used in the
recent past to develop efficient multiplication schemes [26],
[27]. When these fields are to be used for elliptic curve
crypto-systems, one must choose m such that its cofactors

1384 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 11, NOVEMBER 2003

TABLE 4
Generic Comparison of Multiplication Algorithms in Terms of Number of Instructions and Memory Requirements

TABLE 5
Comparison of the Proposed Algorithms for Binary Fields Recommended by NIST for ECDSA Applications (! ¼ 32, � ¼ 4)

are large enough to resist the attack described by Galbraith

and Smart [6], [34]. The composite fields which are not

vulnerable against the known attacks for elliptic curve

crypto-systems are presented in [20], [5].

5.1 Algorithm

Let us introduce the following lemma from [21] which is

used for constructing a composite field normal basis.

Lemma 3 [21]. Let gcdðm1;m2Þ ¼ 1. Let N1 ¼ f�2j

1 j 0 � j �
m1 � 1g be a normal basis of GF ð2m1Þ over GF ð2Þ. Then, N1

is also a normal basis of GF ð2m1m2Þ over GF ð2m2Þ.

Here, we consider composite fields with only two prime

factors (i.e., both m1 and m2 are prime). This is particularly

important for elliptic curve crypto-systems. For such

systems in today’s security applications, the values of m

appear to be in the range of 160 to several hundred only

(571 as given in [25]). To avoid the attack of [6], one,

however, may like to choose m such that it has no small

factors such as 2, 3, 5, 7, 11 (see [20] for secure composite

values of m 2 ½160; 600�). This basically makes one choose m

as the product of two primes. Thus, in the following, we

give all equations and algorithms for odd degrees. The

reader can easily extend it for even degrees using the results

of the previous section. Also, the parameters, namely, �j, hj,

v, �, and �wj;k of the previous section are used here in the

context of the subfields GF ð2m1Þ and GF ð2m2Þ by putting an

extra sub/superscript, for example, �
ð1Þ
j for GF ð2m1Þ and �

ð2Þ
j

for GF ð2m2Þ.
Let A and B be two elements of GF ð2m1Þ over GF ð2Þ and

C be their product. Then,we have the following from [28]:

C ¼
Xm1�1

i¼0

aibi�
2i

1 þ
Xv1
j¼1

Xhð1Þ
j

k¼1

Xm1�1

i¼0

yi;j�
2
iþw

ð1Þ
j;k

1

 !
; for m1 odd;

ð17Þ

where

yi;j ¼ ðai þ aiþjÞðbi þ biþjÞ; 1 � j � v1; 0 � i � m1 � 1;

v1 ¼
m1 � 1

2
; �2jþ1

1 ¼
Xhð1Þ

j

k¼1

�2
w
ð1Þ
j;k

1 :

By combining Lemma 3 with (17), the following is obtained:

Lemma 4 . L e t A ¼ ðA0; A1; � � � ; Am1�1Þ and B ¼
ðB0; B1; � � � ; Bm1�1Þ be two elements of GF ð2m1m2Þ over

GF ð2m2Þ and C be their product. Then,

C ¼
Xm1�1

i¼0

AiBi�
2i

1 þ
Xv1
j¼1

Xhð1Þ
j

k¼1

Xm1�1

i¼0

Yi;j�
2
iþw

ð1Þ
j;k

1

 !
; for m1 odd;

ð18Þ

where

Yi;j ¼ ðAi þAiþjÞðBi þBiþjÞ; 1 � j � v1; 0 � i � m1 � 1;

ð19Þ

and

Ai ¼ ðai;0; ai;1; � � � ; ai;m2�1Þ;
Bi ¼ ðbi;0; bi;1; � � � ; bi;m2�1Þ 2 GF ð2m2Þ

are subfield coordinates of A and B.

Lemma 4 leads to an algorithm for multiplication in
composite fields using normal bases. The algorithm is
stated below.

Algorithm 4. (ECFNB Multiplication of GF ð2m1m2Þ over

GF ð2m2Þ
Input: A; B 2 GF ð2mÞ, �w

ð1Þ
j;k 2 ½0;m1 � 1�, 1 � j � v1,

v1 ¼ m1�1
2 , 1 � k � h

ð1Þ
j

Output: C ¼ AB

1. Initialize C :¼ A�B, SA :¼ A, SB :¼ B

2. For j ¼ 1 to v1 {

3. SA � m2, SB � m2

4. TA :¼ Aþ SA, TB :¼ Bþ SB

5. R :¼ TA � TB

6. For k ¼ 1 to h
ð1Þ
j {

7. R � m2�w
ð1Þ
j;k

8. C :¼ C þR

9. }

10. }

In lines 1 and 5 of Algorithm 4,

A�B ¼ ðA0B0; A1B1; � � � ; Am1�1Bm1�1Þ

denotes parallel subfield multiplications of A and B. This
subfield multiplication can be implemented with an
extension of Algorithm 3 such that it produces m1 subfield
multiplications over GF ð2m2Þ. This is shown in Algorithm 5,
where A . i (resp. A / i) 0 � i � m2 � 1, denotes an i-fold
right (resp. left) subfield cyclic shift of all subfield elements
of A, i.e., A0; A1; � � � ; Am1�1, respectively.

Algorithm 5. (Parallel Subfield Multiplication over GF ð2m2Þ
Input: A; B 2 GF ð2mÞ, �w

ð2Þ
j;k 2 ½0;m2 � 1�, 1 � j � v2,

1 � k � h
ð2Þ
j , v2 ¼ m2�1

2

Output: C ¼ A�B

1. Initialize C :¼ A	B, SA :¼ A, SB :¼ B

2. C . 1

3. For j ¼ 1 to v2 {

4. SA / 1, SB / 1

5. TA :¼ A	 SB, TB :¼ B	 SA

6. R :¼ TA þ TB

7. For k ¼ 1 to h
ð2Þ
j {

8. R .�w
ð2Þ
j;k

9. C :¼ C þR

10. }

11. }

5.2 Cost

In order to obtain the cost of Algorithm 4, we need to
evaluate the cost of Algorithm 5, which is called 1þ v1 ¼
m1þ1

2 times by the former. Like Algorithm 3, one can
determine the dynamic instruction counts of Algorithm 5 to
be 1

2 ðC2 þm2 � 2Þ XOR, m2 AND, and 1
2 ðC2 þ 2m2 � 1Þ

others to emulate cyclic shifts. The total cost of Algorithm 4
also depends on how subfield elements, each of m2 bits, are

REYHANI-MASOLEH AND HASAN: FAST NORMAL BASIS MULTIPLICATION USING GENERAL PURPOSE PROCESSORS 1385

stored in registers. For the sake of simplicity, we assume
that an element of GF ð2m2Þ is stored in one !-bit register
(for software implementation of elliptic curve crypto-
systems with both m1 and m2 being prime, most general
purpose processors would have ! bit registers where
! � m2). For ! ¼ 24 and 32, the best values of m2 are those
which have ONBs, i.e., 23 and 29, respectively. Thus, each
element of GF ð2mÞ needs m1 registers and the cyclic shifts
in lines 3 and 7 of Algorithm 4 are almost free of cost (or at
best register renaming). Based on this assumption, we give
the dynamic instruction counts of Algorithm 4 in Table 6. In
this table, � is the number of instructions needed for one
subfield cyclic shift in each register and it is four in the
C programming language.

Table 7 shows the number of instructions and memory
requirements of Algorithm 4 for six different composite
fields. These six fields are obtained by combining three m1s
and two m2s. Based on Table 1 of [20], these fields are not
vulnerable against the known attacks. Algorithm 4 is also
coded for these composite fields using the C programming
language. The actual timing (in �s) of Algorithm 4 executed
on Pentium III 533 MHz PC is also shown in Table 7. In
order to obtain parameters of the finite fields GF ð2m1Þ and
GF ð2m2Þ used in Algorithm 4, we have used Table 10 and

Table 11 of [29]. The results are presented in Table 9 of

Appendix C.

5.3 Comparison and Comments

5.3.1 Normal Basis Multipliers

In order to compare the cost of Algorithm 4 with that of

Algorithm 6 of [3] which usesm ¼ n � 2e, one can letm1 ¼ 2e

andm2 ¼ n; gcdð2; nÞ ¼ 1. The condition that gcdð2; nÞ ¼ 1

enables us to use Algorithm 4; however, it is not needed for

Algorithm 6 of [3]. In [3], the complexity of GF ð2mÞ multi-

plication is given in terms of the number of subfield, i.e.,

GF ð2nÞ, operations. Table 8 compares the number of subfield

operations required in Algorithm 4 and that in [3]. In this

table, our composite field multiplication algorithm requires
m1ðm1þ1Þ

2 ¼ 4eþ2e

2 and m1

2 ðC1 þ 2m1 � 3Þ ¼ 4e þ 2e�1ðC1 � 3Þ
subfield multiplications and subfield additions, respec-

tively. Since the subfield multiplication is more costly than

the subfield addition, our proposed algorithm has about

half of the computational complexity of the algorithm

presented in [3].

1386 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 11, NOVEMBER 2003

TABLE 6
Cost of Algorithm 4

TABLE 7
Cost of Algorithm 4 for Certain Composite Fields (� ¼ 4)

TABLE 8
Comparison of Algorithm 4 of This Paper with Algorithm 6 of [3] for m1 ¼ 2e and m2 ¼ n; gcdð2; nÞ ¼ 1

5.3.2 Multipliers Based on Polynomial and Dual Bases

In addition to normal bases, in the literature at least two
other types of bases, namely, polynomial and dual bases,
have received considerable attention for implementation of
multipliers over GF ð2mÞ [33], [16], [8], [15]. Multiplication
algorithms that use these two types of bases usually have
regular structures and can easily take advantage of fixed
irreducible polynomials, which define the fields. In addi-
tion, they can also be made to operate in digit serial fashion
to provide improved performance (perhaps at the cost of
some memory [9]). As a result, dual and/or polynomial
basis multipliers can be faster than a normal basis multi-
plier (e.g., Algorithm 4). For the purpose of illustration,
below we mention three pertinent multipliers where the
values of m are composite.

Schroeppel et al. in [33] obtained 112:6�s and 7:1�s for
implementing a multiplication overGF ð2155Þ on Sun SPARC
IPCat 25MHzandDECAlpha 3000 at 175MHz, respectively.
They used polynomial basis representation for their opera-
tion. Guajardo and Paar in [8] have used the Karatsuba-
Ofman algorithm for field multiplication over GF ðð216Þ11Þ.
Their 176� 176 bit multiplication uses polynomial basis
representation and requires 38:56�s on the DEC Alpha 3000
platform at 175 MHz. Also, Lee and Lim have presented a
GF ð2mÞmultiplication algorithm in [16] using a special type
of dual basis called circular dual basis. The circular dual basis
of GF ð2mÞ exists only for the values of m where a type I
optimal normal basis exists. Their multiplicationmethod has
been implemented on Pentium 133 MHz and requires 50�s
for the multiplication in GF ð2178Þ.

In each of the three cases above, the field dimension has a
small prime factor (i.e., 5 for [33], 2 for both [8] and [16]). The
algorithm of [33] does not make use of the small factor 5, but
yields a high speed multiplier by carefully choosing the
irreducible polynomial (namely, x155 þ x62 þ 1) to define
the field. In our implementation, we have restricted the
smallest factor to be 13 or more. A smaller factor is expected
to improve the timing results reported in Table 7 (perhaps
at the expense of reduced level of security for certain fields).
Also, for m ¼ 178, one can use type 1 optimal normal basis
to speed up the multiplication for which an algorithm is
included in Appendix B.

As can be seen from the above discussions, various
authors have reported the timing results of their multipliers
using different computing platforms and parameters. A fair
comparison solely based on timing results is therefore
difficult. Nevertheless, software implementation of NB
multiplication is important. Such an implementation is
crucial in the point halving and add algorithm for elliptic
curve point multiplication [13]. It is also very useful for the
Frobenius endomorphism used with Koblitz curve-based
crypto-systems. Thus, the work presented in this article is a
step forward in this direction.

6 CONCLUSIONS

In this paper, a number of software algorithms for normal
basis multiplication over GF ð2mÞ have been presented. Both
Algorithms 2 and 3 make maximal use of the full width of
the data-path of the processor on which the software is to be

executed and they provide significant speed-ups compared
to the conventional bit-level multiplication scheme (i.e.,
Algorithm 1). Algorithms 2 and 3 are particularly suitable if
m is a prime. Such values of m are of importance, especially
for designing high-speed crypto-systems based on Koblitz
curves and for protecting elliptic curve crypto-systems
against the attack of Galbraith and Smart [6]. Both
Algorithms 2 and 3 have been coded for software
implementation using C and our timing results show that
Algorithm 3 is about 200 percent faster than Algorithm 2.
These results are for those five Gaussian normal bases over
the binary fields which NIST has described in their ECDSA
document [25]. For the purpose of using NIST parameters,
although we have presented our results for Gaussian
normal bases, our algorithms are quite generic and can be
used for any normal bases of GF ð2mÞ over GF ð2Þ.

We have also considered composite fields with
m ¼ m1 �m2. To avoid the attack of [6] on elliptic curve
crypto-systems defined over these composite fields, we
choose both m1 and m2 to be prime. We have presented an
algorithm (i.e., Algorithm 4) for normal basis multiplication
for GF ð2mÞ over GF ð2m2Þ. Our results show that, for similar
values of m, Algorithm 4 can be much more efficient than
Algorithm 3. For example, the actual timing of Algorithm 3
is 318 microseconds for GF ð2283Þ, whereas the timing of
Algorithm 4 is 114 microseconds for GF ð2299Þ. Composite
fields also provide an added flexibility to hardware-soft-
ware codesign of finite field processors. For example,
Algorithm 5, which is called by Algorithm 4 a total of m1þ1

2

times, can be implemented in hardware for small values of
m2 and Algorithm 4 can be embedded in a microcontroller,
which would give us a high speed, yet quite flexible,
normal basis multiplier over very large fields.

APPENDIX A

VECTOR-LEVEL NBV MULTIPLICATION FOR t ODD

In this appendix, we discuss the vector-level NB multi-
plication algorithm when t is odd. This algorithm, which is
similar to Algorithm 2, requires the input sequence
F ð1Þ; F ð2Þ; � � � ; F ðp� 1Þ to be precomputed using (5), i.e.,

F ð2iuj mod pÞ ¼ i; 0 � i � m� 1; 0 � j < t;

where p ¼ tmþ 1 and u is an integer of order t mod p.
Since p should be prime, tm has to be an even integer. Also,
t is odd, which implies that m should be even. The ith
coordinate of the product C ¼ AB can be obtained as [26]:

ci ¼ f þ
Xp�2

n¼1

aF ðnþ1ÞþibF ðp�nÞþi; 0 � i � m� 1; ð20Þ

where

f ¼
Xm2
n¼1

ðanþi�1bm2þnþi�1 þ am
2þnþi�1bnþi�1Þ: ð21Þ

In (21), f 2 GF ð2Þ is independent of i. For
1 � n � p� 2, let us use the definition (6), i.e.,
�F ðnÞ ¼ F ðnþ 1Þ � F ðnÞ mod m, where F ð1Þ ¼ 0. Let us
introduce

REYHANI-MASOLEH AND HASAN: FAST NORMAL BASIS MULTIPLICATION USING GENERAL PURPOSE PROCESSORS 1387

�F 0ðnÞ ¼ F ðp� nÞ � F ðp� nþ 1Þ mod m;

where F ðpÞ ¼ 0. It is easy to see that

�F 0ðnÞ ¼ ��F ðp� nþ 1Þ mod m:

We now state the vector-level algorithm for t odd as

follows.

Algorithm 6. (Vector-Level NB Multiplication for t odd)

Input: A; B 2 GF ð2mÞ, �F ðnÞ; �F 0ðnÞ 2 ½0;m� 1�,
1 � n � p� 1

Output: C ¼ AB

1. Initialize SA :¼ A, SB :¼ B, C :¼ 0, f :¼ 0

2. SB � m
2

3. R :¼ SA 	 SB, R ¼ ðr0; r1; � � � ; rm�1Þ
4. For i ¼ 0 to m� 1 {

5. f :¼ f þ ri
6. }

7. SB :¼ B

8. For n ¼ 1 to p� 2 {

9. SA � �F ðnÞ
10. SB � �F 0ðnÞ
11. R :¼ SA 	 SB

12. C :¼ C þR

13. }

14. If f is 1, C :¼ C þ ð1; 1; � � � ; 1; 1Þ

Proposition 3. The average dynamic instruction count for

Algorithm 6 is given by

#Instructions

ð1þ �Þ 2tm� 1ð Þ m

!

l m
þ log2

m

!

l ml m
þ 3 log2 !d e þ

m
!

� �
2

:

Remark 3. For type I optimal normal bases, the average dynamic

instruction counts for Algorithm 6 is

ð1þ �Þð2m� 1Þ m

!

l m
þ log2

m

!

l ml m
þ 3 log2 !d e þ

m
!

� �
2

:

APPENDIX B

EFFICIENT NB MULTIPLICATION ALGORITHM

FOR m EVEN

Algorithm 7. (ENB Multiplication for m even)

Input: A; B 2 GF ð2mÞ, �wj;k, 1 � j � v, 1 � k � hj

Output: C ¼ AB

1. Initialize C :¼ A	B, SA :¼ A, SB :¼ B

2. C � 1

3. For j ¼ 1 to v� 1 {

4. SA � 1, SB � 1

5. TA :¼ A	 SB, TB :¼ B	 SA

6. R :¼ TA þ TB

7. For k ¼ 1 to hj {
8. R � �wj;k

9. C :¼ C þR

10. }

11. }

1388 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 11, NOVEMBER 2003

TABLE 9
(a) Parameters of Type t GNBs Used in Algorithm 4

(b) Parameters of Type 2 GNBs Used in Algorithm 5 (t ¼ 2, h
ð2Þ
j ¼ 2)

12. SA � 1, SB � 1

13. TA :¼ A	 SB, TB :¼ B	 SA

14. R :¼ TA þ TB

15. For k ¼ 1 to hv

2 {

16. R � �wv;k

17. C :¼ C þR

18. }

One of the special cases of Algorithm 7 is multiplication

using a type I optimal normal basis wherem is always even.

For such an NB, there exists �j ¼ �2wj , 1 � j � v� 1, v ¼ m
2 ,

and �v ¼ 1 [32], i.e., �wj;1 ¼ wj, 1 � j � v� 1. This simpli-

fies Algorithm 7 as follows:

Algorithm 7a. (ENB multiplication for type I ONB)

Input: A; B 2 GF ð2mÞ; wj, 1 � j � v� 1,

Output: C ¼ AB

1. Initialize C :¼ A	B, SA :¼ A, SB :¼ B, f :¼ 0

2. C � 1

3. For j ¼ 1 to v� 1 {

4. SA � 1, SB � 1

5. TA :¼ A	 SB, TB :¼ B	 SA

6. R :¼ TA þ TB

7. R � wj

8. C :¼ C þR

9. }

10. }

11. SA � 1

12. R :¼ SA 	 B, R ¼ ðr0; r1; � � � ; rm�1Þ
13. For i ¼ 0 to m� 1 {

14. f :¼ f þ ri
15. }

16. If f is 1, C :¼ C þ ð1; 1; � � � ; 1; 1Þ

Proposition 4. The average dynamic instruction count for

Algorithm 7a is given by

#Instructions

m

2
ð3�þ 4Þ � ð�þ 1:5Þ

� � m

!

l m
þ log2

m

!

l ml m
þ 3 log2 !d e:

APPENDIX C

PARAMETERS USED IN ALGORITHMS 4 AND 5

Parameters used in Algorithms 4 and 5 are shown in Table 9.

ACKNOWLEDGMENTS

The authors would like to thank Z. Zhang for his help with

implementing the algorithms and getting their timing

results. The authors would also like to thank the reviewers

for their comments. A preliminary version of this article

appeared in [31].

REFERENCES

[1] G.B. Agnew, R.C. Mullin, I.M. Onyszchuk, and S.A. Vanstone,
“An Implementation for a Fast Public-Key Cryptosystem,”
J. Cryptology, vol. 3, pp. 63-79, 1991.

[2] G.B. Agnew, R.C. Mullin, and S.A. Vanstone, “An Implementation
of Elliptic Curve Cryptosystems over F2155 ,” IEEE J. Selected Areas
in Comm., vol. 11, no. 5, pp. 804-813, June 1993.

[3] K. Aoki and K. Ohta, “Fast Arithmetic Operations over F2n for
Software Implementation,” Proc. Fourth Ann. Workshop Selected
Areas in Cryptography (SAC’ 97), 1997.

[4] D.W. Ash, I.F. Blake, and S.A. Vanstone, “Low Complexity
Normal Bases,” Discrete Applied Math., vol. 25, pp. 191-210, 1989.

[5] M. Ciet and J.-J. Quisquater, F. Sica, “A Secure Family of
Composite Finite Fields Suitable for Fast Implementation of
Elliptic Curve Cryptography,” Proc. Indocrypt 2001, pp. 108-116,
Dec. 2001.

[6] S.D. Galbraith and N. Smart, “A Cryptographic Application of
Weil Descent,” Proc. Seventh IMA Conf. Cryptography and Coding,
pp. 191-200, 1999.

[7] S. Gao and H.W. Lenstra Jr., “Optimal Normal Bases,” Designs,
Codes and Cryptography, vol. 2, pp. 315-323, 1992.

[8] J. Guajardo and C. Paar, Efficient Algorithms for Elliptic Curve
Cryptosystems, pp. 342-356. Springer-Verlag, 1997.

[9] M.A. Hasan, “Look-Up Table-Based Large Finite Field Multi-
plication in Memory Constrained Cryptosystems,” IEEE Trans.
Computers, vol. 49, no. 7, pp. 749-758, July 2000.

[10] M.A. Hasan, M.Z. Wang, and V.K. Bhargava, “A Modified
Massey-Omura Parallel Multiplier for a Class of Finite Fields,”
IEEE Trans. Computers, vol. 42, no. 10, pp. 1278-1280, Oct. 1993.

[11] IEEE Std 1363-2000, “IEEE Standard Specifications for Public-Key
Cryptography,” Jan. 2000.

[12] D. Johnson, A. Menezes, and S. Vanstone, “The Elliptic Curve
Digital Signature Algorithm (ECDSA),” Int’l J. Information Security,
vol. 1, pp. 36-63, 2001.

[13] E. Knudsen, “Elliptic Scalar Multiplication Using Point Halving,”
Proc. ASIACRYPT 1999, pp. 135-149, 1999.

[14] N. Koblitz, “Elliptic Curve Cryptosystems,” Math. Computation,
vol. 48, pp. 203-209, 1987.

[15] C.K. Koc and T. Acar, “Montgomery Multiplication in GFð2kÞ,”
Designs, Codes, and Cryptography, vol. 14, pp. 57-69, 1998.

[16] C. Lee and J. Lim, “A New Aspect of Dual Basis for Efficient Field
Arithmetic,” Proc. Int’l Workshop Practice and Theory in Public Key
Cryptography (PKC ’99), pp. 12-28, 1999.

[17] J. Lopez and R. Dahab, “High Speed Software Multiplication in
F2m ,” Proc. Indocrypt 2000, pp. 203-212, 2000.

[18] C.-C. Lu, “A Search of Minimal Key Functions for Normal Basis
Multipliers,” IEEE Trans. Computers, vol. 46, no. 5, pp. 588-592,
May 1997.

[19] J.L. Massey and J.K. Omura, “Computational Method and
Apparatus for Finite Field Arithmetic,” US Patent No. 4,587,627,
1986.

[20] M. Maurer, A. Menezes, and E. Teske, “Analysis of the GHS Weil
Descent Attack on the ECDLP over Characteristic Two Finite
Fields of Composite Degree,” Proc. Indocrypt 2001, pp. 195-213,
Dec. 2001.

[21] A.J. Menezes, I.F. Blake, X. Gao, R.C. Mullin, S.A. Vanstone, and T.
Yaghoobian, Applications of Finite Fields. Kluwer Academic, 1993.

[22] V.S. Miller, “Use of Elliptic Curves in Cryptography,” Proc. Crypto
’85, pp. 417-426, 1986.

[23] R.C. Mullin, I.M. Onyszchuk, S.A. Vanstone, and R.M. Wilson,
“Optimal Normal Bases in GF ðpnÞ,” Discrete Applied Math., vol. 22,
pp. 149-161, 1988/1989.

[24] P. Ning and Y.L. Yin, “Efficient Software Implementation for
Finite Field Multiplication in Normal Basis,” Proc. Information and
Commu. Security (ICICS 2001), pp. 177-181, Nov. 2001.

[25] Nat’l Inst. of Standards and Technology, Digital Signature
Standard, FIPS Publication 186-2, 2000.

[26] S. Oh, C.H. Kim, J. Lim, and D.H. Cheon, “Efficient Normal Basis
Multipliers in Composite Fields,” IEEE Trans. Computers, vol. 49,
no. 10, pp. 1133-1138, Oct. 2000.

[27] C. Paar, P. Fleishmann, and P. Soria-Rodriguez, “Fast Arithmetic
for Public-Key Algorithms in Galois Fields with Composite
Exponents,” IEEE Trans. Computers, vol. 48, no. 10, pp. 1025-
1034, Oct. 1999.

[28] A. Reyhani-Masoleh and M.A. Hasan, “On Efficient Normal Basis
Multiplication,” Proc. Indocrypt 2000, pp. 213-224, Dec. 2000.

[29] A. Reyhani-Masoleh and M.A. Hasan, “Fast Normal Basis Multi-
plication Using General Purpose Processors,” Technical Report
CORR 2001-25, Dept. of C & O, Univ. of Waterloo, Canada, Apr.
2001.

REYHANI-MASOLEH AND HASAN: FAST NORMAL BASIS MULTIPLICATION USING GENERAL PURPOSE PROCESSORS 1389

[30] A. Reyhani-Masoleh and M.A. Hasan, “Fast Normal Basis Multi-
plication Using General Purpose Processors,” Proc. Selected Areas
in Cryptography (SAC 2001), pp. 230-244, Aug. 2001.

[31] A. Reyhani-Masoleh and M.A. Hasan, “A New Construction of
Massey-Omura Parallel Multiplier over GF ð2mÞ,” IEEE Trans.
Computers, vol. 51, no. 5, pp. 511-520, May 2002.

[32] M. Rosing, Implementing Elliptic Curve Cryptography. Manning
Publications, 1999.

[33] R. Schroeppel, H. Orman, S.W. O’Malley, and O. Spatscheck, “Fast
Key Exchange with Elliptic Curve Systems,” Proc. CRYPTO ’95,
pp. 43-56, 1995.

[34] N.P. Smart, “How Secure Are Elliptic Curves over Composite
Extension Fields?” Proc. Eurocrypt 2001, pp. 30-39, 2001.

[35] B. Sunar and C.K. Koc, “An Efficient Optimal Normal Basis Type
II Multiplier,” IEEE Trans. Computers, vol. 50, no. 1, pp. 83-88, Jan.
2001.

Arash Reyhani-Masoleh received the BSc
degree from Iran University of Science and
Technology in 1989, the MSc degree from the
University of Tehran in 1991, both with the first
rank in electrical and electronic engineering, and
the PhD degree in electrical and computer
engineering from the University of Waterloo,
Canada, in 2001. From 1991 to 1997, he was
with the Department of Electrical Engineering,
Iran University of Science and Technology.

Since June 2001, he has been a postdoctoral fellow with the Centre
for Applied Cryptographic Research, University of Waterloo. His current
research interests include algorithms and VLSI architectures for
computations in finite fields, fault-tolerant computing, and error-control
coding. He was awarded an NSERC (Natural Sciences and Engineering
Research Council of Canada) postdoctoral fellowship in 2002. He is a
member of the IEEE and the IEEE Computer Society.

M. Anwar Hasan received the BSc degree in
electrical and electronic engineering, the MSc
degree in computer engineering, both from the
Bangladesh University of Engineering and Tech-
nology, in 1986 and 1988, respectively, and the
PhD degree in electrical engineering from the
University of Victoria in 1992. Since 1993, he
has been with the Department of Electrical and
Computer Engineering, University of Waterloo,
Canada, where he is now a professor. At the

University of Waterloo, he is also a member of the Centre for Applied
Cryptographic Research and the Center for Wireless Communications.
His current research interests include algorithms and architectures for
computations in Galois fields, data security and reliability, and digital
communication networks. From January to December of 1999, he was
on sabbatical with Motorola Labs., Schaumburg, Illinois. He is a recipient
of the Raihan Memorial Gold Medal. At the University of Victoria, he was
awarded the President’s Research Scholarship four times. He has
served on the program and executive committees of several confer-
ences and, currently, he is an associate editor of the IEEE Transactions
of Computers. He is a senior member of the IEEE, a member of the
IEEE Computer Society, and a licensed professional engineer of
Ontario.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

1390 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 11, NOVEMBER 2003

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

