
New Regular Radix-8 Scheme for Elliptic Curve
Scalar Multiplication without Pre-Computation

Ebrahim A. H. Abdulrahman and Arash Reyhani-Masoleh, Member, IEEE

Abstract—The recent advances inmobile technologies have increased the demand for high performance parallel computing schemes. In
this paper, we present a new algorithm for evaluating elliptic curve scalar multiplication that can be used on any abelian group. We show
that the properties of the proposed algorithm enhance parallelism at both the point arithmetic and the field arithmetic levels. Then,
we employ this algorithm in proposing a new hardware design for the implementation of an elliptic curve scalar multiplication on a prime
extended twisted Edwards curve incorporating eight parallel operations. We further show that in comparison to the other simple side-
channel attack protected schemes over prime fields, the proposed design of the extended twisted Edwards curve is the fastest scalar
multiplication scheme reported in the literature.

Index Terms—Elliptic curve, scalar multiplication, side-channel attack, parallel computing schemes

1 INTRODUCTION

IN 1976, Diffie and Hellman introduced the idea of public
key cryptography (PKC) [1]. PKC is now widely used for

key establishment, digital signature, data encryption, and
other applications. Since then, several public-key cryptosys-
tems have been proposed; the security in these systems is
based on the difficulty of the mathematical problem [2], [3].
Although today commonlyusedPKCalgorithms such asRSA
[4], and ElGamal [5] are believed to be secure, some of their
implementations have been challenged by the quick factoring
and integer discrete logarithm attacks [6]–[8]. Elliptic curve
cryptography (ECC) [9], [10] that canprovide the same level of
security with a shorter key size becomes more attractive in
applications with embedded microprocessors [11]. While the
ECC provides shorter key sizes, the required computational
complexity may still be excessive. By exploiting paralleliza-
tion in the design, a system will be able to reduce the
computation time, and the energy expenditure will be
minimized [12].

ECC algorithms belong to the class of group-based pro-
tocols, whose security is based on the difficulty of the
discrete logarithm problem over a finite group. Using addi-
tive notation, this problem can be described as follows.
Given points and in the group, finding a number such
that is assumed to be not feasible in polynomial time
[13]. The operation of computing the new point, i.e., , is
called the elliptic curve scalar (or point) multiplication
(ECSM) operation, which is the core building block in ECC
[14]. ECSM computes a scalar point by performing
multiple point additions, based on an -bit scalar , where

, and a point that is on an elliptic curve. This
operation is achieved with the execution of iterated point
addition (ADD) and point doubling (DBL), which involve
thefinite-field (ormodular) arithmetic operations over either

() or ().
To efficiently compute the scalar multiplication, there are

threemain approaches. Thefirst approach is to utilize efficient
point arithmetic operation formulas based on a combination
of the underlying finite-field operations. For instance, imple-
menting point halving instead of the DBL operation over
binary fields [15], point tripling over fields of characteristic
three [16], [17], and using composite operations, i.e.,
[18]. The second approach is to use a representation of the
scalar such that the number of point arithmetic operations is
reduced. Nonadjacent form (NAF) [19], radix- NAF (-NAF)
[20], width- NAF (-NAF) [21], [22], [8], and Frobeniusmap
[21], [23] are some techniques based on this approach. The
third approach is to usemore hardware support, i.e., utilizing
memory for pre-computation, and/or parallel operations
[24]–[29], and/or pipelining methods [30], [31]. In this paper,
we combine the first two approaches with the parallel com-
putation in the third approach to yield a very efficient scalar
multiplication scheme. The main contributions of this paper
can be summarized as follows:

We propose an approach to computing the ECSM opera-
tion that is based on processing three bits of the scalar in
the exact same sequence of five point arithmetic opera-
tions, namely, 3 DBLs, and 2 ADDs for all eight different
combinations of 3 bits without using any dummy opera-
tions. The scalar and thepoint in theproposedmethod
are considered to be generic, and no memory lookup-
table for pre-computed points is required.
We analyse the security of our scheme and show that
its security holds against both simple side-channel (or
power analysis) attacks (SSCAs) [32], [33], and safe-error
(or C-safe) fault attacks [34], [35].
Finally, we show how the properties of the proposed
ECSMscheme yields an efficient hardware design for the

• The authors are with the Department of Electrical and Computer
Engineering, Western University, London, Ontario, Canada.
E-mail: {eabdulra, areyhani}@uwo.ca.

Manuscript received 10 Apr. 2013; revised 27 Sep. 2013; accepted 16Oct. 2013.
Date of publication 23 Oct. 2013; date of current version 16 Jan. 2015.
Recommended for acceptance by J. Bruguera.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TC.2013.213

438 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 2, FEBRUARY 2015

0018-9340 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

implementation of a single ECSM on a prime extended
twisted Edwards curve incorporating 8 parallel multi-
plication operations. We show that this design is the
fastest SSCA-protected scalar multiplication scheme
over prime fields reported in the literature including
the fast -coordinates only method of the Montgomery
Ladder on the Montgomery curves [36] for the parallel
environment.

The organization of this paper is as follows. In the next
section, preliminaries related to the SSCA-protected ECSM
schemes are presented. In Section 3, the formula for a new
radix- method for evaluating the scalar multiplication is
introduced. Then, the generalised radix- algorithm is speci-
fied for the radix-8 one. Section 4 is the core of our paper, in
which, a novel ECSM scheme that offers resistance against
both SSCA and safe-error fault attacks is presented. Then, to
illustrate the advantages of the proposed scheme, in Section 5,
we evaluate and analyse the efficiency of the proposed ECSM
scheme and compare it to the other well known ECSM
schemes at the elliptic curve group operations level. Section 6,
explains how a protected scalar multiplication using the
proposed scheme for the prime extended twisted Edwards
model can be performed faster than all the other parallel and
SSCA-protected schemes reported in the literature. Finally,
the conclusion is summarized in Section 7.

2 PRELIMINARIES

The classical method for evaluating is the so-called
Double-and-Add binary method [37]. On average, the com-
putation complexity of theDouble-and-Addbinarymethod is

DBLs, and ADDs [38]. In order to lower the number
of ADDs, the scalar is converted to a signed-representation.
Let each bit of be denoted by , for . Then in
signed-representation becomes . The signed-
representation revises the Double-and-Add binary method
to a new method called the signed-binary (or addition-
subtraction) method [39], [19], [37]. Among the different
signed-representationmethods, the non-adjacent form (NAF)
[14], [19], [20] and the mutual opposite form (MOF) [40] are
the most popular methods. The computation of ECSM in the
signed binary methods is more effective than in the Double-
and-Add binary method. Representing the scalar as NAF or
MOFwould save an average of 1/6 of ADDs in the computa-
tion of [38], [8]. The total run time of the ADD in both the
Double-and-Add binary method and the signed binary
methods depend on the Hamming-weight of the scalar .
Hence, an adversary observing the run time, could determine
the Hamming-weight of the secret .

From a mathematical point of view, ECC is regarded as
being secure. However, real-world hardware implementa-
tions of ECC protocols may introduce leakage, which raises
the issue of other threats that may not be addressed by the
crypto-algorithms, e.g., the elapsed time or the power
consumption that depends on analysing the VLSI imple-
mentation of the crypto-algorithm. Thus, an unsecured
implementation can lead to the exposure of the secret key
by utilizing attack techniques that analyse such informa-
tion. Kocher in [32] reviewed these kinds of attacks and
referred to them as side-channel attacks (SCAs). Of all the
types of SCAs, the SSCAs are the common. In ECC

cryptosystems, SSCA can reveal large features of the algo-
rithm such as identifying the DBL and the ADD operations
being executed in the iterations of the loop [33]. Thus,
ECSM should be implemented using a specific sequence
of point arithmetic operations that does not depend on the
value of a particular scalar bit.

2.1 Notations
In this work, we refer to the elliptic curve group (arithmetic
point) operations as EC-operations. Also, ADD, and DBL
stand for the EC-operations of addition, and doubling,
respectively. Similarly, the EC-operation of subtraction is
denoted by SUB in this paper. Also, the ADDDBL opera-
tion stands for considering both the ADD and the DBL
operations as a single composite operation. In addition,
mADD, and uADD stand for the cost of mixed addition,
and unified addition, respectively. Computing the cost of
field arithmetic operations is represented by capital bold-
faced characters; hence, , , , , and stand for the
computing costs of field Inversion, multiplication, squaring,
addition, and field multiplication by a curve constant,
respectively.

2.2 The SSCA-Protected ECSMs
When both the ADD and the DBL operations are different,
the only way to make an ECSM algorithm SSCA aware is to
use a regular structure scalar multiplication scheme, which
evaluates the point arithmetic operations in a uniform
sequence. The author in [33] has masked the dependency
between the scalar bit and the evaluated point arithmetic
operation by inserting a dummy operation. However, it is
noted in [41] and [42] that it may be easy for the adversaries
to determine which point arithmetic ADDs are the dummy
operations. A method proposed by Möller in [43] performs
the scalar multiplication with a fixed pattern of point
arithmetic DBLs and ADDs, Okeya et al. in [22] have also
proposed a similar window-based method. The Montgomery
Ladder binary method [36], [44]–[46] is especially suitable
for hardware implementation because of the data indepen-
dency of its underlying point arithmetic operations, and the
resistance to SSCA. Fig. 1 shows how Montgomery’s scalar
multiplication method operates at the point arithmetic level.
It can be seen that although there is a conditional statement
at the beginning of each stage, which is represented by
multiplexers, Montgomery’s method is still considered to
be a highly regular method as both the ADD and the DBL

Fig. 1. EC-operations dependency graph for the Montgomery Ladder
ECSM method [44], [45], [46], which shows that only the operands are
transposed.

ABDULRAHMAN AND REYHANI-MASOLEH: NEW REGULAR RADIX-8 SCHEME FOR ELLIPTIC CURVE SCALAR MULTIPLICATION 439

operations are repeatedly evaluated together at each itera-
tion of the main loop. Joye in [47] has also developed a
similar binary scalar multiplication method that eliminates
power analysis information.

In this work, we present a new regular ECSM scheme. We
show that we save 1/3 of the computation of the ADD
operations as compared to the regular binary schemes pre-
sented in [44]–[47]. We also show that at least 40% of the
memory registers are less compared to the secured window-
based schemes shown in [43] and [22]. Further, if
the computational time complexity of 2 ADDs is less than
the computational time complexity of 2 , the
speed of the proposed scheme outperforms those of secured
window-based schemes.

3 PROPOSED RADIX-8 SCALAR
MULTIPLICATION ALGORITHM

Throughout this section, we present a method for evaluating
the scalar multiplication in radix- . We then explain how the
scalar in the radix-8 canbe recoded to a signed-representation
in the range so that the scheme we propose in the next
section can thwart SSCAs.

3.1 High-Radix Scalar Expansion
It is assumed hereafter that the basis has been chosen to
be a power of 2, i.e., , where . Hence, the
computation of requires only repeatedDBLs. Let the scalar
(of length -bits) be partitioned into digits, i.e., ,

and let each digit of be denoted as for . The
scalar with radix- expansion , where

for every , can be presented as

Scalar multiplication can then be computed as

In the following, we let () be an abelian group with an
identity element O, and we let () be an input point
element. Notice that our goal is to compute the scalar multi-
plication point that is also a point in (), i.e.,
(). Let and be two points on the curve, which are
initialized by O and , respectively. We define the point

for any < < .
Comparing (2) and (3), one can see that . By

removing theupper -th term from the summationof (3),weget

Assuming

is another point on the curve that is initialized to , i.e.,
. Substituting this in (4), one can obtain as

Now, we define another recursive point on the curve

In order to ensure the computation regularity for each

specific input , the two recursive points , and have
to be properly obtained by performing either the ADD or the
SUB operations as presented below.

Lemma 1. Consider to be in the range , and
, then can be defined in one of the

following two ways:

and can be obtained as follows

where .

Proof. using (6) and (7), one can easily obtain (8). Changing
to and re-arranging the terms in (7), one can obtain

as

Substituting from (9) into (4), one can obtain as

Substituting from (10) into (7), one can obtain

Substituting from (9) into (11) and using (5),
can be further obtained as

The proof is complete. ◽

3.2 Recoding the Scalar into Signed Radix-8
In order to ensure that our scheme is entirely regular, we need
to skip the digit that is equal to 7 and replace it with -1 with
an increment to the next digit as . Möller in [43] has
described a recoding algorithm for -array exponentiation
where each digit that is equal to zero is replacedwith , and
the next most significant digit is incremented by one. In [48],
the scalar digits are recoded in the set , where each
zero digit is replacedwith and the next digit is decremented
byone. In our case,we replace the value that is equal todigit
7 with (). This representation was discussed by

440 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 2, FEBRUARY 2015

Parhami in [49]. He used this representation in multiplication
schemes that can handle more than one bit of the multiplier
in each cycle. Intuitively, the recoding algorithm replaces the
7 digits by -1 and increments the next more significant digit
to adjust the value. Let the scalar of the length of bits be
given in the radix-8 digit representation, where is in the
range . Algorithm 1 shows the steps to convert (1) for
radix-8, i.e. , to the following non-seven representation

Algorithm 1 Proposed Non-Seven Encoding Method

Input: A digit Radix-8 of the scalar ,

, .

Output: , .

Initialize: ;

Step 1: For to do

Step 1.1: If Then

Step 1.1.1: ;

Step 1.2: Else Leave the digit as it is, i.e.,

Step 2: End For

Step 3: Return ;

In the next subsection, we define a new radix-8 ECSM
algorithm for a -digit of , where , and

, which, as will be shown in Section 4, yields to
a regular ECSM scheme.

3.3 Proposed Radix-8 Algorithm for Scalar
Multiplication

We perform the scalar multiplication with a new right-to-left
radix-8 algorithmusing the non-seven representation of that
is discussed in Section 3.2 and obtained in Algorithm 1. We
notice that the evaluation of the scalar multiplication in the
proposed radix-8 algorithm, is performed utilizing three
EC-points, i.e., , , and without pre-computation.

One can extend Lemma 1 so that one can compute for
any > , and , as follows

Similarly, from the extension of Lemma1, one can compute
for any > , and , as follows

Note that the reason we have split the eight possible
combinations of in (12) into two cases is to have the

with a maximum of one Hamming-weight in one group list.
Similarly, the reason we have split the eight possible combi-
nations of of in (13) into two cases is to have the with a
a maximum of one Hamming-weight in one group list. Based
on (12) and (13), we propose Algorithm 2 in which the scalar
is obtained from the output of Algorithm 1. In Algorithm 2,

it is shown that is computed in each iteration, and the
result of its computation is stored in a register known as

(see Steps 1.1.2, and 1.2.2). Hence, the value of point

is evaluated in advance at the end of iteration .
The evaluation of involves a total of computational
iterations. At each iteration, the sum of the two points
and are always equal to the value of point . The final
result of the is obtained at the last iteration, which is the
content values of the register at the iteration . It is
noteworthy that both Algorithms 1, and 2 are evaluated from
right to left; hence, they can be interleaved resulting in a
significant memory register reduction, because it eliminates
the need to store both the scalar and its recoding.

Algorithm 2 Proposed Signed Radix-8 Scalar Multiplication

Input: Point (), A digit of integer , i.e.,
, .

Output: Point .

Initialize: O, , ;

Step 1: For to do

Step 1.1: If Then

Step 1.1.1: ;

Step 1.1.2: ; Prepare

Step 1.1.3: ;

Step 1.2: Else If Then

Step 1.2.1: ;

Step 1.2.2: ; Prepare

Step 1.2.3: ;

Step 2: End For

Step 3: Return ();

We illustrate Algorithm 2 by showing an example of
computing . Suppose that and has an octal repre-
sentation of , which can be further represented as

,where , using the non-seven recodingmeth-
od that is shown inAlgorithm 1. Table 1 illustrates the process
of computing by exploiting the proposed signed radix-8
scalar multiplication that is shown in Algorithm 2.

As shown in Table 1, the three registers , , and
are initialized to 0, , and , respectively (see the Initialize
step in Algorithm 2). The loop started in Step 1, is executed
times, that is in this example. As
shown in Step 1 in Algorithm 2, the for loop iteration starts
from the least significant octal value of . This is shown in the
third column of Table 1. If the octal digit, i.e., in a column is

, then the operations in Steps from 1.1.1 to

ABDULRAHMAN AND REYHANI-MASOLEH: NEW REGULAR RADIX-8 SCHEME FOR ELLIPTIC CURVE SCALAR MULTIPLICATION 441

1.1.3 are sequentially computed. On the other hand, if
, then the operations in Steps from 1.2.1 to

1.2.3 in Algorithm 2 are sequentially computed. Eventually,
the content of the register, at iteration
(), contains the desired computation of

, i.e., in the rightmost column in Table 1.

4 PROPOSED REGULAR ECSM SCHEME

In this section, we present a uniform addition chain scheme
that is resistant to SSCA and safe-error fault attacks. The
proposed radix-8 ECSM shown in Algorithm 2 is revised to
behave in a highly regularmanner; so that for any digit, the
computational cycle of the addition chain loop is evaluated
using the same sequence of EC-operations.

4.1 The Four-Stage Levels
In the following, it is assumed that a temporary register
is provided as part of the processor. It is also assumed that
both EC-operations ADD and SUB are indistinguishable
under SSCA attacks [50]–[52]. The latter assumption can be
justified as follows. The cost of negation operation in (),
i.e., mapping , can be carried out by one non-modular
subtraction (which has about half the cost of a modular
addition/subtraction). Considering the extended twisted
Edwards curve as an example, one can see from [25] that the
cost of . Based on the experimental ratio of

the cost of a modular addition by the one of a modulo
multiplication, i.e., on the smart cards that is provided
in [53], the average ratio is . Then, one can obtain
the cost of ADD in term of as . The cost of SUB
for this curve that is equal to the cost of ADD and the cost of
modular negation operation, i.e., SUB . We
conclude that the ratio of cost of the point ADD to the cost
of point SUB becomes .

Proposition 1. For any value of , Algorithm 2 would be
evaluated in 4 stages as

Proof. Table 2 provides the evaluation sequence for each
case of values separately. Also in Figs. 2(a)–(c) it is shown
how Algorithm 2 is evaluated at the EC-operations level
for each case of . We provide here a detailed analysis of
the main two cases, i.e., when , and . Given
that , the operations in Step 1.1 in Algorithm 2 are
processed. In Step 1.1.1, the evaluation of requires
processing ; hence, the SUBoperation that is very
similar to the ADD operation is processed. So by shifting
the evaluation of this operation, i.e., to

TABLE 1
An Example of the Computation for Using the Proposed Signed Radix-8 Scalar Multiplication

TABLE 2
The 4 Stages of the Processes that Algorithm 2 Evaluates for Each Value of

The SUB operation can be easily obtained using the ADD operation.

442 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 2, FEBRUARY 2015

Stage 3 (see Fig. 2(c)), the three Steps: 1.1.1-1.1.3 are
evaluated in 4 stages as follows:

Given that , the operations in Step 1.1 in
Algorithm 2 are processed. In Step 1.1.1, the evaluation
of requires no processing. However, in order to keep
the scheme consistent with the other cases, i.e., highly
regular, we re-evaluate by performing the following
operation since the sum of the two points

and are always preserved and are equal to the value
of the point . Notice that this operation affects the
evaluation of , and, hence, it cannot be considered to be
a dummy operation. Then the three Steps: 1.1.1 to 1.1.3 are
evaluated in 4 stages as follows:

◽

Fig. 2(d), shows the EC-operation dependency for all eight
of the different combinations of . An intriguing feature of
this scheme is that for all cases of , the same steps are
performed, i.e., only the operands are transposed. Thismeans
that the cost per 3 bits is fixed at . It is worth
mentioning here that in order to evaluate Steps 1.1.2 or 1.2.2 of
Algorithm 2, 3 repeated DBL operations are necessary. Also,
in (14), at stage 3 both the ADD/SUB and the DBL operations
are evaluated in parallel (see Stage 3 in Fig. 2(a)–(d)).

4.2 The Three-Stage Levels
Based on Proposition 1, the proposed Algorithm 2 can be
evaluated in a unified sequence of four stages. Analysing
the generalised schedule scheme shown in Fig. 2(d), for the
eight cases of values, one can see that the DBL operation
evaluated for all cases at Stage 1 has no operation depen-
dency with the SUB operation being evaluated at Stage 4.
Since there is no operation dependency between the two
EC-operations, the SUB operation that is evaluated at Stage 4
can be rearranged to be performed at Stage 1 of the next
iteration. Therefore, the SUB operation of the previous iter-
ation and the first DBL operation of the current iteration
can be evaluated in parallel. The sequence order of the EC-
operations is then adjusted as shown in Fig. 3(c); hence, a
total of 3 stages would be used at each iteration. In this case,
the proper initialization of the registers has to be considered,
i.e., initially, , and based on the value of either

Fig. 2. EC-operation dependency graph that shows the usage of both the ADDand theDBLblocks. (a)When or 4. (b)When or 5. (c)When
, 0, 1, or 6. (d) For all cases of , i.e., . Notice that the SUB operation is used at stage 3 for both cases and .

ABDULRAHMAN AND REYHANI-MASOLEH: NEW REGULAR RADIX-8 SCHEME FOR ELLIPTIC CURVE SCALAR MULTIPLICATION 443

, or . We also note that the tempo-
rary register can be omitted in the proposed scheme
shown in Fig. 3(c). Let us consider the following two possible
scenarios:

1) The first scenario involves the serial implementation
design of Fig. 3(c), i.e., one ADD and one DBL are
implemented in parallel. In this case, it takes 3 clock
cycles to complete one iteration of the for loop in Algo-
rithm 2, i.e., processing 3 scalar bits. As one can see from
Fig. 3(c), only one DBL operation is required to be
executed at clock cycle 2. Then, during the clock cycle
2, the additional temporary registers used to compute
the ADD operation become idle and it becomes possible
to reuse them to store the contents of .

2) The second scenario, which is considered in this paper,
involves a parallel implementation design of Fig. 3(c), i.
e., a total of twoADDs and threeDBLs are implemented.
In this case, three bits of the scalar (one digit of) are
processed at every clock cycle, and the contents of
will be no longer needed to be stored. Furthermore, for
hardware resource efficiency in this scenario, a single
register can be shared between the two points , and

. The strategy is to store one point in the register, and
to obtain the result of the second point at the end of the
ADD operation at the end of Stage 1 in every iteration
(see Fig. 3(c)).

Since all the cases use the same set of EC-operations,
ADDandDBLdonot have to be indistinguishable.Also, as no
dummy operations are introduced, the risk posed by the
adaptive fault analysis is minimal [35].

5 PERFORMANCE ANALYSIS OF THE PROPOSED
ECSM SCHEME

As shown in Fig. 3(c), the power consumption of the proposed
scalar multiplication scheme is fixed. This indicates that the
proposed scheme is intrinsically protected against SSCA
because every iteration in the main loop involves 3 DBLs and
2ADDs. Furthermore, since nodummyoperation is used, any
fault introduced into any operation will result in an incorrect
scalar multiplication result, which makes it resistant to safe-
error fault attacks.

In the following, we evaluate and analyse the efficiency of
the proposed ECSM scheme (Fig. 3(c)) and compare it to the
other well known ECSM schemes at the EC-operations level.
To compare fairly, the proposed scheme evaluates 3 bits of the
scalar, and, hence, the comparisons are made corresponding
to the 3 bits of the scalar . First, we compare it to two well-
known binary methods: the Double-and-Add [37], and the
signed binary methods [14], [19], [39], [40]. Second, we com-
pare it to the non-secure width-4 [21], and the non-secure
radix-8 NAF schemes [20]. Third, we compare it to the SSCA
aware width-4 window-based methods, i.e., the width-4
Möller [43], and the width-4 Okeya windows schemes (Fig.
3(a)) [22]. Fourth, we compare it to the SSCA aware binary
methods: the Montgomery Ladder [44]–[46], and Joye’s bina-
rymethods (Fig. 3(b)) [47]. In our analysis, we assume that the
recoding is secure against SSCA, and has a negligible compu-
tational cost.

Table 3 summarizes the comparison of the different ECSM
schemes. In this table, the memory consumption is the sum of

Fig. 3. EC-operations dependency graphs for the SSCAsecuredmethods that show the totalmemory points required, the total EC-operations costs per
3 scalar bits, and the total computational time complexity per 3 scalar bits at the EC-operations level: (a) For width-4 Okeya method [22]. (b) For the
Montgomery Ladder and Joye’s binary methods [44], [47]. (c) The proposed radix-8 ESCM method.

444 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 2, FEBRUARY 2015

the look-up table and the registers required during the evalu-
ation stage. We note that in order to compute the ECSM in a
non-securewidth- NAF, a total of pre-computation
points including base point is required. The width- of the
Möller method is based on () pre-computation look-
up tables and, hence, for , the total memory consump-
tion in this ECSM scheme is 5 pre-computation points and 1
for the evaluation stage. Also, the SSCA aware width- NAF
method presented by Okeya and Takagi in [22], has more
recoding overhead; but, as shown in Table 3, it has 1 memory
reduction in the size of the look-up table as compared to the
width-4 Möller method in [43]. Hence, a total of 5 memory
registers including the register for the evaluation stage are
required (see Fig. 3(a)). It can be seen from this table that the
secure width-4 window-based ECSM methods requires the
highest amount of memory, and that it used at least 40% of
the memory registers more compared to the proposed ECSM
scheme shown in Fig. 3(c).

The Double-and-Add, signed binary, Radix-8 NAF, and
width-4 NAF methods are prone to SSCA. In order to with-
stand SSCAs, the methods should either use the unified
operationapproach (cf., [25]) or theatomicityprinciple (cf. [30]
and [24]). The first approach uses an indistinguishable addi-
tion, i.e., a uADD that is when the formulas used for both the
ADDand theDBLare the same; however, the implementation
of such a formula for differentmodels of elliptic curveswould
suffer from huge area complexity. The atomic structure
approach is usually implemented with DBLs and a Jacobian
projective-affinemADDoperation. It should be noted that the
atomic structure schemes are only provided to a few projec-
tive coordinates, that is, they are not generalized to all of the
elliptic curve models. Further, the architecture design in the
atomic schemes is very restricted; hence, the architecture
design is restricted to performing a specific number of

arithmetic multiplication and squaring operations per each
clock cycle.

The SSCA aware binary methods, i.e., the Montgomery
Ladder, and Joye’s binary methods, require a total of

for every 3 bits of the scalar . The pro-
posed scheme requires a total of for every
3 bits of the scalar . This indicates that 1/3 of the computation
of the ADD operations in the proposed ECSM scheme
shown in Fig. 3(c) decreases when compared to the
SSCA-protected binary methods. It is noted that in those
SSCA aware binary methods, the computation of the scalar
multiplication can be enhanced at the arithmetic field level.
For instance, in the Montgomery Ladder method on the
Montgomery curve, only the -coordinates of the EC-points
are computed in the EC-operations. As will be shown in
Section 6, utilizing the proposed ECSM scheme in a parallel
environment, one can gain a significant performance im-
provement that yields a faster performance time than do the
optimized binary ECSM schemes.

The secure width-4 window-basedmethods require a total
of . Assuming that their pre-computed
points are kept in affine coordinates. However, as seen in
Fig. 3(a)–(c), in terms of computational time complexity, the
proposed method along with all other binary methods reveal
themselves to bemore efficient by observing that in each stage
both EC-operations, DBL and ADD, are independent and can
be evaluated in parallel. Whereas, the non-secure window-
based and secure window-based methods are performed
sequentially.Hence, their computational complexity becomes
3.67, and 4EC-operations, respectively. In order tomake these
window-based methods, which involve pre-computations
with the base point , feasible for implementations support-
ing parallel processing of EC-operations, i.e., their compu-
tational time complexity becomes 3 EC-operations, all the

TABLE 3
Comparison of Related Binary, and Width-4 Window-Based ECSM Schemes with the Proposed Radix-8 Scheme (Fig. 3(c))

in Terms of Memory Register Space Used, Total EC-Operations Cost, and Computation Time Complexity at the
EC-Operations Level Per 3 Scalar Bits Evaluations

Note that the terms Av. and Fix stand for the average and fix measurements of the computation complexity.
Utilizing the atomicity principle, on average, the computation complexity is 3 mADDs.

pre-computation points, where , and another EC-point is used in the evaluation process.
Utilizing the atomicity principle, on average, the computation complexity is 3 mADDs.

pre-computation points, where , and another EC-point is used in the evaluation process.
pre-computation points, where , and another EC-point is used in the evaluation process.

If only the -coordinatesof theEC-points are computed, then the initial (base) EC-point, i.e., will be reservedandused to obtain theADDoperation
and the -coordinate from the -coordinates. Hence, total memory points would become 3.
If one ADD and one DBL are implemented in parallel to design Fig. 3(c), then the total of the registers would become 3.

ABDULRAHMAN AND REYHANI-MASOLEH: NEW REGULAR RADIX-8 SCHEME FOR ELLIPTIC CURVE SCALAR MULTIPLICATION 445

pre-computed points need to be doubled times at each
iteration [54].

We apply the proposed ECSM scheme to two well-known
Weierstraß elliptic curve models. Table 4 reports the total field
arithmetic operations for computing the scalar multiplication
using Double-and-Add, signed binary, and non-secure width-
4NAFalgorithmswithunified addition-or-doubling formulas.
A comparison of the proposed ECSM scheme, i.e., Fig. 3(c),
with the other secured ECSMmethods is also provided in this
table. From Table 4, one can see that the secured width-4
methods require less amount of field arithmetic operations. It
must be noted however, that the secured width-4 methods
impose additional memory registers for the pre-computed
points.

In the following section, we take advantage of the ECSM
scheme we proposed, i.e., Fig. 3(c), with the objective of
deriving faster ECC formulae for parallel architectures. For
the comparison with other parallel environment systems, we
decided to choose the prime extended twisted Edwards
coordinates for the curves defined over ().

6 PARALLEL ARCHITECTURES

In this section, we explain how a protected scalar multiplica-
tion using the proposed scheme for the prime extended
twisted Edwards model can be performed faster than all of
the parallel and SSCA-protected schemes over prime fields
reported in the literature including the fast Montgomery
Ladder method on the Montgomery curve.

The objective of using the proposed scheme, i.e., Fig. 3(c), is
to achieve the fastest scalar multiplication result. Note for
simplicity purpose, the required auxiliaries (or registers) in

the ECSM schemes are not discussed or analysed. Also in the
parallelization process, we impose the restriction that the
architectures can only be based on SIMD (single instruction
multiple data) operations.

The total field arithmetic operations cost of the Montgom-
ery curve is the least among the existing elliptic curve models
over prime fields [55]. We recall [44], that an elliptic curve
produced by a Montgomery equation is of the form

E

where , () with () . Let ,
and , be two arbitrary points on this curve, and

be another point that is equal to the
difference between the two points, i.e., .
Assuming that , then the coordinates of the point

are given as follows [44]

and the coordinates of the doubling formulae, i.e.,
are given in [44] by

A , Montgomery Ladder ADDDBL
algorithm is given in [55], and a parallel algorithm for the

TABLE 4
Comparison of the ProposedRadix-8 Scheme (Fig. 3(c)) with the UnifiedOperation Technique andwith Different ECSMSchemes that
AreResist Against SideChannel Attacks in Term of Total Field Arithmetic Operations Per 3 Scalar Bits on theWeierstraß Elliptic Curve

We follow most of the literature in ignoring the cost of .
It is assumed that .
It is assumed that .
Additional computation of , where is the total pre-computation points in lookup table, is required for the transformation of points to
the affine coordinate in the pre-computation stage, i.e., preparing the points in lookup table.

446 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 2, FEBRUARY 2015

MontgomeryLadder is given in [25] at an effective time cost of
using 4-processors. As a point of comparison,

in Fig. 4, we derived the fastest timings for the Montgomery
Ladder’s ADDDBL operation in the parallel strategies. In our

scheme, we assumed that the two operations performed in
Step 2 in Fig. 4 are carried out as operations. Then, all of the
four operations executed in Step 2 are performed at the same
time with a delay of . We note that the two operations

TABLE 5
Comparison of the Proposed Radix-8 ECSM Scheme (Fig. 3(c)) with Different Scalar Multiplication Schemes that Offers Resistance

Against Side-Channel Attacks Using Parallel Environments with Respect to the Computation Time Complexity

Processors are based on the number of parallel field multipliers . The effects of the number of auxiliaries (or registers) to the area is not discussed
here.
We follow most of the literature in ignoring the cost of . The experimental ratio on the smart cards is provided in [53].
A sequence of 3 DBLs, i.e., followed by the mADD, i.e., ().
A sequence of 3 parallel computing of [ADD & DBL], i.e., .
A sequence of 3 DBLs, i.e., followed by the mADD, i.e., .
A sequence of 3 DBLs, i.e., followed by the mADD, i.e., .
A sequence of 3 DBLs, i.e., followed by the ADD, i.e., .
Each point is represented by sextuplet coordinates. An average of 3 mADDs, i.e., .
Each point is represented by the sextuplet coordinates. A sequence of 3 DBLs, i.e., followed by the mADD, i.e., .
Each point is represented by the sextuplet coordinates. A sequence of 2 special DBLs, i.e., 2() followed by a generalized DBL, i.e.,
followed by the mADD, i.e., .
Each point is represented by the quadruple coordinates. A sequence of 3.67 uDBLs, i.e., .
Each point is represented by the quadruple coordinates. A sequence of 3.67 uDBLs, i.e., . Stated in [59] that it is the fastest known
approach to performing elliptic curve point operations.
Each point is represented by the quadruple coordinates. A sequence of 3 DBLs, i.e., followed by the ADD, i.e., .
Each point is represented by the quadruple coordinates. A sequenceof ADDDBL,DBL, andADDDBL. As shown in Fig. 5, theADDDBLoperation can
be performed at an effective cost of , and from [25], the DBL operation can be performed at an effective cost of .

Fig. 4. Data dependency graph for parallel computing of the ADDDBL operation for the -coordinates only Montgomery Ladder method on the
Montgomery curve.

ABDULRAHMAN AND REYHANI-MASOLEH: NEW REGULAR RADIX-8 SCHEME FOR ELLIPTIC CURVE SCALAR MULTIPLICATION 447

performed in Step 4 are carried out by dedicated squaring.
From this figure, one can see that the ADDDBL operation for
the Montgomery Ladder can be performed with an effective
time of for each bit of the scalar. It is
worth noting that dependencies restrict us from achieving
further reductionswithmore processes. Consequently, for the
Montgomery Ladder algorithm, the computation time com-
plexity per each of the 3 bits of the scalar as shown in Table 5 is

.
We now investigate the 8-processor implementation

of the ADDDBL operation for the prime extended
twisted Edwards curve. The twisted Edwards curve is a
generalization of the Edwards curve [56] and has the
equation [58]

E

where , (), with . To develop a faster
way of performing the DBL and the ADD operations, in
[25], an additional auxiliary coordinate was added to the
twisted Edwards coordinates. It is observed in [25] that
the extended twisted Edwards curves are represented
by the quadruple coordinates, and for the special case

, the DBL and the ADD operations can be performed
at a computation cost of , and
operations, respectively, assuming that the field arithmetic
addition and subtraction are equal [25].

Let , and , be two dis-
tinct points on E , where E denotes the extended twisted
Edwards coordinates, with and , then the co-
ordinates of thepoint are given as
follows [25]

and the coordinates of the doubling formulae, i.e.,
are given in [25] by

It was shown in [25], that both the ADD and the DBL
operations can be performed utilizing 4-processors with an
effective time of , respectively. We
propose a composite ADDDBL operation for this curve by
splitting the computational task of both theADDand theDBL
operations into 5 steps with the utilization of 8-processors.
The data dependency graph of both (15) and (16) is presented
in Fig. 5, which shows that combining these two equations
requires a computation cost of (1 field
addition operation is saved). According to this figure, the
effective time can be reduced to operations with 8
processes. As shown in Fig. 5, theADDDBL operation scheme

consists of eight independent processing elements, i.e., pro-
cess 1 to process 8. A finite-field arithmetic operation is
represented by a circle and it is labelled according to the type
of action it performs. In our scheme, we assumed that the
operations performed in Step 2 are carried out as opera-
tions. The interconnections among the eight processing ele-
ments are needed because of the data dependency in the
operation in each processing element. For instance, when
arriving at Step 2, process 5 needs the output data generated
by process 4 in Step 1. Thus, an interconnection between
process 4 and process 5 is needed to support such data
dependency. Similarly, other necessary interconnections
should also be obtained. From this figure, and the effective
time cost of DBL operation for the prime extended twisted
Edwards curve that is obtained from [25], we conclude that
one round of computing 3 bits of the scalar in the proposed
scheme (Fig. 3(c)), which requires a sequence of ADDDBL,
DBL, and ADDDBL, can be completed in an effective time of

. Table 5 shows the computation time com-
plexity of the different scalarmultiplication schemes that offer
resistance against side-channel attacks in the parallel
environments.

In general, for an -bit scalar multiplication, the Mon-
tgomery Ladder method shown in Fig. 4 requires

, whereas the extended twisted Edwards
curve in the proposed ECSM method requires .
Table 6 shows the comparison of the 4-processor scheme
for the Jacobian projective coordinates presented in [24], the
4-processor scheme for the extended twisted Edwards curve
presented in [25], the 4-processor Montgomery Ladder
method on the Montgomery curve that is obtained from
[25], the 4-processor Montgomery Ladder method on the

Fig. 5. Data dependency graph for parallel computing of the proposed
ADDDBL operation for the prime extended twisted Edwards curve.

448 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 2, FEBRUARY 2015

Montgomery curve that is shown in Fig. 4, and the 8-proces-
sor scheme for the extended twisted Edwards curve that
is shown in Fig. 5 in terms of the computational time
complexities for the prime fields that are recommended
by NIST.

7 CONCLUSION

In this paper, a new radix-8 scalar multiplication scheme is
introduced that can be used for any elliptic curve model. It
allows one to compute each of the three bits of the scalar with
five point arithmetic operations in a unified sequence. We
showed that the properties of the proposed scheme enhance
parallelism at both the point arithmetic, and the field arith-
metic levels. Further, it implicitly provides resistance against
certain implementation attacks.

We applied the proposed scheme to the prime extended
twisted Edwards curves for the computation of a scalar
multiplication in an 8-processor environment. We then
provided the performance estimates and presented the
comparisons between the proposed scheme and the other
known parallel schemes. We further showed that to the
best of the authors’ knowledge, the 8-processor scheme
provided in this work is the fastest SSCA protected
scalar multiplication scheme over prime fields in the
parallel environment. The proposed 8-processor scheme
provided in this work can be applied to all of the parallel
hardware implementations and also to parallel software

environments such as a Cell multiprocessor [61], and
ePUMA [12].

REFERENCES

[1] W. Diffie and M. E. Hellman, “New directions in cryptography,”
IEEE Trans. Inf. Theory, vol. 22, no. 6, pp. 644–654,
Nov. 1976.

[2] M. Abdelguerfi, B. S. Kaliski, Jr., and W. Patterson, “Public-Key
security systems,” IEEE Micro, vol. 16, no. 3, pp. 10–13, Jun. 1996.

[3] L. Batina, S. B. Örs, B. Preneel, and J. Vandewalle, “Hardware
architectures for public key cryptography,” Integr. VLSI J., vol. 34,
no. 1, pp. 1–64, May 2003.

[4] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining
digital signatures and public-key cryptosystems,” Commun. ACM,
vol. 21, no. 2, pp. 120–126, Feb. 1978.

[5] T. Elgamal, “A public key cryptosystem and a signature scheme
based on discrete logarithms,” IEEE Trans. Inf. Theory,
vol. 31, no. 4, pp. 469–472, Jul. 1985.

[6] D. Boneh, “Twenty years of attacks on the RSA cryptosystem,”
Notices Amer. Math. Soc., vol. 46, no. 2, pp. 203–213, Feb. 1999.

[7] Y. Y. Song, Cryptanalytic Attacks on RSA. New York, NY: Springer-
Verlag, 2008.

[8] D. R. Hankerson, A. J. Menezes, and S. A. Vanstone,Guide to Elliptic
Curve Cryptography. New York, NY: Springer-Verlag, 2004.

[9] V. S. Miller, “Use of elliptic curves in cryptography,” in Proc. Adv.
Cryptology (CRYPTO’85), Aug. 1985, pp. 417–426.

[10] N. Koblitz, “Elliptic curve cryptosystems,” Math. Comput.,
vol. 48, no. 177, pp. 203–209, Jan. 1987.

[11] A. K. Lenstra andE. R. Verheul, “Selecting cryptographic key sizes,”
J. Cryptology, vol. 14, no. 4, pp. 255–293, Aug. 2001.

[12] J. Tolunay, “Parallel gaming related algorithms for an embedded
media processor,” Master’s thesis, Linköping Univ., Linköping,
Sweden, 2012.

TABLE 6
Comparison ofRelatedParallel Schemeswith theProposed8-ProcessorScheme for theExtendedTwistedEdwardsCurveoverPrime
Fields, Which Is Shown in Fig. 5, with Respect to the Computational Time Complexities for the Bit Lengths of the Underlying Fields of

NIST Recommended Curves [60]

ABDULRAHMAN AND REYHANI-MASOLEH: NEW REGULAR RADIX-8 SCHEME FOR ELLIPTIC CURVE SCALAR MULTIPLICATION 449

[13] A. J. Menezes, I. F. Blake, X. Gao, R. C. Mullin, S. A. Vanstone, and
T. Yaghoobian, Applications of Finite Fields. Boston, MA: Kluwer,
1993.

[14] IEE Standard Specifications for Password-Based Public-Key
Cryptographic Techniques, IEEE Std. 13632–2008, Jan. 2009.

[15] E. W. Knudsen, “Elliptic scalar multiplication using point halving,”
inProc. Int. Conf. TheoryAppl. Cryptology Inf. Security:Adv.Cryptology
(ASIACRYPT’99), Nov. 1999, pp. 135–149.

[16] V. Dimitrov, L. Imbert, and P. K.Mishra, “Efficient and secure elliptic
curve point multiplication using double-base chains,” in Proc. Int.
Conf. Theory Appl. Cryptology Inf. Security: Adv. Cryptology (ASIA-
CRYPT’05), Dec. 2005, pp. 59–78.

[17] M. Ciet, M. Joye, K. Lauter, and P. L. Montgomery, “Trading
inversions for multiplications in elliptic curve cryptography,” Des.
Codes Cryptography, vol. 39, no. 2, pp. 189–206, May 2006.

[18] P. Longa andA.Miri, “New composite operations and precomputa-
tion scheme for elliptic curve cryptosystems over prime fields,” in
Proc. Int. Workshop Practice Theory Public-Key Cryptography (PKC’08),
Mar. 2008, pp. 229–247.

[19] G. W. Reitwiesner, “Binary arithmetic,” in Advances in Computers,
vol. 1. NewYork,NY:Academic Education Press, 1960, pp. 231–308.

[20] S. Arno and F. S. Wheeler, “Signed digit representations of minimal
hammingweight,” IEEE Trans. Comput., vol. 42, no. 8, pp. 1007–1010,
Aug. 1993.

[21] J. A. Solinas, “Efficient arithmetic on Koblitz curves,” in Des. Codes
Cryptography, vol. 19, no. 2–3, pp. 195–249, Mar. 2000.

[22] K. Okeya and T. Takagi, “The width- NAFmethod provides small
memory and fast elliptic scalar multiplications secure against side
channel attacks,” in Proc. Cryptographers Track RSA Conf.: Topics
Cryptology (CT-RSA’03), Apr. 2003, pp. 328–343.

[23] N. Koblitz, “CM-Curves with good cryptographic properties,” in
Proc. Adv. Cryptology (CRYPTO’91), Aug. 1991, pp. 279–287.

[24] P. Longa and A. Miri, “Fast and flexible elliptic curve point
arithmetic over prime fields,” IEEE Trans. Comput., vol. 57,
no. 3, pp. 289–302, Mar. 2008.

[25] H. Hisil, K. K.-H. Wong, G. Carter, and E. Dawson, “Twisted
Edwards curves revisited,” in Proc. Int. Conf. Theory Appl. Cryp-
tology Inf. Security: Adv. Cryptology (ASIACRYPT‘08), Dec. 2008,
pp. 326–343.

[26] T. Izu and T. Takagi, “Fast elliptic curve multiplications with SIMD
operations,” inProc. Int. Conf.: Inf. Commun. Security (ICICS’02), Dec.
2002, pp. 217–230.

[27] W. Fischer, C. Giraud, E. W. Knudsen, and J.-P. Seifert, Parallel
scalar multiplication on general elliptic curves over F hedged
against non-differential side-channel attacks, IACR, Cryptology
ePrint Archive, 2002/007 [Online]. Available: http://eprint.iacr.
org/2002/007.

[28] K. Aoki, F. Hoshino, T. Kobayashi, and H. Oguro, “Elliptic curve
arithmetic using SIMD,” in Proc. Int. Conf.: Inf. Security (ISC’01),
Oct. 2001, pp. 235–247.

[29] N. P. Smart, “The Hessian form of an elliptic curve,” in Proc. Int.
Workshop Cryptographic Hardware Embedded Syst. (CHES’01),
May 2001, pp. 118–125.

[30] P. K. Mishra, “Pipelined computation of scalar multiplication in
elliptic curve cryptosystems (extended version),” IEEE Trans. Com-
put., vol. 55, no. 8, pp. 1000–1010, Aug. 2006.

[31] R. Azarderakhsh and A. Reyhani-Masoleh, “Efficient FPGA imple-
mentations of point multiplication on binary Edwards and general-
izedHessian curves usingGaussian normal basis,” IEEETrans. VLSI
Syst., vol. 20, no. 8, pp. 1453–1466, Aug. 2012.

[32] P. C. Kocher, “Timing attacks on implementations of Diffie-Hell-
man, RSA, DSS, and other systems,” in Proc. Int. Cryptology Conf.:
Adv. Cryptology (CRYPTO’96), Aug. 1996, pp. 104–113.

[33] J.-S. Coron, “Resistance against differential power analysis for
elliptic curve cryptosystems,” in Proc. Int. Workshop Cryptographic
Hardware Embedded Syst. (CHES’99), Aug. 1999, pp. 292–302.

[34] S.-M. Yen andM. Joye, “Checking before outputmay not be enough
against fault-based cryptanalysis,” IEEE Trans. Comput., vol. 49,
no. 9, pp. 967–970, Sep. 2000.

[35] R.Avanzi. (2005). Side channel attacks on implementations of curve-
based cryptographic primitives, IACR, Cryptology ePrint Archive,
2005/017 [Online]. Available: http://eprint.iacr.org/2005/017/.

[36] J. López and R. Dahab, “Fast multiplication on elliptic curves
over () without precomputation,” in Proc. Int. Workshop
Cryptographic Hardware Embedded Syst. (CHES’99), Aug. 1999,
pp. 316–327.

[37] D. E. Knuth, The Art of Computer Programming: Seminumerical
Algorithms, vol. 2, 1st ed. Reading, MA: AddisonWesley, May 1969.

[38] I. F. Blake, G. Seroussi, and N. P. Smart, Elliptic Curves in Cryptogra-
phy. Cambridge, MA: Cambridge Univ. Press, Jul. 1999.

[39] A. D. Booth, “A signed binary multiplication technique,” Q. J.
Mech. Appl. Math., vol. 4, no. 2, pp. 236–240, Aug. 1951.

[40] K. Okeya, K. Schmidt-Samoa, C. Spahn, and T. Takagi, “Signed
binary representations revisited,” in Proc. Int. Cryptology Conf.:
Adv. Cryptology (CRYPTO’04), Aug. 2004, pp. 123–139.

[41] Y. Sung-Ming, S. Kim, S. Lim, and S. Moon, “A countermeasure
against one physical cryptanalysis may benefit another attack,” in
Proc. Int. Conf.: Inf. Security Cryptology (ICISC’01), Dec. 2001,
pp. 414–427.

[42] C. Clavier and M. Joye, “Universal exponentiation algorithm:
A first step towards provable SPA-resistance,” in Proc. Int. Workshop
Cryptographic Hardware Embedded Syst. (CHES’01), May 2001,
pp. 300–308.

[43] B. Möller, “Securing elliptic curve point multiplication against side-
channel attacks,” in Proc. Int. Conf.: Inf. Security (ISC’01), Oct. 2001,
pp. 324–334.

[44] P. L. Montgomery, “Speeding the Pollard and elliptic curve
methods of factorization,” Math. Comput., vol. 48, no. 177,
pp. 243–264, Jan. 1987.

[45] K. Okeya, H. Kurumatani, and K. Sakurai, “Elliptic curves with the
montgomery-form and their cryptographic applications,” in Proc.
Int. Workshop Practice Theory Public Key Cryptosystems (PKC’00), Jan.
2000, pp. 238–257.

[46] M. Joye andS.-M.Yen, “Themontgomerypowering ladder,” inProc.
Int. Workshop Cryptographic Hardware Embedded Syst. (CHES’02),
Aug. 2002, pp. 291–302.

[47] M. Joye, “Highly regular right-to-left algorithms for scalar
multiplication,” in Proc. Int. Workshop Cryptographic Hardware
Embedded Syst. (CHES’07), Sep. 2007, pp. 135–147.

[48] C. Vuillaume and K. Okeya, “Flexible exponentiation with
resistance to side channel attacks,” in Proc. Int. Conf.: Appl. Cryp-
tography Netw. Security (ACNS’06), Jun. 2006, pp. 268–283.

[49] B. Parhami, Computer Arithmetic Algorithms and Hardware Designs,
2nd ed. London, U.K.: Oxford Univ. Press, 2000.

[50] A. Kargl and G. Wiesend, “On randomized addition-subtraction
chains to counteract differential power attacks,” in Proc. Int. Conf.:
Inf. Commun. Security (ICICS’04), Oct. 2004, pp. 278–290.

[51] N. Thériault, “SPA resistant left-to-right integer recordings,”
in Proc. Int. Workshop: Select. Areas Cryptography (SAC’05),
Aug. 2005, pp. 345–358.

[52] D.-G. Han and T. Takagi. (2005). Some analysis of radix- repre-
sentations, IACR, Cryptology ePrint Archive, 2005/402 [Online].
Available: http://eprint.iacr.org/2005/402.

[53] C. Giraud and V. Verneuil, “Atomicity improvement for elliptic
curve scalar multiplication,” in Proc. IFIP WG 8.8/11.2 Int. Conf.:
Smart Card Res. Adv. Appl. (CARDIS’10), Apr. 2010, pp. 80–101.

[54] K. Järvinen, “Optimized FPGA-based elliptic curve cryptography
processor for high-speed applications,” Integr. VLSI J., vol. 44, no. 4,
pp. 270–279, Sep. 2011.

[55] D. J. Bernstein and T. Lange. (2012). Explicit-Formulas database,
Joint Work by D. J. Bernstein, and T. Lange, Building on Work by
Many Authors [Online]. Available: http://www.hyperelliptic.org/
EFD/.

[56] D. J. Bernstein and T. Lange, “Faster addition and doubling on
elliptic curves,” in Proc. Int. Conf. Theory Appl. Cryptology Inf. Securi-
ty: Adv. Cryptology (ASIACRYPT’07), Dec. 2007, pp. 29–50.

[57] H. Cohen, A. Miyaji, and T. Ono, “Efficient elliptic curve exponen-
tiation using mixed coordinates,” in Proc. Int. Conf. Theory
Appl. Cryptology Inf. Security: Adv. Cryptology (ASIACRYPT’98),
Oct. 1998, pp. 51–65.

[58] D. J. Bernstein, P. Birkner, M. Joye, T. Lange, and C. Peters,
“Twisted Edwards curves,” in Proc. Int. Conf. Cryptology Africa:
Progress Cryptology (AFRICACRYPT’08), Jun. 2008, pp. 389–405.

[59] W. B. Joppe, “On the cryptanalysis of public-key cryptography,”
PhD dissertation, Univ. École Polytechnique Fédérale de Lausanne
(EPFL), Lausanne, Switzerland, 2012.

[60] Digital Signature Standard (DSS), Fed. Inf. Processing Standard,
Nat’l Inst. of Standards and Technology Std, FIPS PUB 186-3,
Jun. 2009.

[61] M. Kistler, M. Perrone, and F. Petrini, “Cell multiprocessor commu-
nication network: Built for speed,” IEEE Micro, vol. 26, no. 3,
pp. 10–23, May 2006.

450 IEEE TRANSACTIONS ON COMPUTERS, VOL. 64, NO. 2, FEBRUARY 2015

Ebrahim A. H. Abdulrahman received the BSc
degree in computer science and engineering from
Qatar University, Doha, in 2002,with the first rank,
and the MSc degree in information technology
(networking) fromJamesCookUniversity, Towns-
ville, Australia, in 2005. He is currently pursuing
the PhD degree with the Department of Electrical
and Computer Engineering, Western University,
London, Canada. In February 2002, he joined the
Department of Computer Engineering, University
of Bahrain, Zallaq, as a graduate teaching and

research assistant, where he was awarded a master’s degree and a PhD
scholarship.

Arash Reyhani-Masoleh received the BSc de-
gree in electrical and electronic engineering from
Iran University of Science and Technology, Teh-
ran, in 1989, the MSc degree in electrical and
electronic engineering from the University of Teh-
ran, Iran, in 1991, both with the first rank, and the
PhD degree in electrical and computer engineer-
ing from the University of Waterloo, Ontario, Ca-
nada, in 2001. From1991 to 1997, hewaswith the
Department of Electrical Engineering, IranUniver-
sity of Science and Technology. From June 2001

to September 2004, he was with the Centre for Applied Cryptographic
Research, University of Waterloo, where he was awarded a Natural
Sciences and Engineering Research Council of Canada (NSERC) Post-
doctoral Fellowship in 2002. In October 2004, he joined theDepartment of
Electrical and Computer Engineering, University of Western Ontario,
London, Canada, where he is currently a tenured associate professor.
His current research interests include algorithms and VLSI architectures
for computations in finite fields, fault-tolerant computing, and error-control
coding. He has been awarded an NSERC Discovery Accelerator Supple-
ment (DAS) in 2010. Currently, he serves as an associate editor for
Integration, the VLSI Journal (Elsevier). He is a member the IEEE
Computer Society.

▽ For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ABDULRAHMAN AND REYHANI-MASOLEH: NEW REGULAR RADIX-8 SCHEME FOR ELLIPTIC CURVE SCALAR MULTIPLICATION 451

