
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 9, SEPTEMBER 2014 1865

New Implementations of the WG Stream Cipher
Hayssam El-Razouk, Arash Reyhani-Masoleh, Member, IEEE, and Guang Gong

Abstract— This paper presents two new hardware designs of
the Welch–Gong (WG)−128 cipher, one for the multiple output
WG (MOWG) version, and the other for the single output version
WG based on type−II optimal normal basis representation. The
proposed MOWG design uses signal reuse techniques to reduce
hardware cost in the MOWG transformation, whereas it increases
the speed by eliminating the inverters from the critical path.
This is accomplished through reconstructing the key and initial
vector loading algorithm and the feedback polynomial of the
linear feedback shift register. The proposed WG design uses
properties of the trace function to optimize the hardware cost
in the WG transformation. The application-specific integrated
circuit and field-programmable gate array implementations of the
proposed designs show that their areas and power consumptions
outperform the existing implementations of the WG cipher.

Index Terms— Finite fields, linear feedback shift
registers (LFSR), normal basis, optimal normal basis (ONB),
pseudorandom key generators, stream ciphers, Welch–Gong
(WG) transformation.

I. INTRODUCTION

SYNCHRONOUS stream ciphers are lightweight
symmetric-key cryptosystems. These ciphers encrypt

a plain-text, or decrypt a cipher-text, by XORing the plain-
text/cipher-text bit-by-bit with the generated key-stream bits.
The key-stream bits are produced using a pseudorandom
sequence generator (PRSG) and a seed (secret key). Stream
ciphers are heavily used in wireless communication and
restricted in resources applications such as 3GPP LTE-
Advanced security suite [1], network protocols (Secure
Socket Layer, Transport Layer Security, Wired Equivalent
Privacy, and Wi-Fi Protected Access) [2], radio frequency
identification (RFID) tags [3], and bluetooth [4], to name
some.

Traditionally, many hardware-oriented stream ciphers have
been built using linear feedback shift registers (LFSRs) and a
filter/combiner Boolean function. However, the discovery of
algebraic attacks made such a way of design insecure [5]–[8].
Many nonlinear feedback shift registers-based stream
ciphers have been proposed in the eSTREAM stream cipher
project [9], which have limited theoretical results about their
randomness and cryptographic properties [3], and therefore,
their security depends on the difficulty of analyzing the

Manuscript received October 22, 2012; revised February 8, 2013 and
May 21, 2013; accepted August 12, 2013. Date of publication September 17,
2013; date of current version August 21, 2014. This work was supported in
part by the Natural Sciences and Engineering Council Discovery and in part
by the Discovery Accelerate Supplement Grants.

H. El-Razouk and A. Reyhani-Masoleh are with the Department of Electri-
cal and Computer Engineering, Western University, London, ON N6A 5B9,
Canada (e-mail: helrazou@uwo.ca; areyhani@uwo.ca).

G. Gong is with the Department of Electrical and Computer Engineer-
ing, University of Waterloo, Waterloo, ON N2L 3G1, Canada (e-mail:
ggong@uwaterloo.ca).

Digital Object Identifier 10.1109/TVLSI.2013.2280092

design itself [3], [10]. In addition, the arrival of the 4G
mobile technology has triggered another initiative for new
stream ciphers [11], [12]. The randomness of the keystreams
generated by the 4G LTE cryptographic algorithms is,
however, hard to analyze and, also, some weaknesses have
been discovered [13]–[15].

The Welch–Gong (WG)(29, 11) [29 corresponds to G F
(229) and 11 is the length of the LFSR] is a stream cipher
submitted to the hardware profile in phase 2 of the eSTREAM
project [9]. It has been designed based on the WG trans-
formations [16] to produce key bit-streams with mathemat-
ically proved randomness aspects. Such properties include
balance, long period, ideal tuple distribution, large linear
complexity, ideal two-level autocorrelation, cross correlation
with an m-sequence has only three values, high nonlinearity,
Boolean function with high algebraic degree, and 1-resilient
[10], [17]–[19]. The revised version of the WG(29, 11)
[9], [10] does not suffer the chosen initial value (IV) attack
[20], [21]. The number of key-stream bits per run is strictly
less than the number of key-stream bits required to perform
the attack introduced in [22]. In addition, the WG cipher
is secure against algebraic attacks [10], [19]. Therefore, the
WG(29, 11) is secure and has the randomness properties that
cannot be offered by other ciphers and, hence, it has a potential
that the WG stream cipher will be adopted in practical
applications.

Despite of its attractive randomness and cryptographic
properties, few designs have been proposed for the hardware
implementations of the WG(29, 11). Gong and Nawaz [18]
adopt a direct design using computation in the optimal nor-
mal basis (ONB), which requires seven multiplications and
an inversion over G F(229). The inversion using Itoh–Tsujii
algorithm requires

(⌊
log2 (28)

⌋ + H (28) − 1
) = 4+3−1 = 6

multiplications and 28 squarings in G F(229), where H (28)
denotes the Hamming weight of 28 [23]. Nawaz and Gong
[10] replaced the inversion operation with a computation
of the power 2k − 1 that requires four multiplications for
k = �29/3� = 10 and reduced the other seven multiplications
of the WG transformation in [18] by one through signal
reuse. Krengel [24] uses a look-up based approach that uses
229 bits of ROM. In Lam et al. [25], the authors propose a
multiple-bit output version of the WG cipher, called multiple
output WG (MOWG). The MOWG reduces the hardware cost
through signal reuse by removing one multiplier from the WG
permutation in [10], whereas it generates d ≤ 17 output bits.
Furthermore, [25] improves the hardware cost and throughput
of the cipher through pipelining with reuse techniques. The
keystream sequences generated by the MOWG cipher possess
many of the WG keystream randomness properties [25].

In this paper, a novel method for computing the trace
of a product of two field elements is presented, when the

1063-8210 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



1866 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 9, SEPTEMBER 2014

representation is the type-II ONB. In addition, two designs
are proposed. One for the MOWG cipher and the other one
for the WG cipher (that was initially proposed in [18]),
demonstrated by application-specific integrated circuit (ASIC)
and field-programmable gate array (FPGA) implementations.
The proposed designs optimize the area by reducing the
number of multiplications in the MOWG/WG transforms. This
is done through signal reuse for the MOWG and through
using the new trace properties for the WG. The ASIC and
FPGA implementations of the proposed WG design show
significant area and power consumption reductions and an
improved speed compared with [10].

This paper is organized as follows. Section II defines the
terms, notations, and gives a brief background about the
MOWG/WG cipher. Sections III and IV presents the new
hardware designs of the MOWG cipher and WG cipher,
respectively. Results based on FPGA and ASIC implementa-
tions of the new designs are discussed in Section V. Section VI
concludes this paper.

II. PRELIMINARIES

This section defines the notations that will be used through-
out this paper to describe the WG cipher and its operation.
In addition, a brief introduction to the components and oper-
ation of this cipher is presented.

1) G F(2), binary finite field with elements 0 and 1.
2) G F(2m), binary extension field with 2m elements rep-

resented as m-bit binary vectors.
3) T r(Z) = Z + Z2 + · · ·+ Z2m−1

, the trace function from
G F(2m) −→ G F(2).

4) If β ∈ G F(2m) and ∇ = {
β20

, . . . , β2m−1}
is a basis of

G F(2m), then ∇ is a NB of G F(2m) over G F(2).
5) Let A = (a0, . . . , am−1) ∈ G F (2m), and p is a positive

integer, then, in NB.
a) A2p = A � p, represents the right cyclic shift of

the coordinates of A, with respect to NB, p-times.
b) A2−p = A 	 p, represents the left cyclic shift of

the coordinates of A, with respect to NB, p-times.
6) In NB, the addition of 1 to an element can be done by

complementing the bits of that element.
7) The trace of any G F(2m) element Z = ∑m−1

i=0 ziβ
2i

represented in NB is given by

T r (Z) =
m−1∑

i=0

zi (1)

8) ⊕ represents the bit-wise addition operator (XOR) in
G F (2m).

9) The inner product of two m-bit vectors, A =
(a0, . . . , am−1) and B = (b0, . . . , bm−1), is computed
as A · B = ∑m−1

i=0 ai bi ∈ {0, 1}.
10) C (Z) = Zl ⊕ ∑l−1

i=0 Ci Z i , Ci ∈ G F (2m) is the charac-
teristic polynomial of an l-stages LFSR over G F (2m),
from which the recurrence relation is obtained as

A j+l =
l−1∑

i=0

Ci Ai+ j (2)

Fig. 1. WG generator [10], [18], [19], [25]. IV is the input during the
loading phase. (linear feedback ⊕ initial feedback) is the input during the key
initialization phase. Linear Feedback is the input throughout the PRSG phase.

where j ≥ 0, Ai ∈ G F (2m), and (A0, A1, . . . , Al−1) is
the initial state of the LFSR.

The architecture of the WG cipher is shown in Fig. 1. The
LFSR feedback polynomial

C(Z) = Z11 ⊕ Z10 ⊕ Z9 ⊕ Z6 ⊕ Z3 ⊕ Z ⊕ β (3)

is a primitive polynomial of degree 11 over G F(229), where
β = α464730077 is the generator of the ONB and α is a root
of the defining polynomial of G F(229) given by [10]

g (Z) = Z29⊕Z28⊕Z24⊕Z21⊕Z20⊕Z19⊕Z18⊕Z17

⊕Z14⊕Z12⊕Z11⊕Z10⊕Z7⊕Z6⊕Z4⊕Z ⊕ 1. (4)

The output of the LFSR at Ai + 10 is filtered by an orthogonal
29-bit WG transformation

(
G F(229) −→ G F (2)

)
given by

WGTrans = T r (WGPerm (Ai + 10 ⊕ 1)) (5)

where

WGPerm (X) = 1 ⊕ X ⊕ Xr1 ⊕ Xr2 ⊕ Xr3 ⊕ Xr4

=
(

1 ⊕ X ⊕ X2k+1 ⊕ X22k+(
2k+1

)

⊕ X2k (
2k−1

)+1 ⊕ X22k+(
2k−1

))
(6)

is the WG permutation, r1 = 2k + 1, r2 = 22k + 2k + 1,
r3 = 22k − 2k + 1, r4 = 22k + 2k − 1, and k = �29/3�
[25]. This results in a binary key-stream of period 2319 − 1
[10], [18].

The MOWG cipher uses the same formulation presented
in (5), however, without the trace. It outputs 17 concatenated
bits arbitrarily selected from the 29 output bits of the WG
permutation [25].

The WG/MOWG ciphers consist of three phases of oper-
ations: loading phase (11 cycles), key initialization phase
(22 cycles), and running phase. The reader is referred to [10],
[18], [19], and [25] for more details.

III. OPTIMIZED HARDWARE DESIGN

OF THE MOWG CIPHER

This section presents a hardware design of the
MOWG(29, 11, 17) cipher, where 29 corresponds to G F(229),
11 is the number of stages in the LFSR, and 17 is the number



EL-RAZOUK et al.: NEW IMPLEMENTATIONS OF THE WG STREAM CIPHER 1867

Fig. 2. Proposed MOWG transformation. X = Ai+10 ⊕1 is the bit-wise com-
plement of the LFSR’s output, r1 = 2k+1, r2 = 22k +2k+1, r3 = 22k−2k+1,
r4 = 22k + 2k − 1, and k =

⌈
29
3

⌉
= 10.

of output bits. In this design, the MOWG transform uses
seven multipliers, compared with eight multipliers in [25].
In addition, in an attempt to improve the overall speed of the
cipher, the LFSR is reconstructed to remove the inverters from
the critical paths during the PRSG phase/initialization phase.
In what follows, the reduced area MOWG transform design
is first introduced, followed by presenting the LFSR/key and
initial vector loading algorithm (KIA) algorithm changes for
speed improvement. Then, the architecture of the finite-state
machine (FSM) is discussed, and the section ends up by
deriving formulations for the space and time complexities.

A. Reducing the Hardware Complexity of the
MOWG Transformation

The hardware cost of the MOWG cipher is dominated by
its transform’s field multipliers. Any decrease in the number
of these multipliers would minimize the area of the overall
cipher. This subsection presents the architecture of the MOWG
transform, where the number of field multipliers is reduced by
1 through signal reuse, compared with those in [25].

The architecture of the proposed MOWG transform is
shown in Fig. 2. Through taking X22k

as a common factor of
the exponent terms 22k+(

2k + 1
)

and 22k+(
2k − 1

)
in (6), this

architecture can easily be obtained, where the WG permutation
given by (6) is now computed as follows:

WGPerm =
(

1 ⊕ X ⊕ X2k+1 ⊕ X2k (2k−1)+1

⊕X22k (
X (2k+1) ⊕ X (2k−1)

))
. (7)

In the MOWG(29, 11, 17), k = 10 and, hence, the signal
X2k−1 requires four multiplications and four squaring oper-
ations (that is free of cost in ONB) [25]. In addition to the
multiplication operations involved in computing the signal
X

(
2k−1

)
, (7) requires three more multiplications to generate

the signals X2k+1, X2k (
2k−1

)+1, and X22k (
X (2k+1) ⊕ X (2k−1)

)
.

Therefore, the architecture of Fig. 2 requires a total of seven
G F(229) multiplications. The inverter symbol denoted by (1)
in this figure requires 29 NOT gates to generate X = Ai+10⊕1
from the LFSR’s output signal Ai+10. The signal X ⊕ Xr1 ⊕
Xr2 ⊕ Xr3 ⊕ Xr4 is obtained as the addition in G F(229) of
X , Xr1 = X2k+1, Xr2 ⊕ Xr4 = X22k (

X (2k+1) ⊕ X (2k−1)
)
, and

Xr3 = X2k (
2k−1

)+1. The signals X2k
and X22k

are obtained by

Fig. 3. Proposed design of the MOWG(29, 11, 17) cipher. A double-headed
arrow, under a component, corresponds to a 29-bit Register which is inserted
for pipelining purposes (see Section V-B for more details).

right cyclic shifts of X , k, and 2k times, respectively. X2k+1 is
generated by multiplying X with X2k

in G F(229). X2k (
2k−1

)

is the right cyclic shift of X
(
2k−1

)
, k times, and X2k

(
2k−1

)+1

is generated by multiplying X2k
(
2k−1

)
with X in G F(229).

In Fig. 2, the coordinates of the output of X⊕Xr1 ⊕Xr2 ⊕Xr3 ⊕
Xr4 in G F(229) are complemented by the inverter symbol
denoted by (2) to generate all 29 bits of the WGPerm function
of (7), which forms the initial feedback. Seventeen bits of the
WGPerm are the output of the MOWG in the run phase [25].

B. Improving the Critical Path of the MOWG Transform

The time delay through the MOWG transform dominates
the delay of the overall cipher (Section III-D2). This sub-
section shows how to slightly reduce the delay through this
transform. This is accomplished by removing inverter 1, and
by reallocating inverter 2 away from the critical paths of the
PRSG and key initialization phases. This reduces the delay
of the critical path by an amount equivalent to the delay of
two inverters. However, the MOWG transform delay is still
the dominant because of the delays of five serially connected
field multipliers. First, the required mathematical formulation
is derived, then the resulting new architecture of the cipher is
presented.

1) Formulation: During the key initialization and PRSG
phases, inverter 1 in Fig. 2 generates the complement of
Ai+10. Notice that this cell holds the feedback from the
LFSR during the PRSG phase, and the bit-wise XOR of
the LFSR feedback and the MOWG transform feedback



1868 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 9, SEPTEMBER 2014

during the key initialization phase. Therefore, to remove
inverter 1, it requires the direct storage of the complement
of these values in both phases. In other words, it is required
to reconstruct the LFSR such that it generates a sequence
B = {

Bi = 1 ⊕ Ai , 0 ≤ i ≤ 2319 − 1
}
, where Bi ∈ G F(229)

and {Ai } is the sequence generated by (3) over G F(229).
Sequence B is referred to as the complement sequence of {Ai }.
The following proposition shows how this is accomplished
for an LFSR with a general feedback polynomial of degree l
over G F (2m).

Proposition 1: Let B be the complement sequence of a
sequence A = {

Ai , 0 ≤ i ≤ 2ml − 1
}
, where Ai ∈ G F (2m)

and A is generated by (2). Then, B is generated by the
following recurrence relation:

B j+l =
(∑l−1

i=0 Ci Bi+ j

)
⊕

((∑l−1
i=0 Ci

)
⊕ 1

)
(8)

where j ≥ 0, and the initial state of B is Bi = 1 ⊕ Ai , for
0 ≤ i ≤ l − 1.

Proof: By definition

B j+l = A j+l ⊕ 1 (9)

j ≥ 0. Using (2) in (9), one gets B j+l = ∑l−1
i=0 Ci Ai+ j ⊕ 1,

and by noticing 2Ci = 0 one obtains

B j+l =
l−1∑

i=0

Ci (Ai+ j ⊕ 1) ⊕
l−1∑

i=0

Ci ⊕ 1

=
l−1∑

i=0

Ci Bi+ j ⊕
l−1∑

i=0

Ci ⊕ 1.

Thus, the assertion is true.
Through noticing that X = 1 ⊕ Ai+10 in (7), then, from

Proposition 1, one can see that X is Bi+10. Notice that the term(∑l−1
i=0 Ci

)
⊕ 1 in (8) is a constant term. Hence, its addition

in G F(229) is realized with a number of NOT gates equal to
its Hamming weight. For the LFSR of the MOWG, replacing
the coefficients of (3) in (8) gives

(∑l−1
i=0 Ci

)
⊕ 1 = β ⊕ 1,

which has a Hamming weight equal to 28.
Inverter 2, on the other hand, realizes the addition of the

field element 1 in (7). Notice that this addition of the term 1
can be implemented in different ways. One way is to add
it to one of the terms X , Xr1 , Xr2 ⊕ Xr4 , or Xr3 before the
summation of these terms. Doing so would reallocate inverter 2
from its current position. It is, however, required that this
reallocation does not result in a delay higher than the current
maximum delay of the MOWG transform. For this reason,
the inverter is relocated to complement X before it is added
to Xr1 . This is the path at the top of Fig. 2, which has the
lowest delay with only two G F(229) adders between inverters
1 and 2.

2) Modified KIA Algorithm: Modifying the MOWGs LFSR
according to (8) requires its left most stage to hold the
complement of the IV during the loading phase. Therefore,
it is required to complement the IV input before it is loaded
to the modified LFSR. This can easily be implemented by
inserting 29 inverters at the multiplexer’s input that receives
the IV in Fig. 1.

3) Architecture: Here, the overall proposed architecture
of the MOWG(29, 11, 17) cipher is presented, as shown in
Fig. 3. In this figure, the FSM controls the input to the
LFSR for each phase of operation. In the same figure, because
of the bit-wise complement operator denoted by (a), the
LFSR receives the complemented IV during the loading phase.
Hence, after 11 clock cycles, the initial state of this LFSR,
(B0, B1, . . . , B10), is basically the complement of the initial
state of the LFSR in Fig. 1, i.e., Bi = Ai ⊕ 1, 0 ≤ i < 11.
When the key initialization phase starts, the bit-wise XOR of
the initial feedback and linear feedback applies to the input of
the LFSR. Note that the Linear Feedback in Fig. 3 is generated
by (8), which is equivalent to Bi = Ai ⊕ 1, 11 ≤ i < 33
(complement of corresponding one in Fig. 1). However, the
initial feedback signal in Fig. 3 has the same value as the one
generated in Fig. 2. This means that the input to the LFSR
during the key initialization phase in Fig. 3 is complemented
with respect to the one in Fig. 1. Throughout the PRSG phase,
the only input to the LFSR is the linear feedback signal
Bi = Ai ⊕ 1, 33 ≤ i < 2319 − 1. This sets the MOWG
transform of Fig. 3 to generate the same key-stream bits of
Fig. 2. It is clear that the maximum delay of the MOWG
transformation is reduced by an amount equivalent to the
delay of two inverters, as compared with the one in Fig. 2.
The revised LFSR in Fig. 3 has additional H (β ⊕ 1) = 28
inverters, compared to Fig. 1. This is due to the new constant
term β ⊕ 1 in the feedback polynomial.

C. Finite State Machine

This subsection exposes the architecture of the FSM and
describes how it schedules the input to the LFSR throughout
the three phases of operation.

Fig. 4 shows the components of the FSM. The FSM has
two inputs, namely clk and reset, 1-bit each, whereas there
are two outputs denoted as op0 and op1. The reset input is
pulled down before each run of the cipher. This forces the
11-bit one-hot counter to initialize to (1, 0, . . . , 0), i.e., output
0 is the only bit set to a high logic level. In addition, when the
reset signal is low, the 2-bit binary counter resets its state to
(0, 0). Because of the 1-bit Register connected to the AND gate
at the reset input of the 11-bit one-hot counter, this counter
starts incrementing one clock cycle after the reset signal gets
pulled up. This assures that the 11-bit one-hot counter returns
to its initial state after 11 clock cycles. Then, it triggers the
2-bit binary counter to increment that starts the initialization
phase. The output of the 2-bit binary counter controls the
cipher’s phase of operation. This is done by generating the
op0 and op1 signals according to Table I.

The op0 and op1 signals select one of the three inputs of
the multiplexer in Fig. 3 and connect it to the input of the
LFSR, during each phase. It is noted that the loading phase
takes 11 clock cycles, then starts the key initialization phase
that takes 22 clock cycles, followed by the run phase. During
the run phase, the clock inputs of the 11-bit one-hot counter
and the 2-bit binary counter become idle.



EL-RAZOUK et al.: NEW IMPLEMENTATIONS OF THE WG STREAM CIPHER 1869

Fig. 4. FSM of the MOWG.

TABLE I

PHASE OF OPERATION IN THE PROPOSED MOWG AS A FUNCTION

OF THE STATE OF THE 2-BIT BINARY COUNTER

D. Space and Time Complexities

This subsection provides the space and time complexities
of the MOWG design in Fig. 3.

1) Space Complexity: The space complexity is evaluated in
terms of number of gates in each component to obtain the
overall hardware cost. Let NR , NA , NX , NO , and NI denote
the number of 1-bit Registers, AND gates, XOR gates, OR gates,
and inverters, respectively.

a) MOWG transform: The transform dominates the hard-
ware complexity of the MOWG design as it consists of seven
field multipliers and four G F(229) adders. A G F(229) adder
requires 29 XOR gates. Also, the multiplier in [26] is used
for implementation, which has 841 AND gates and 1218 XOR

gates. Therefore, the total hardware cost of the transformation
is as listed in Table II.

b) Linear feedback shift register: The LFSR has
11-stages of 29-bit shift registers and a feedback polyno-
mial. The feedback polynomial is composed of one field
multiplier (with a constant),1 five G F(229) additions, and
H (β ⊕ 1) = 28 inverters. Therefore, the hardware complexity
of the LFSR is as listed in Table II.

1A multiplication with a constant can be further optimized so that it contains
few XOR gates.

TABLE II

COUNT OF 1-BIT REGISTERS AND LOGIC GATES IN THE DIFFERENT

COMPONENTS OF THE PROPOSED MOWG DESIGN

c) 4-to-1 29-bit multiplexer: The 4-to-1 29-bit multi-
plexer is composed of a binary tree of three 2-to-1 29-bit
multiplexers and two NOTs (selectors). Each 2-to-1 29-bit
multiplexer is built from 29 parallel 2-to-1 1-bit multiplexers.
A 2-to-1 one bit multiplexer consists of two AND gates and
one OR gate. Therefore, the total cost of the 4-to-1 29-bit
multiplexer is as listed in Table II.

d) Finite-state machine: From Fig. 4, there are three AND

gates, one XOR gate, and one inverter in the FSM. The 11-bit
one-hot counter is simply an 11-stages circular shift register
with set/reset inputs having the output of the last shift register
fed to the input of the first one. The 2-bit binary counter is
built from two JK flip-flops (FF). The two inputs of the first FF
are pulled to high logic and its output drives the two inputs of
the second FF. Thus, one can find the total number of one-bit
registers as

NR = 11 + 2 + 1 = 14.

Table II lists the number of gates in the FSM.
In addition to the above-mentioned components, the MOWG

cipher contains two 29-bit bit-wise complement operators
(inverter symbol (a) and inverter symbol (b) in Fig. 3)
and a G F(229) adder (computing the bit-wise XOR of ini-
tial feedback signal and the linear feedback signal). Let
NMOWG

O , NMOWG
I , NMOWG

R , NMOWG
A , and NMOWG

X denote
the number of OR gates, Inverters, 1-bit Registers, AND

gates, and XOR gates in the MOWG of Fig. 3, respectively.
Therefore, by adding the corresponding number of gates in
this G F(229) adder and in inverter symbols (a) and (b) to
the number of gates in the FSM, the 4-to-1 29-bit multi-
plexer, the LFSR, and the MOWG transform (Table II) one
obtains

NMOWG
O = 87, NMOWG

I = 89, NMOWG
R = 333,

NMOWG
A = 6905, NMOWG

X = 10035.

2) Time Complexity: Here, the formulation for the critical
path delay of the MOWG cipher (Fig. 3) is derived. There are
three critical paths in the MOWG.

1) Critical path of the LFSR.
2) Critical path along the MOWG transformation during

the key initialization phase.
3) Critical path along the MOWG transformation during

the run phase.



1870 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 9, SEPTEMBER 2014

The LFSR’s path has one multiplication and five finite field
additions. This results in a propagation delay of

TA + (
1 + ⌈

log2 (6)
⌉ + ⌈

log2 (29)
⌉)

TX = TA + 9TX (10)

where TA and TX denote the propagation delay of an AND

and an XOR, respectively. The delay through a finite field
multiplier is TA + (

1 + ⌈
log2 (29)

⌉)
TX [26]. On the other

hand, the delays through the two MOWG transform paths have
five multipliers in series, which corresponds to a delay of

5 (TA + 6TX ) = 5TA + 30TX . (11)

From (10) and (11), it is clear that the longest path of the
MOWG cipher passes through its transformation.

From Fig. 3, the critical path of the proposed MOWG during
the run phase includes the delays of a 29-bit Register, five field
multipliers in series, and three G F(229) adders. These results
in the delay are stated as

TRunPh = 5TA + 33TX + TR (12)

where TRunPh denotes the maximum propagation delay through
the MOWG during the run phase. In the same figure, the
critical path of the MOWG during the key initialization
phase includes the delays of four G F(229) adders, five field
multipliers, a 29-bit Register, and a 4-to-1 29-bit multiplexer.
Notice that the delay through the 4-to-1 29-bit multiplexer is
equivalent to the delay through two 2-to-1 1-bit multiplexers
in series. This is equivalent to the sum of the delays through
two AND gates, two OR gates, and two inverters. Therefore,
the delay of the MOWG during the key initialization phase is

TKIPh = 7TA + 34TX + TR + 2TO + 2TI . (13)

Comparing (12) and (13), it is clear that TKIPh > TRunPh.

IV. LOW COMPLEXITY WG CIPHER

This section proposes a new design of the WG(29, 11). The
proposed WG design considers Fig. 3 with an added trace to
the output of the WGPerm as the starting point for optimiza-
tion. Properties of the trace function when the elements of
G F (2m) are represented in ONB of type-II (that exists for
m = 29 [27]) are first introduced. The proposed WG design
uses these properties to minimize the hardware complexity of
its transform. Note that the proposed design eliminates some
necessary signals for the generation of the initial feedback,
which is required to conduct the key initialization phase of
the cipher. Missing of the initial feedback signal is recovered
by introducing a serialized scheme to generate it. At the end
of this section, the hardware and the time complexities of the
new implementation are provided.

A. Properties of the Trace Function for Type-II ONB

This section presents a method for computing the trace of
a multiplication of two field elements when the representation
is in the type-II ONB. In addition, two corollaries are deduced
from the proposed method.

Fact 1 [28]: Let {β, β2, β22
, . . . , β2m−1} be a type-II ONB

in G F (2m). Then

T r(β2i
) = 1, i = 0, 1, . . . , m − 1

and

T r(β2i
β2 j

) = 0 ∀i 
= j ; i, j = 0, 1, . . . , m − 1.

In other words, a type-II ONB is a self-dual basis. Thus,
Proposition 2 is achieved as follows.

Proposition 2: In a type-II ONB, the trace of the
field multiplication of any two G F (2m) elements
A = (a0, a1, . . . , am−1) and B = (b0, b1, . . . , bm−1) is
computed as the inner product of A and B as follows:

Tr (AB) =
m−1∑

i=0

ai bi . (14)

Proof: The proof is completed by considering the follow-
ing derivation:

T r(AB) = Tr

⎛

⎝
m−1∑

i=0

aiβ
2i

m−1∑

j=0

b jβ
2 j

⎞

⎠

=
∑

0≤i, j<m

ai b j Tr(β2i+2 j
)

=
m−1∑

i=0

ai bi

where the last result is obtained using Fact 1.
Proposition 2 implies that the trace of a field multiplication

of two elements represented in type-II ONB is easily imple-
mented in hardware using m AND gates and m −1 XOR gates.

Corollary 1: In type-II ONB, the two relations below are
valid for any two elements A and B in G F (2m)

Tr (AB) = T r ((A � n) (B � n)) =
m−1∑

i=0

ai−nbi−n (15)

and

T r (AB) = T r ((A 	 n) (B 	 n)) =
m−1∑

i=0

ai+nbi+n (16)

where n is a positive integer and the indices of a and b are
computed modulo m.

Proof: Let A and B be any two elements in G F (2m) and
n an arbitrary positive integer. It is well known that

Tr
(

X2±n
)

= T r (X)2±n = T r (X)

for any X ∈ G F (2m). Therefore, by replacing X with AB
one obtains

Tr (AB) = T r
(

A2±n
B2±n

)
. (17)

Through using Proposition 2, the proof is completed by
realizing that the squaring operation X2 and the square root
operation X2−1

are simply the right cyclic shift and the left
cyclic shift of the coordinates of X with respect to the ONB,
respectively.

According to Corollary 1, the trace of the field multipli-
cation of any two elements A and B , represented in type-II
ONB, does not change if an n-bit cyclic shift (left or right) is
applied to both elements in the same direction.



EL-RAZOUK et al.: NEW IMPLEMENTATIONS OF THE WG STREAM CIPHER 1871

Corollary 2: Let C be a common factor of two or more
G F (2m) elements AC , BC ,…, etc, then, the following rela-
tion holds:

Tr (AC) + Tr (BC) + · · · =
m−1∑

i=0

(ai + bi + · · · ) ci . (18)

Proof: Let A, B ,…, etc, be any two or more arbitrary
elements from the finite field G F (2m). Then

T r (AC) + T r (BC) + · · · = T r ((A ⊕ B ⊕ · · · ) C)

=
m−1∑

i=0

(ai + bi + · · · ) ci

where the last result follows from Proposition 2, and
C ∈ G F (2m).

B. Optimizing the WG Transform’s Hardware for the
Run Phase

Here, it is shown how Proposition 2 and Corollaries 1 and 2
are used to further reduce the number of field multiplications
in the WG transform in Fig. 3 (with trace). Before proceeding,
it is important to mention that by applying (14), one can
generate the trace of the field multiplication of two elements
A and B directly from A and B . However, the result of the
multiplication operation, i.e., C = AB , will be lost. Therefore,
it is important to apply (14) to the multiplication terms in (7),
which are not used anywhere else. From Fig. 3, the two signals
Xr2 ⊕Xr4 and Xr3 are used only as inputs to the trace function
(after they are bit-wise XORed), whereas the signal Xr1 is
required in generating Xr2 ⊕ Xr4 (Section II for the values of
r ′

i s). The first two signals are generated as follows:
{

Xr2 ⊕ Xr4 = X22k
(

Xr1 ⊕ X2k−1
)

Xr3 = X X2k
(
2k−1

)
.

(19)

Therefore, applying the trace function to (19) one gets
⎧
⎨

⎩

T r (Xr2 ⊕ Xr4) = T r
(

X22k
(

Xr1 ⊕ X2k−1
))

T r (Xr3) = T r
(

X X2k (
2k−1

))
.

(20)

Using (20), the WG transformation becomes

WGTrans = T r
(
1 ⊕ X ⊕ Xr1

) + T r
(

X X2k
(
2k−1

))

+Tr
(

X22k
(

Xr1 ⊕ X2k−1
))

. (21)

Applying a right cyclic shift of 2k-stages to X and X2k
(
2k−1

)

in the term T r
(

X X2k
(
2k−1

))
of (21) does not change the value

of the trace

Tr
(

X X2k
(
2k−1

))
= T r

(
(X)22k

(
X2k

(
2k−1

))22k )
. (22)

Using (22) in (21) gives

WGTrans = T r
(
1 ⊕ X ⊕ Xr1

) + T r
(

X22k
X23k

(
2k−1

))

+T r
(

X22k
(

Xr1 ⊕ X2k−1
))

. (23)

Fig. 5. Proposed design of the WG transformation. Block denoted by IP
generates the inner product of the two 29-bit inputs (Section II), whereas ⊕
adds the 29-bits at its input over G F (2).

Taking X22k
as a common factor in (23) one obtains

WGTrans = T r
(
1 ⊕ X ⊕ Xr1

)

+T r
(

X22k
(

Xr1 ⊕ X2k−1 ⊕ X23k (
2k−1

)))
. (24)

Notice that by applying Corollary 2 to (24), only one mul-
tiplication operation is required to generate Xr1 = X2k+1

(excluding the generation of the signal X2k−1). Fig. 5 shows
the resulting architecture of the WG transform in (24). This
architecture uses five field multipliers, i.e., four multipliers less
than the WG transform presented in [10].

In Fig. 5, the key stream bits are obtained by
XORing Tr (1 ⊕ X ⊕ Xr1) with Tr (Xr2 ⊕ Xr3 ⊕ Xr4).
Tr (1 ⊕ X ⊕ Xr1) is the G F (2) addition of the coordinates
of 1 ⊕ X ⊕ Xr1 with respect to the ONB. On the other hand,
notice that the signals Xr3 and Xr2 ⊕ Xr4 do not exist in
the WG transform. This is because Tr (Xr2 ⊕ Xr3 ⊕ Xr4)

is generated directly from X22k
, Xr1 , X2k−1, and X23k

(
2k−1

)

using an inner product operation, as it is stated in (24). This
absence of the two signals Xr3 and Xr2 ⊕ Xr4 resulted in the
elimination of the initial feedback signal. The next subsection
proposes a recovery method for generating the initial feedback
signal, which is only used in the key initialization phase.

C. Serializing the Computation of the Initial Feedback
Signal

This section presents a method for the recovery of the Initial
feedback signal through serialized computation. To accomplish
the multiplication operations during this serial computation,
the existing finite field multiplier that is used in generating the
signal Xr1 in Fig. 5, is used. The proposed scheme generates
the initial feedback signal by serially computing it over
three consecutive clock cycles. Denote this complete round
of the serialized initial feedback computation (three clock
cycles) as an extended key initialization round. In addition,
denote the single clock cycle version of this computation
(as in the MOWG design) as a simple round. Therefore,
with serialization, the entire key initialization phase requires



1872 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 9, SEPTEMBER 2014

Fig. 6. Modified FSM after adding the new 3-bit one-hot counter.

Fig. 7. Block diagram of the SKIM module. The initial feedback signal is
connected to the LFSRs input multiplexer as shown in Fig. 1. Xr1 connectivity
is shown in more details in Fig. 8.

3×22 = 66 clock cycles instead of 22 clock cycles (that is, 22
extended rounds instead of 22 simple rounds). It is noted that
this only affects the key initialization phase without increasing
the number of cycles required for the run phase.

The expansion of the key initialization round from one
to three clock cycles is established through the support
of a new FSMs control signal, namely, lfsr_clk (Fig. 6).
This signal controls the clock input of the LFSR and triggers
it to shift once every three clock cycles. In addition, to
compute the initial feedback signal over three stages, a new
hardware module denoted as the serialized key initialization
module (SKIM) will be introduced (Fig. 7). This module
uses the available signals and the field multiplier that is used
in the generation of Xr1 , in Fig. 5. This module schedules
the proper inputs to the field multiplier in each stage of the
serial computation through some multiplexers. The output of
these multiplexers are controlled by two new signals generated
by the FSM, namely, s0 and s1 (Fig. 6). The intermediate
results, between two consecutive stages of the computation,
are stored in internal 29-bit Registers of the SKIM module.

In the following, the FSM changes required for the support of
the serialization process are first introduced. Then, the archi-
tecture and operation of the SKIM module and its integration
to the WG transform in Fig. 5 are discussed.

1) Architecture and Operation of the Modified FSM: Here,
the new architecture and operation of the FSM are described.
The architecture, which is shown in Fig. 6, generates the
new set of control signals lfsr_clk, s0, and s1. These are
required for the serial computation of the initial feedback
signal. Before each run of the cipher, the FSM resets its
11-bit one-hot counter to (1, 0, . . . , 0) and its 2-bit binary
counter to (0, 0) (where the leftmost and rightmost bits, within
the brackets, denote the lowest output bit and the highest
output bit of the corresponding counter, respectively). This
is done through pulling down the reset inputs. When the reset
signal is released, the 2-bit binary counter becomes ready.
At the same time, the 11-bit one-hot counter’s reset input
stays pulled down for an extra clock cycle. This is due to
the 1-bit Register connected to the input of the AND gate that
drives its reset input. This assures that the (1, 0, . . . , 0) state
of the 11-bit one-hot counter consumes a clock cycle at the
beginning of the loading phase. After 11 clock cycles, from the
release of the reset signal, the 11-bit one-hot counter returns
to the (1, 0, . . . , 0) state. At this point, it triggers the clock
input of the 2-bit binary counter. The 2-bit binary counter
changes its state to (1, 0), triggering the start of the key
initialization phase. Then, the clk signal starts triggering the
clock input of the 3-bit one-hot counter. The counting will,
however, start one clock cycle later, when the output of the
1-bit Register connected to the 3-bit one-hot counter’s reset
input pulls up. This in turn assures that the 3-bit one-hot
counter consumes one clock cycle, before incrementing its
initial state of (1, 0, 0), at the start of the key initialization
phase. During this phase, the first output bit of the 3-bit one-
hot counter drives the clock input of the 11-bit one-hot counter.
Therefore, it takes 33 clock cycles for the 11-bit one-hot
counter to complete 11 counts. Hence, it takes 33 clock cycles
for the 2-bit binary counter to increment. Therefore, it requires
66 clock cycles for the 2-bit binary counter to increment twice
to start the running phase. When the running phase starts,
with the 2-bit binary counter’s state at (1, 1), the 11-bit and
the 3-bit one-hot counters stop counting, as their clock inputs
become idle.

Notice that during the key initialization phase, the lfsr_clk is
driven by the first output of the 3-bit one-hot counter. Hence,
the LFSR shifts once every three clock cycles. The two signals
s0 and s1 are derived from the 3-bit one-hot counter’s output
according to Table III. Notice that this table is realized without
any additional hardware by setting s0 to be the second output
and s1 to be the third output of the 3-bit one-hot counter,
respectively. Therefore, (s0, s1) produces the three patterns of
(0, 0), (1, 0), and (0, 1) during the first, second, and third
stages of an extended key initialization round, respectively.
During the running phase, (s0, s1) will generate (0, 0). The
following shows how these patterns are used to accomplish
the proper functionality in the key initialization phase as well
as in the running phase.



EL-RAZOUK et al.: NEW IMPLEMENTATIONS OF THE WG STREAM CIPHER 1873

TABLE III

SIGNALS s0 AND s1 AS A FUNCTION OF THE OUTPUT

OF THE 3-BIT ONE-HOT COUNTER

2) Architecture and Operation of the SKIM: Here, the
SKIM module, which performs the serialized computation of
the initial feedback signal over an extended key initialization
round (three clock cycles), is presented.

Fig. 7 is a block diagram describing the architecture of
this module. During the extended key initialization round,
the two signals s0 and s1 in Fig. 7 change values in each
stage as mentioned in the previous section. These two signals
control the outputs of the three multiplexers MUX1, MUX2,
and MUX3 according to Table IV.

In each stage of the extended key initialization round, the
SKIM module computes a partial value of the initial feedback
signal and stores it in Register 2 (Fig. 7).

During the first clock cycle, s0 and s1 are both at low logic
levels. Hence, MUX1, MUX2, and MUX3 generate the signals
X2k

, X , and X ⊕1 at their outputs, respectively. The output of
the multiplier becomes Xr1 = X2k+1 and that of the G F(229)
adder is Xr1 ⊕ X ⊕ 1. Upon receiving a new clock signal, i.e.,
at the start of the second clock cycle, Register 1 and Register 2
update their states with the output signal of the multiplier and
output of the G F(229) adder, respectively. In addition, X2k−1

is stored in a 29-bit Register (see Fig. 8). At the same time,
s0 pulls up forcing the outputs of MUX1, MUX2, and MUX3

to become Xr1 ⊕ X2k−1, X22k
, and Xr1 ⊕ X ⊕ 1 (the state of

Register 2 when the clock signal arrived), respectively. With
these settings of the multiplexers and the registers, the multi-
plier output changes to Xr2 ⊕Xr4 = X22k

(
Xr1 ⊕ X

(
2k−1

))
and

that of the G F(229) adder to Xr4 ⊕Xr2 ⊕Xr1 ⊕X ⊕1, denoting
Register 1’s and Register 2’s next states, respectively, when the
third clock signal arrives. When the third clock cycle starts,
s0 changes to low logic level while s1 changes to high logic
level, which forces MUX1, MUX2, and MUX3 to generate
X2k

(
2k−1

)
, X , and Xr4 ⊕ Xr2 ⊕ Xr1 ⊕ X ⊕ 1 at their outputs,

respectively. The multiplier and the G F(229) adder outputs
become Xr3 = X2k

(
2k−1

)+1 and Xr4 ⊕Xr3 ⊕Xr2 ⊕Xr1 ⊕X ⊕1,
respectively.

At the arrival of the fourth clock signal (the beginning
of a new extended key initialization round) s0 and s1 both
change back to low logic levels, the LFSR is clocked and
latched with the result of the bit-wise XOR of the computed
initial feedback signal (Xr4 ⊕ Xr3 ⊕ Xr2 ⊕ Xr1 ⊕ X ⊕ 1) and
the LFSRs linear feedback signal. At the arrival of the 67th
clock signal, the LFSR would have been clocked 22 times and
the running phase starts.

Throughout the run phase, both s0 and s1 stay at logic
level 0; therefore, MUX1 generates the signal X2k

and MUX2
generates the signal X . With these values, the multiplier

s0

s1

Initial Feedback
in0

in1

sel0

in2

in3

sel1

in0

in1

sel0

1

in0

in1
sel0

Output
Sequence

+

10

30

10iX B

1

1

1 1

1

1

101 1iX B
29

29 29

29

29

29

29
29

29

29

29

29

29

1rX

IP
29

MUX1

MUX
2

MUX
3

10

10

20

Initial Feedback 
(for pipelining)

1 2

1
2 3

4

3,5,7

3,5,7

3,5,7

4,6,8

4,6,8

2

Fig. 8. Proposed WG transformation after integration with the SKIM
module. Block denoted by IP generates the inner product of the two
29-bit inputs (Section II), whereas ⊕ adds the 29-bits at its input over
G F (2). Double-headed arrows under a component (correspond to inserted
registers) and the dotted arrow output (initial feedback), are used for pipelining
(Section V-B). Numbers under a register specify the clocking of that register
within the pipelined scheme, during initialization phase.

generates Xr1 and the WG transform in Fig. 8 produces a
stream bit for each cycle.

D. Space and Time Complexities

This section begins with presenting the hardware complexity
of the proposed WG implementation, followed by the time
complexity.

1) Space Complexity: The space complexity of the WG
transform is reduced, whereas that of the WG’s FSM is slightly
increased, compared with the corresponding ones in the pro-
posed MOWG. In what follows, the hardware complexities of
the WG transform and its FSM are first summarized. Then,
the overall hardware cost of the WG design is obtained.

a) WG transformation: The space complexity of the WG
transform has been improved compared with the MOWG
transform. This is mainly because the number of field mul-
tipliers in the WG transform is reduced by 2 with respect to
that in the MOWG transform. On the other hand, compared
with the MOWG transformation in Fig. 3, the design in Fig. 8
has the following additional components: 1) a G F(229) adder;
2) a 29-bit G F (2) addition; 3) three 29-bit Registers; 4) an
XOR gate; 5) an OR gate; 6) one 4-to-1 29-bit multiplexer;
7) two 2-to-1 29-bit multiplexers with 2 selector NOTs; and
8) an inner product. A 29-bit G F (2) adder consists of 28 XOR

gates. A 2-to-1 29-bit multiplexer consists of 29 parallel 2-to-
1 1-bit multiplexers. The inner product has 29 AND gates and
28 XORs. Details about the hardware of the other components
are listed in Section III-D1. Through adding the hardware of
the additional components to the gate count in the MOWG
transform (Table II), and then subtracting the hardware cost
of two field multipliers, the total hardware cost of the proposed
WG transform is obtained as listed in Table V.

b) Finite state machine: The FSM shown in Fig. 6
has additional two AND gates, two OR gates, a 2-to-1
1-bit multiplexer (with 1 selector NOT), 1-bit Register, and
a 3-bit one-hot counter as compared with Fig. 4. Similar to



1874 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 9, SEPTEMBER 2014

TABLE IV

MULTIPLEXERS OUTPUTS AND NEXT STATES OF REGISTER 1 AND REGISTER 2 AS A FUNCTION OF s0 AND s1

THROUGHOUT AN EXTENDED ROUND OF THE KEY INITIALIZATION PHASE (THREE CLOCK CYCLES)

TABLE V

COUNT OF 1-BIT REGISTERS AND LOGIC GATES IN THE DIFFERENT

COMPONENTS OF THE PROPOSED WG DESIGN

the 11-bit one-hot counter, the 3-bit one-hot counter is simply
composed of a three stages circular shift register with set/reset
inputs having the output of the last shift register fed to the
input of the first register. Through adding the gates in the
mentioned components to the number of gates of the FSM in
Fig. 4 (Table II), the total hardware cost of the FSM in Fig. 6
is as shown in Table V.

The LFSR and the 4-to-1 MUX of the WG have same
complexities as the ones in the MOWG (Table II). In addition,
the WG design contains two 29-bit bit-wise complement
operations [inverter symbol (a) and inverter symbol (b) in
Fig. 3] and a G F(229) adder (computing the bit-wise XOR

of initial feedback signal and the linear feedback signal). Let
NWG

O , NWG
I , NWG

R , NWG
A , and NWG

X denote the number of
OR gates, inverters, 1-bit Registers, AND gates, and XOR gates
in the proposed WG cipher, respectively. Therefore, through
adding the corresponding number of gates in the G F(229)
adder and in inverter symbols (a) and (b) to the number of
gates in the 4-to-1 multiplexer, the LFSR (see Table II), and
in the FSM, and the WG transform (Table V) one obtains

NWG
O = 236, NWG

I = 94, NWG
R = 424,

NWG
A = 5546, NWG

X = 7685.

2) Time Complexity: Here, the formulation for the critical
path of the proposed WG design is derived. Notice that the
LFSR delay in the WG is not a candidate for the critical
path, because it still has less multipliers contributing to its
delay, compared with the WG transform. In what follows, the
formulation of the longest path during the key initialization
phase is presented. After this, the running phase is proved to
be the longest path of the cipher.

Let Tclock ≥ TKIPh denotes the minimum clock period in
the WG during the key initialization phase. During the three
stages of an extended key initialization round, in order, the
following three conditions hold:

Tclock ≥ 24TX + 4TA + TR (25)

Tclock ≥ 8TX + 3TA + TR + 2TO + 2TI (26)

Tclock ≥ 8TX + 5TA + TR + 4TO + 4TI (27)

where the right hand sides in (25), (26), and (27) are simply
the propagation delays during the first (generating X2k−1),
second, and third stages of the extended key initialization
round, respectively. It is clear that the right hand side of (25)
is the largest, and hence, the longest path during the key
initialization phase of the WG is

TKIPh = 24TX + 4TA + TR . (28)

The delay of the longest path through the WG during the
running phase is easily obtained by adding the delays of its
components as follows:

TRunPh = 32TX + 5TA + TR . (29)

From (28) and (29), the critical path of the cipher is (29).

V. RESULTS AND COMPARISONS

The following sections compare the proposed designs of the
MOWG(29, 11, 17) and the WG(29, 11) ciphers with the cor-
responding previous implementations in [25], [10], and [24].
In addition, further optimizations and general applicability of
the proposed algorithms are discussed.

A. Results from FPGA and ASIC Implementations

The proposed WG and MOWG designs, together with the
WG in [10], have been realized using ASIC and FPGA
implementations. The ASIC speed and area results are for
the 65-nm CMOS technology based on Synopsys Design
Compiler’s estimate of area and clock speed before place-
and-route with medium effort for optimizations. The power
consumption readings have been conducted under 140-MHz
frequency for all the designs. The FPGA designs have been
synthesized using Xilinx Synthesis Tool [29]. The FPGA area
and speed results are for Xilinx Virtex4 series FPGA device
xc4vfx12sf363-10. All results are for post place-and-route
and the power consumption results have been recorded for a
frequency of 29 MHz for all the designs. The reported ASIC
and FPGA results are listed in Tables VI and VII, respectively.
Furthermore, theoretical results for the WG design in [24]
are listed in Table VI. The WG-7, in the same table, is
another member of the WG family based on an LFSR over
G F

(
27

)
. In Tables VI and VII, the readings shown from

the MOWG design in [25] were reported for the pipelined-
with-reuse version of the transform. The following paragraphs
analyze the reported results and compare the proposed WG
and MOWG designs with the previous ones in the literature.



EL-RAZOUK et al.: NEW IMPLEMENTATIONS OF THE WG STREAM CIPHER 1875

TABLE VI

RESULTS OBTAINED FROM ASIC IMPLEMENTATIONS (POSTSYNTHESIS) OF WG(29, 11)/MOWG(29, 11, 17). THE WG-7 RESULTS ARE FROM

SOFTWARE IMPLEMENTATIONS PRESENTED IN [3]. KGATE IS THE AREA EQUIVALENCE IN TERMS OF NUMBER OF NAND GATES ×103

[ESTIMATED AREA OF ONE NAND GATE IS 2.08 (μm)2]. THROUGHPUT IS THE # BITS PER CYCLE × SPEED (Mb/s = 106bit/s).

Gbit = 109bit. THE RESULTS FOR THE WG(29, 11) HARDWARE IMPLEMENTATION PROPOSED BY [24] ARE BASED ON

THEORETICAL ANALYSIS. EXP AND RET DENOTE THE DEPTH OF THE EXPRESSION AND RETURN STACKS

TABLE VII

RESULTS OBTAINED FROM FPGA IMPLEMENTATIONS (POSTPLACE AND ROUTE). THROUGHPUT IS THE

# BITS PER CYCLE × SPEED (Mbps = 106bit/second). Gbit = 109bit

The reported results show that the proposed WG takes
longer to finish its initialization phase compared with the
one in [10] (293 ns (ASIC)/1.94 ms (FPGA) in the pro-
posed scheme compared with 152 ns (ASIC)/0.73 ms (FPGA)
in [10]). This is not significant because initialization is exe-
cuted only once per a run. The reported results also show
that the proposed WG is superior to the one in [10] in terms
of throughput, area, and power consumption. The proposed
WG has lower latency, by 36% (ASIC) and 12% (FPGA),
with respect to the one in [10]. In addition, accordingly, the
speed/throughput of the proposed WG is increased by 55%
(ASIC) and 13% (FPGA), compared with [10]. In addition,
notice that the normalized throughput (proposed) is twice the
one in [10]. This is due to the higher throughput and the
significant reduction in area (area reduced by 40% for ASIC
and by 37% for FPGA) of the proposed WG compared with
the one in [10]. In addition, one can see that the proposed WG
consumes less power (39% ASIC, 51% FPGA) and uses less
than half the energy reported for [10].

The WG design in [24] requires 2m ROM bits for a general
WG over G F (2m). The area of the proposed WG is dominated
by its field multipliers, which have space complexity quadratic
in m. Specifically, for the WG(29, 11), 229-bits of ROM are
required in [24] (in addition to 9000 XORs and 319 registers).
There are no results in [24] about the running speed of the
presented WG. According to a similar study on ROM- and

multiplier-based MOWG designs by [25], ROM-based ASIC
implementations are always larger and slower than using field
multipliers, for m > 11.

The proposed MOWG design is expected to offer bet-
ter area and speed compared to the one presented in [25].
The proposed MOWG has eight multipliers compared with
nine in [25]. Therefore, its area is expected to be scaled down
by a ratio close to 8/9 with respect to the one in [25]. It is
noted that the results from [25] are reported for the pipelined-
with-reuse version of the transform. Applying pipeline-with-
reuse techniques to the proposed MOWG would result in speed
and area readings similar to the ones reported in [25]. For the
nonpipelined and the pipelined (without reuse) versions, how-
ever, the proposed MOWG is expected to show lower area and
a slightly higher speed/throughput, and lower latency, com-
pared with the corresponding versions from [25]. This is due to
the removed multiplier and the removed inverters from its criti-
cal path (Fig. 3). Notice that a 6-stage pipeline of the proposed
MOWG offers 6-times the throughput that is reported for its
nonpipelined version in Tables VI and VII (Section V-B).
That is, almost double the throughput provided by the pipeline-
with-reuse MOWG in [25].

The proposed WG offers higher clock speed, and better area
and power consumption, compared with the proposed MOWG.
The proposed MOWG has, however, higher throughput and
better energy per bit. Most important, the WG has more good



1876 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 9, SEPTEMBER 2014

Fig. 9. Serial Implementation of MOWG/WG stream ciphers.

randomness properties than the MOWG cipher [10], [25].
Therefore, when security and randomness are critical for the
application, the proposed WG design is preferred. If instead,
throughput and area are the critical criteria for the application,
then, the proposed WG design is superior for low area appli-
cations, whereas the proposed MOWG serves better for high
speed applications. It is noted that one can apply serialization
or pipelining to the WG/MOWG transforms for achieving
lower area or higher throughput, if it is demanded by the
application. This is discussed in the next section.

B. Discussion

This section discusses the serialization and pipeline
techniques as further optimizations to the proposed WG
and MOWG. In addition, the applicability of the proposed
techniques to general MOWG/WG ciphers, in the NB, are
considered.

For low throughput applications, smaller area can be
achieved by serial computation of the MOWG/WG transforms.
Fig. 9 shows how this is done using one multiplier. In this
figure, the dotted square is used, only, for generating the WG
stream bits. The rest of the diagram is common for MOWG
and WG. The initialization round takes eight cycles for both
transforms. During run phase of the MOWG, 17 output bits
are generated every seven cycles. For the WG, a stream bit is
produced every six cycles. The maximum propagation delay
is equivalent to 17 levels of gate delays. Compared with
38 levels in (29) (WG) and 46 levels in (13) (MOWG), the
clocks of the serial WG and MOWG are 2.2 and 2.7 times
faster, respectively. Therefore, the throughput of the serial
versions of the WG and the MOWG ciphers are almost 2/6
and 3/7 of the corresponding original ones in Figs. 3 and 8,
respectively. The total gate counts for the serial versions of
the transforms are 4155 (WG) and 4011 (MOWG). Compared
with 11053 gates in the WG transform (Section IV-D1) and
14529 gates in the MOWG transform (Section III-D1), then,
the area of the serial versions of the WG/MOWG transforms

are almost 2/5 and 2/7 of their original architectures, respec-
tively. If even lower area is demanded, a digit-level field
multiplier [30], [31] can be deployed, adding more cycles for
each multiplication.

The proposed schemes can achieve higher through-
put through pipelined transforms. The LFSR should be
reconstructed using the Galois-style feedback, or simply by
placing the multiplication with β in between cells Bi+1 and
Bi . Otherwise, the LFSR’s speed will constrain the pipelin-
ing. Fig. 3 shows how to achieve a 6-stage pipeline of the
MOWG transform using 19 29-bit registers. The pipelined
MOWG critical path has seven levels of logic gate delays.
The corresponding throughput and run phase latency are
17/(TA + 6TX ) and 6 (TA + 6TX ), respectively. Because (13)
has 46 levels of logic gate delays, thus, the throughput of
the pipelined MOWG is almost six times higher. Similarly,
Fig. 8 shows a six-stage pipeline of the WG transform. From
this figure, one can find the pipelined WG’s latency and
throughput as 6 (TA + 6TX ) and 1/(TA + 6TX ), respectively
[the latency during initialization is higher, i.e., 8 (TA + 6TX )].
Compared with the throughput that results from (29), this
is almost five times higher. For even higher throughput,
the unfolding technique presented in [32] can be deployed.
Simply, the MOWG/WG LFSR is folded to generate n outputs
(2 ≤ n ≤ 11) per a cycle. Hence, by implementing the same
number of transforms, the throughput will be n-times higher
at the expense of a proportional area increase.

Notice that (7) is a general form of the WG permuta-
tion (for any MOWG(m, l, d)). Because squarings are cyclic
shifts in the NB, then, only the architecture of the power
2k − 1 will vary for different values of k = ⌈m

3

⌉
. Through

having the WGPerm, the MOWG transform is just a proper
selection of d bits from the WGPerm [25]. In addition,
notice that the compliment LFSR in (8) is general for any
G F (2m). Similarly, except for the power 2k − 1, (24) is
general for any WG(m, l). However, (14) is only applicable
to G F (2m) where self-dual NB exist. Therefore, if there
is not self-dual NB [33], the inner product that is used to
compute T r

(
X22k

(
Xr1 ⊕ X2k−1 ⊕ X23k

(
2k−1

)))
in Figs. 5

and 8 should be replaced with a field multiplication followed
by a trace.

It is interesting to investigate the WG implementation in the
PB. It is known that the PB offers area efficient multipliers,
compared with the NB representation. There is, however, a
penalty because of the additional space and propagation delay
introduce by the squaring operations.

VI. CONCLUSION

Two new designs for the MOWG(29, 11, 17) and the
WG(29, 11) ciphers have been proposed. As compared with
the MOWG presented in [25], the proposed MOWG reduces
the number of field multipliers in the transform by one
through signal reuse. In addition, it increases the speed by
eliminating two inverters delay from the critical path. This
is accomplished by reconstructing the KIA and feedback
polynomial of the LFSR. The proposed WG is an opti-
mization of the proposed MOWG with trace (WG version).



EL-RAZOUK et al.: NEW IMPLEMENTATIONS OF THE WG STREAM CIPHER 1877

It is obtained through using the new properties of the trace
function for type-II ONB, accompanied with serialized com-
putation of the initial feedback signal during key initialization
phase.

The proposed designs have been implemented on ASIC
and FPGA. The ASIC implementations show that the pro-
posed WG implementation achieves better results compared
with [10] for area, speed, and power consumption. The WG
improves the power consumption by a 39% reduction, area
by a 40% reduction, and speed by an increase of 55%. Simi-
larly, the FPGA implementations show that the proposed WG
achieves better results for area, speed, and power consumption
compared with [10]. The power consumption is reduced by
51%, the area is reduced by 37%, and the speed is increased
by 13%.

Based on these results, the proposed implementations of
the MOWG(29, 11, 17) cipher and the WG(29, 11) cipher are
promising candidates for high speed and limited resources
platforms, respectively, where throughput, area, and power
consumption are of critical importance and the guaranteed
randomness properties are required.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their
constructive comments and Canadian Microelectronics Corpo-
ration Microsystems for providing the required infrastructure
and CAD tools that have been used in this paper.

REFERENCES

[1] S. Sen Gupta, A. Chattopadhyay, and A. Khalid, “HiPAcc-LTE: An
integrated high performance accelerator for 3GPP LTE stream ciphers,”
in Proc. 12th Int. Conf. Cryptol. India, 2011, pp. 196–215.

[2] S. Gupta, A. Chattopadhyay, K. Sinha, S. Maitra, and B. Sinha, “High-
performance hardware implementation for RC4 stream cipher,” IEEE
Trans. Comput., vol. 62, no. 4, pp. 730–743, Apr. 2013.

[3] Y. Luo, Q. Chai, G. Gong, and X. Lai, “A lightweight stream cipher
WG-7 for RFID encryption and authentication,” in Proc. IEEE Global
Telecommun. Conf., Dec. 2010, pp. 1–6.

[4] Bluetooth Special Interest Group. (2010, Jun.). Adopted Bluetooth
Core Specifications, Core Version 4.0, Kirkland, WA, USA [Online].
Available: https://www.bluetooth.org/

[5] N. Courtois, “Fast algebraic attacks on stream ciphers with linear
feedback,” in Proc. Advances in Cryptology—CRYPTO (Lecture Notes
in Computer Science), vol. 2729. New York, NY, USA: Springer-Verlag,
2003, pp. 176–194.

[6] N. Courtois, “Algebraic attacks on combiners with memory and several
outputs,” in Information Security and Cryptology—ICISC (Lecture Notes
in Computer Science), vol. 3506, C.-S. Park and S. Chee, Eds. New
York, NY, USA: Springer-Verlag, 2005, pp. 3–20.

[7] W. Meier, E. Pasalic, and C. Carlet, “Algebraic attacks and decomposi-
tion of Boolean functions,” in Advances in Cryptology—EUROCRYPT
(Lecture Notes in Computer Science), vol. 3027, C. Cachin and
J. Camenisch, Eds. New York, NY, USA: Springer-Verlag, 2004,
pp. 474–491.

[8] F. Armknecht. (2004). On the Existence of Low-Degree Equations for
Algebraic Attacks [Online]. Available: http://eprint.iacr.org/

[9] (2005). eSTREAM—The ECRYPT Stream Cipher Project [Online].
Available: http://www.ecrypt.eu.org/stream/

[10] Y. Nawaz and G. Gong, “WG: A family of stream ciphers with designed
randomness properties,” Inf. Sci., vol. 178, no. 7, pp. 1903–1916, 2008.

[11] 3GPP TS 33.401 v11.0.1. 3rd Generation Partnership Project; Techni-
cal Specification Group Services and Systems Aspects; 3GPP System
Architecture Evolution (SAE): Security Architecture, 3rd Generation
Partnership Project (3GPP), France, Jun. 2011, [Online]. Available:
http://www.3gpp.org/

[12] 3rd Generation Partnership Project; Long Term Evaluation Release 10
and Beyond (LTE-Advanced); Proposed to ITU at 3GPP TSG RAN
Meeting, 3rd Generation Partnership Project (3GPP), France, 2009,
[Online]. Available: http://www.3gpp.org/.

[13] T. Wu and G. Gong, “The weakness of integrity protection for LTE,” in
Proc. 6th ACM Conf. Security Privacy Wireless Mobile Netw., Apr. 2013,
pp. 79–88.

[14] H. Wu, T. Huang, P. Nguyen, H. Wang, and S. Ling, “Differential attacks
against stream cipher ZUC,” in Advances in Cryptology—ASIACRYPT
(Lecture Notes in Computer Science), vol. 7658, X. Wang and K. Sako,
Eds. Berlin Heidelberg, Germany: Springer-Verlag, 2012, pp. 262–277.

[15] A. Biryukov, D. Priemuth-Schmid, and B. Zhang, “Differential resyn-
chronization attacks on reduced round SNOW 3G⊕,” in e-Business and
Telecommunications (Communications in Computer and Information
Science), vol. 222, M. Obaidat, G. Tsihrintzis, and J. Filipe, Eds. Berlin
Heidelberg, Germany: Springer-Verlag, 2012, pp. 147–157.

[16] J.-S. No, S. Golomb, G. Gong, H.-K. Lee, and P. Gaal, “New binary
pseudo-random sequences of period 2n − 1 with ideal autocorrelation,”
IEEE Trans. Inf. Theory, vol. 44, no. 2, pp. 814–817, Mar. 1998.

[17] G. Gong and A. Youssef, “Cryptographic properties of the Welch-Gong
transformation sequence generators,” IEEE Trans. Inf. Theory, vol. 48,
no. 11, pp. 2837–2846, Nov. 2002.

[18] G. Gong and Y. Nawaz. (2005). The WG Stream Cipher [Online].
Available: http://www.ecrypt.eu.org/stream/wgp2.html

[19] L. Chen and G. Gong, Communication System Security. London, U.K.:
Chapman & Hall, 2012.

[20] H. Wu and B. Preneel, “Resynchronization Attacks on WG and LEX,”
in Fast Software Encryption (Lecture Notes in Computer Science),
vol. 4047, M. Robshaw, Ed. New York, NY, USA: Springer-Verlag,
2006, pp. 422–432.

[21] A. Mirzaei, M. Dakhilalian, and M. Modarres-Hashemi, “An Improved
Attack on WG Stream Cipher,” Int. J. Comput. Sci. Netw. Secu-
rity, vol. 10, no. 4, pp. 45–52, Apr. 2010 [Online]. Available:
http://paper.ijcsns.org/07_book/201004/20100408.pdf

[22] S. Ronjom and T. Helleseth. (2007). Attacking the Filter Genera-
tor Over G F(2m) [Online]. Available: http://www.ecrypt.eu.org/stream/
papersdir/2007/011.pdf

[23] A. Hariri and A. Reyhani-Masoleh, “Digit-level semi-systolic and sys-
tolic structures for the shifted polynomial basis multiplication over
binary extension fields,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 19, no. 11, pp. 2125–2129, Nov. 2011.

[24] E. Krengel, “Fast WG Stream Cipher,” in Proc. IEEE Region 8 Int. Conf.
Comput. Technol. Electr. Electron. Eng., Jul. 2008, pp. 31–35.

[25] C. Lam, M. Aagaard, and G. Gong, “Hardware implementations
of multi-output Welch-Gong ciphers,” Dept. Department of Electr.
Comput. Eng., Univ. Waterloo, Waterloo, ON, Canada, Tech. Rep.
CACR 2011-01, 2009 [Online]. Available: http://cacr.uwaterloo.ca/
techreports/2011/cacr2011-01.pdf

[26] A. Reyhani-Masoleh and M. Hasan, “A new construction of Massey-
Omura parallel multiplier over G F(2m ),” IEEE Trans. Comput., vol. 51,
no. 5, pp. 511–520, May 2002.

[27] D. Johnson, A. Menezes, and S. Vanstone, “The elliptic curve digital
signature algorithm (ECDSA),” Int. J. Inf. Security, vol. 1, no. 1,
pp. 36–63, 2001.

[28] R. C. Mullin, I. M. Onyszchuk, S. A. Vanstone, and R. M. Wilson,
“Optimal normal bases in G F(pn),” Discrete Appl. Math., vol. 22, no. 2,
pp. 149–161, Feb. 1989.

[29] (2011). Xilinx, Inc., Xilinx ISE Design Suite 13.3, San Jose, CA, USA
[Online]. Available: http://www.xilinx.com/

[30] A. Reyhani-Masoleh and M. A. Hasan, “Efficient digit-serial normal
basis multipliers over binary extension fields,” ACM Trans. Embed.
Comput. Syst., vol. 3, no. 3, pp. 575–592, Aug. 2004 [Online]. Available:
http://doi.acm.org/10.1145/1015047.1015053

[31] A. Reyhani-Masoleh and M. Hasan, “Low complexity word-level
sequential normal basis multipliers,” IEEE Trans. Comput., vol. 54,
no. 2, pp. 98–110, Feb. 2005.

[32] C. Cheng and K. Parhi, “High-speed parallel CRC implementation based
on unfolding, pipelining, and retiming,” IEEE Trans. Circuits Syst. II,
Exp. Briefs, vol. 53, no. 10, pp. 1017–1021, Oct. 2006.

[33] D. W. Ash, I. F. Blake, and S. A. Vanstone, “Low complexity normal
bases,” Discrete Appl. Math., vol. 25, no. 3, pp. 191–210, 1989.



1878 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 22, NO. 9, SEPTEMBER 2014

Hayssam El-Razouk received the B.Eng. degree in electrical and computer
engineering from Beirut Arab University, Beirut, Lebanon, in 2002, with the
first rank, and the M.Esc. degree in electrical and computer engineering from
the University of Western Ontario, London, ON, Canada, in 2006.

He was a Software Engineer with RedIron Technologies, London, ON,
Canada, from 2006 to 2011. He is currently pursuing the Ph.D. degree with
the Department of Electrical and Computer Engineering, Western University,
London, ON, Canada.

Arash Reyhani-Masoleh (M’13) received the B.Sc. degree in electrical
and electronic engineering from Iran University of Science and Technology,
Tehran, Iran, in 1989, the M.Sc. degree in electrical and electronic engineering
from the University of Tehran, Tehran, Iran, in 1991, both with the first
rank, and the Ph.D. degree in electrical and computer engineering from the
University of Waterloo, Waterloo, ON, Canada, in 2001.

He was with the Department of Electrical Engineering, Iran University of
Science and Technology, from 1991 to 1997. From June 2001 to September
2004, he was with the Centre for Applied Cryptographic Research, University
of Waterloo, where he was awarded a Natural Sciences and Engineering
Research Council of Canada (NSERC) Post-Doctoral Fellowship in 2002.
In October 2004, he was with the Department of Electrical and Computer
Engineering, University of Western Ontario, London, ON, Canada, where
he is currently a Tenured Associate Professor. His current research interests
include algorithms and VLSI architectures for computations in finite fields,
fault-tolerant computing, and error-control coding.

He has been awarded a NSERC Discovery Accelerator Supplement in
2010. Currently, he serves as an Associate Editor for Integration, the VLSI
Journal (Elsevier). He is a member of the IEEE Computer Society.

Guang Gong received the B.S. degree in mathematics in 1981, the M.S.
degree in applied mathematics in 1985, and the Ph.D. degree in electrical
engineering in 1990, from Universities in China. She received a Post-Doctoral
Fellowship from the Fondazione Ugo Bordoni, Rome, Italy, and spent the
following year there.

She was an Associate Professor with the University of Electrical Science
and Technology of China, Sichuan, China, after returning from Italy. From
1995 to 1998, she was with several internationally recognized, outstanding
coding experts and cryptographers, including Dr. Solomon W. Golomb, at
the University of Southern California, Los Angeles, CA, USA. She was with
the University of Waterloo, Waterloo, ON, Canada, in 1998, as an Associate
Professor in the Department of Electrical and Computer Engineering in
September 2000. She has been a Full Professor, since 2004. She has authored
or co-authored more than 200 technical papers and two books, one co-authored
with Dr. Golomb, entitled “Signal Design for Good Correlation for Wireless
Communication, Cryptography and Radar,” published by Cambridge Press
in 2005, and the other coauthored with Dr. Lidong Chen, “Communication
System Security,” published by CRC 2012. Her current research interests are
in the areas of sequence design, cryptography, and communication security.

Dr. Gong served as Associate Editor for several journals including Asso-
ciate Editor for Sequences for IEEE TRANSACTIONS ON INFORMATION
THEORY, and served on a number of technical program committees and
conferences as co-chairs or committee members. She has received several
awards including the Best Paper Award from the Chinese Institute of Elec-
tronics, in 1984, Outstanding Doctorate Faculty Award of Sichuan Province,
China, in 1991, the Premier’s Research Excellence Award, ON, Canada, in
2001, NSERC Discovery Accelerator Supplement Award, 2009, Canada, and
ON Research Fund - Research Excellence Award, 2010, Canada, Best Paper
Award of IEEE ICC 2012.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


