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Abstract: Threshold detection techniques are
employed to obtain canonical multiple-bit-obser-
vation receivers for detection of weak coherent
and incoherent continuous phase-modulated
signals buried in non-Gaussian noise. The limiting
performance estimates of these receivers are
derived, and then used to determine optimum
coherent and incoherent threshold signalling
schemes that belong to a subclass of CPM signals
and find applications over certain bandlimited
channels.

1 Introduction

Digital transmission using continuous phase-modulated
(CPM) signals is an important signalling technique,
having widespread applications in mobile communica-
tions, terrestrial digital radio and satellite communica-
tions. Spectral and power-saving properties of CPM are
well known, as are demodulation techniques in Gaussian
interference [1-9]. We study here a subclass of CPM
known as multi-h CPM [9], which includes multi-h
CPFSK and multi-h CPFSK type of signalling with
input data pulse shaping [1]. These are energy-efficient
signalling techniques with attractive narrow-band
spectra.

Over several channels where CPM is employed, signal
fading is a major problem, accompanied by difficulties in
maintaining phase synchronisation. Furthermore, the
weak or threshold signal condition is one that is fre-
quently encountered. This could be caused by the
requirement of modern communication systems for the
transmitted signal energy to be minimised, for privacy
and power economy. Although the performance of CPM
signals in Gaussian noise is well studied, not much work
[10] has been reported on their performance in noise
subject to terrestrial disturbances which are artificial or
atmospheric. In fact, in the spectrum below 100 MHz,
such disturbances are quite non-Gaussian in character
[11-13].

The object of this paper is to consider the general
problem of threshold detection of CPM signals in noise
subject to terrestrial disturbances that are non-Gaussian
in character.
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2 CPM signal models

The CPM signal over an n-bit interval may be written as
s(t, @) = /(25) cos 2nf,t + §(1, D) + Po)0 <t <nT (1)

where S is the power of the signal in the bit duration T,
f. is the carrier frequency and ¢, is the starting phase,
which, without loss of generality, may be set equal to
zero for coherent transmission. The information-carrying
phase in eqn. 1 for multi-h CPM signals can be written as

¢(t, @) = ‘ i 2nh;a;g9(t — (i — )T dx
o o<t<nT )

where @ = (a,, a,, ..., a,) is an n-bit uncorrelated equally
likely binary sequence. Defining the base-band phase
function ¢(t) through the relation

q(1) = JQ(T) dt 0<t<nT 3)
0
eqn. 2 can be written as
$,8)=2n) ahgt —(G—DT) 0<e<nT o)
i=1

Among the several phase functions that are commonly
employed, we consider the following:

0,t<0,t>T; REC, HCS, RC

t/2T,0<t < T; REC

L1 —cosnt/T) 0<t< T; HCS )
/T — & sin2at/T) 0<t<T;RC

1 t> T; REC, HCS, RC

q(t) =

Using eqn. S in eqn. 4, the excess phase containing the
information bits during the ith bit interval can be written
as

o(t, @) = 2na;hq(t — (i — 1)T) + niil ah, (6)

r=1 (- 1)T<t<iT

The second term in eqn. 6 is the accumulated phase
caused by the data bits through a;_, while the first term
denotes the time-varying incremental phase over the ith
bit interval. In eqn. 5, REC, HCS, and RC refer to fre-
quency pulses with rectangular, half-cycle sinusoidal and
raised-cosine shapings respectively, and A; in eqn. 6 is the
modulation index employed during the ith bit interval.
For binary data transmission using CPFSK, a single
modulation index k = 0.72, which maximises the detec-
tion efficiency, is used. The MSK is a special case of
CPFSK with h = 0.5. In multi-h CPM a set of modula-
tion indices {h;; i=1, 2, ..., K} is employed in a cyclic
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manner, i.e. b =l g = Boag, oon i = 1,2, ..., K, where
K denotes the number of different modulation indices. A
subclass of multi-h CPM, wherein REC frequency pulse
is employed, is considered in Reference 3 and is termed
multi-h phase-coded modulation. In this class of modula-
tion, certain restrictions are placed on the possible mem-
bership of the set {h; i=1, 2, ..., K} of modulation
indices, which ensure a periodic phase trellis and also
permit simple maximum-likelihood decoding by means of
a Viterbi-algorithm decoder. The multi-h CPFSK is con-
sidered in Reference 5. The class of signals described in
this Section can be used to represent a wide variety of
digital modulations such as FSK, MSK, CPFSK, multi-h
CPFSK etc. through appropriate choice of {h;}.

3 Coherent threshold receiver

The techniques for deriving threshold-receiver structures
for various digital-signalling situations are well known
[11, 13-16]. In general, the standard procedure is to
replace all waveforms over the decision interval with
vectors of M samples and form the likelihood ratio. The
sampling process is assumed to result in independent and
identically distributed (ITD) samples of noise over the
decision time interval, so that only first-order
probability-density functions (PDFs) are required. For
the case of threshold signals, then, using the Taylor series
expansion in the likelihood ratio and discarding signal
terms of degree 2 and higher, the receiver structure is
obtained, which consists of a memoryless nonlinearity
followed by a linear matched filter (or correlator) receiver
(optimum when the interference is Gaussian in character).
The transfer characteristic of the nonlinearity is given by
—d/dr[In py()], where py(r) is the first-order amplitude
PDF of the additive interference.

The performance of the coherent threshold receiver for
the limiting case of large sample size and vanishingly
small signal strength can be determined by the central
limit theorem (CLT), by evaluating only the first two
central moments of the output of the receiver, which is
the decision variable. Such performance estimates in nar-
rowband non-Gaussian noise for coherent PSK, FSK
and ASK may be found in References 11 and 17-19.

Although in all the above analyses receivers are
required to make independent bit-by-bit decisions, in
Reference 10 a threshold receiver that uses multiple-bit
observation for detection of CPFSK signals buried in
non-Gaussian noise is derived and its limiting per-
formance estimates are obtained. By extending these
results, it can be shown that the threshold receiver struc-
ture for detecting weak CPM signals buried in additive
non-Gaussian noise consists of a zero-memory nonlin-
earity, —d/dr [In py(r)], followed by the average matched
filter (AMF) receiver for CPM, which for its operation
requires only two correlators. One of the correlator refer-
ence signals is the average of all transmitted signal wave-
forms of n-bit duration, with the first bit datum a + 1
and the other average of all transmitted waveforms with
the first bit datum a — 1. This receiver is shown in Fig. 1
and uses the detection strategy of observing the signal
over n-bit intervals and producing an estimate of the first
bit datum. It is noted that this receiver is canonical, in
that the detection algorithm is independent of the kind of
noise encountered. Furthermore, when the interference is
Gaussian, the receiver is just the AMF receiver, which is
shown to be optimum at low values of the signal/noise
ratio (SNR) [4]. Following the technique of Reference 10,
and with reference to Fig. 1, the limiting performance of
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the threshold receiver for multi-h CPM signals can be
shown to be given by

n—1

K 2
P, = (KXY ) Y ZiQ(lufl/a,,) M
p=1 j=
T T T T T T M
} M i H1
I d ¥ *
R EA L) ;1«) | r szo

"Gaussian coherent
receiver for CPM”

Fig.1  Optimum coherent threshold receiver structure for CPM signals
where uf is the mean of the output decision variable,
given a particular data sequence A; with @, = 11 trans-
mitted and o2 as the variance. The summation Y, is used
to handle the cyclic variation of K modulation indices
employed and Q(x) denotes the area under the zero-
mean, unit-variance normal curve from x to infinity.

In Appendix A, the performance analysis of the recei-
ver shown in Fig. 1 is presented and closed-form expres-
sions for p and o for signalling schemes described in
Section 2 are given.

4 Receivers for noncoherent threshold detection

In this Section we derive multiple-bit-observation thresh-
old receiver structures for detecting weak CPM signals
subject to slow and fast fadings in non-Gaussian noise.
The slow fading refers to the case wherein the amplitude
and phase of the received signal are random but constant
over the entire decision interval. In the fast-fading case
the amplitude and phase are random but constant only
over sub-intervals of the decision interval. In both situ-
ations, the detection strategy is to observe the received
signal over n bit intervals and to produce an estimate of a
specific data bit transmitted a;, 1 <5 <n It is noted
that the derivation of the receiver structures is indepen-
dent of the choice of the decision bit location 4.

4.1 Slow-fading case
The detection problem at hand is a composite hypothesis
statistical test which may be stated as

H,:r(t) = bcos(2nf.t

+ Plt,a; = +1,4)+ 0) + n(t)
H,:r(t) = b cos(2nf, ¢

+ ft,a; = —1,A) + ) + n(t)

where b and 6 are composite parameters with the latter
uniformly distributed in (—#, +7) and the former having
an arbitrary fading distribution. Further, it is assumed
that b and 6 are independent. 4; is the (n — 1)-tuple
@y, ..» A5_1 @54 15 ---» Gy) and represents another com-
posite parameter whose distribution is easily determined
by noting that the data bits are independent and assume
values from the set {+1, —1}. The quantity ¢(., ., .) in
eqn. 8 is the information-carrying phase defined in eqn. 4.

The received waveform in eqn. 8 is uniformly sampled
to obtain M samples. Assuming IID noise samples, the
composite hypothesis test of optimally deciding between
H, and H, is given by the likelihood-ratio test (LRT)
[20]. Setting up the LRT, making use of the Taylor series
expansion for signal level near zero, discarding signal
terms of order 3 and higher, and averaging over all com-

0<t<nT
®

j=12,..2"!
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posite parameters, it can be shown that the threshold
receiver is given via the decision rule

2 H;

2

Hy

M
Zl FlrJs2(t,, a5, = +1)
-

x ‘fF(n,)s':’(tq, w=—1 ©
where
F(rq) = —d/drq[ln p,,,(rq)] (10)
and

-1

Ta= £1)= Y expljCnfs
+lha= TLAN (1)

In eqn. 11, s%(., .) denotes a pair of complex correlator
reference signals: one is composed of all transmitted
waveforms of n-bit duration with a; = + 1, and the other
of all transmitted waveforms with a; = —1. The receiver
implementing eqn. 9 is shown in Fig. 2, and consists of
the noncoherent AMF receiver for CPM preceded by a
memoryless nonlinearity F(r,). The structure of this non-
linearity is precisely the same as that required in the case
of coherent threshold receiver. It is noted that the non-
coherent AMF receiver for CPM is optimum for low
values of the SNR when the additive noise encountered is
Gaussian in character [4].

42 Fast-fading case
The hypothesis testing problem for this case may be
stated as

Hy:r()) = Y b;s{t, a,
i=1

where b;s{., ., ., .) is the signal waveform received during
the ith bit interval, b; and 6; are the random amplitude
and phase of the ith bit received signal waveform. These
are assumed to be independent of each other. Further-
more, it is assumed that fading is independent from bit to
bit. Employing similar steps used for slow-fading casc,
the decision rule for optimally deciding between H, and
H, may be shown to be given by

n iM’ 2

Y 3 Flr)si(t,. a5 = +1)

i=1 | g=G-DM +1
Hy =n iM _ 2
2 2 Y Flr)sh(ty, as = *1)‘ (13)
Hy i=1 | g=(i-DM +1

where M'(=M/n) is equal to the number of samples per
bit interval, and sZ(., .) are the ith bit correlator reference
signals. The receiver implementing eqn. 13 is shown in
Fig. 3.

While the performance analysis of the receiver for the
fast-fading case (Fig. 3) appears analytically intractable,
closed-form limiting performance estimates of the recei-
ver for the slow-fading case (Fig. 2) may be obtained.
This is carried out in the next Section.

5 Performance analysis of noncoherent

(slow-fading) threshold receiver

In this Section, we use the receiver structure derived in
the previous Section to evaluate the performance of the
noncoherent receiver for the slow-fading case. To begin
with, we suppose hypothesis H, to be true and a particu-
lar data sequence A; to have been transmitted. Referring

= +1,4,,0)+n() t<nT to Fig. 2, we observe that Y{ and Y% are sums of inde-
AR (12) pendent finite-variance random variables and, therefore,
Hy:rt) = Y. biskt, a, are asymptotically cc_)mplex Gaussian quantities by virtue
i=1 = Lyt of the CLT. By making use of the results of Reference 21,
=—1,4;,0) + n(t) it can be shown that the conditional bit error probability
- S
M y
| S0 P ) |
| |
. , | Sc(ty, a5 =+1) . | Hy
q d q . =
[ - =z
drq [tnpy(ry)] J| ", ©
| 3 (tq, ag=-1) - |
M Y2 |
| SO EH |2 |
| 4=t |
_ -
Fig. 2  Optimum noncoherent threshold receiver structure for CPM signals (slow-fading case)
kM’ y, n
1k 2
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g=(k-1)M%1 k=1
éck((q’us:"‘l) ‘
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1o z !
q d q "z
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Fig. 3  Optimwm noncoherent threshold receiver structure for CPM signals (fast-fading case)
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is given by
P ayp =DIOb[| Y32 —| Y212 <O/Hy, 4] (14)

which is the probability of one Rician-distributed
random variable exceeding another, conditioned on
hypothesis H,; and a particular transmitted data
sequence A;. The quantity p in eqn. 14 refers to a partic-
ular possible arrangement of modulation indices over an
n-bit decision interval. Averaging egn. 14 over all possible
A;s and sequences of modulation indices, the expression
for bit-error probability is given by
K 211

P, =(1/K)1/2" 1 Y Poriar (13)

p=1 j=
In Appendix B, all steps in arriving at eqn. 15 are given
and closed-form expressions for bit-error probability

for the signalling schemes described in Section 2 are
presented.

6 Numerical results and discussion

In obtaining expressions for the performance estimates of
the receivers shown in Figs. 1 and 2, no particular noise
PDF has been assumed. However, to illustrate the per-
formance of these receivers for detecting weak multi-h
CPM signals, we consider the Middleton’s class A noise
model [11], with its basic parameters given by A = 035
and I" = 0.5 x 1073, The class A noise model has been
extensively used in the literature [10, 11, 17], and is often
used to model narrow-band artificial noise.

The quantity L, given by egn. 21, denotes the asymp-
totic relative efficiency (ARE) of the optimum threshold
receivers when the noise variance is unity. The ARE rep-
resents the performance (for vanishingly small signal
strength and very large sample size) of the optimum
threshold receiver relative to that of the threshold recei-
ver with F(r)=r, (optimum receiver for Gaussian
interference). In fact, the ARE represents the ratio of
input sample sizes required by the two receivers oper-
ating in the same noise environment to achieve equal
probability of error. For the particular Class A noise
model we have chosen, to illustrate the performance of
threshold receivers, the quantity L has been evaluated
[11] with a noise variance of unity and is equal to 1340.

6.1 Performance of coherent multi-h CPM
The bit-error probability performance of the coherent
threshold receiver may be evaluated using eqn. 7 and the
expressions given in Appendix A. The error probability is
a function of

(a) the sample size M’ (= M/n)

(b) the quantity L

(c) the SNR S

(d) the number of observation intervals n

(e) the set of modulation indices {h;i=1,2, ..., K},
and

(f) the phase function q(t).

For a given phase function ¢{t), the optimum set {hs;
i=1,2, ..., K} of modulation indices which should be
chosen is obviously the one that minimises the bit-error
probability of eqn. 7. For a fixed small SNR of —55dB
and for a large sample size of M’ (=1000), optimum {h;}s
were determined that minimised the probability of bit
error, as a function of number of observation intervals.
All three phase functions (REC, HCS and RC) were con-
sidered.
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The optimum modulation indices, for single-bit obser-
vation receivers for REC, HCS and RC systems are 0.72,
0.63 and 0.59, respectively. In Fig. 4 is shown the per-
formance of the optimum single-bit RC system, as a func-
tion of SNR and sample size. For n =2, 3, ..., for all
three phase functions, it is noted that the set {h; = 0.5;
i=1,2, ..., K} minimises the error probability P,. The
minimum P, thus obtained, for all cases, equals the per-
formance of PSK/MSK at § = —55 dB and M’ = 1000.
Fig. 5 shows the error probability performance of MSK/
PSK. The performances of CPFSK and multi-h CPM

probability of error

45 40 35

S, SNR, dB

Fig. 4  Error-probability performance of optimum coherent threshold
receiver for optimum single-bit RC system for Middleton’s class A noise
model (A =035, T =05 x 107%)
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_60 -55 -50 -45 -40 -35 -30
S,SNR, dB
Fig. 5  Error probability performance of optimum coherent threshold

receiver for MSK for Middleton’s class A noise model (A=1035,
=05x%10"%

L = 13400
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(REC) systems are illustrated in Figs. 6 and 7, respec-
tively, as a function of observation interval and sample
size.

probability of error

1
\
\
v
\
\
\
\
\

=45 -40
S, SNR, dB
Fig. 6  Error-probability performance of optimum threshold receiver
for CPFSK, Middleton’s class A noise model
(4=035, l‘ =05 x 1073
MSK

CPFSK h=0.715,n=4
CPFSK h=0715n=3

1~

probability of error

40
S, SNR, B

-20

Fig. 7 Error-probability performance of optimum threshold receiver
for multi-h CPM (REC) systems for Middleton’s class A noise model

a{s

8 5 [ 6 -
b{ﬁ'ﬁ ﬁvls} n=>35

1 3
c{fdhin=3

18 4 5 3. —
d{& & Shin=4

It is well known [6] that CPM offers tradeoffs
between power, bandwidth and receiver complexity. To
illustrate this ability of weak multi-h CPM signals in
non-Gaussian noise, in Figs. 8-11 and 12-15 we have
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plotted performances of 2-# REC and HCS systems
respectively, relative to that of the performance of MSK,
which happens to be the optimum threshold multi-h

0 010z 03 04 05 06 07 0.8 09 10
h
2

0 or
2

- w -0.2F
~ o

S

.:;'rf -0.4f
w0

1 1 1 1 1 1 1 1 I
02 03 04 05 06 07 08 09 1.0
h
2

-1.0 L
0 01

0 0102 03 04 05 06 07 08 09 10
ha

Fig.15 n=>5

CPM system for all three phase functions considered in
this paper. To understand the significance of these plots,
let us consider Figs. 811, where relative error probabil-
ities of 2-h CPM (REC) and MSK systems are plotted for
n=2,3,4and 5, for a fixed SNR of —55 dB and sample
size M’ = 1000. Further, let us suppose we have chosen
from some system design considerations the set of modu-
lation indices to be {0.5, 0.75}. Now, for this 2-» CPM
system we can determine the optimum observation inter-
val of the threshold receiver by consulting Figs. 8-11, and
determining the smallest value of n for which the quantity

loglol:Pego.}S). 0.75}, REC]
e, MSK

is maximum. For the particular case at hand the
optimum observation interval is equal to 4 bits, which
means that for this observation interval, {0.5, 0.75} CPM
(REC) system performs closest to the optimum threshold
CPM system, which is MSK. It is noted that although
n =4 is optimum, by choosing n =3 the loss of per-
formance is only marginal.

6.2 Performance of noncoherent multi-h CPM

The error-probability performance of the noncoherent
(slow-fading) threshold receiver shown in Fig. 2 for
detecting weak multi-h CPM signals in non-Gaussian
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noise can be determined using eqn. 15 and expressions
given in Appendix 10. Clearly, the error probability, as in
the coherent case, is a function of M', L, S, n, {h;1 i =1,
2,..., K}, q(z) and the decision-bit location 4.

In Fig. 16, the performance of single-bit FSK is shown
as a function of sample size. To determine the optimum

1+

probability of error

150 -45 -40 -35 -30
S, SNR,dB

ool

60 -55

Fig. 16  Error-probability performance of optimum noncoherent
threshold receiver for FSK for Middleton’s class A noise model (4 = 0.35,
=05 x 107%

L=13400,n=1

noncoherent threshold signalling schemes, P,, given by
eqn. 15, was minimised as a function of n and §, to arrive
at optimum sets {k,, h,}, at a fixed low SNR of —55 dB
and M’ =1000. All three phase functions were con-
sidered. It is borne out by our results that the minimum
P, for odd observation intervals is obtained for
8 =int (n/2) + 1 and for even observation intervals the
decision-bit location 6 =n/2 or n/2+ 1. It is also
observed that for all observation intervals, regardless of
the decision-bit location, the set {h,, h,} that minimises
P, for a given S and M’ has the property hy = hy; 0 < by,
h, < 1.0. This indicates that going for multi-modulation
indices in CPM results in no improvement in per-
formance compared to the optimum single-h CPM. In
Fig. 17, the performance of the noncoherent threshold
receiver for an optimum single h CPM system with REC
phase function is shown.

From Fig. 17, it is observed that single-h CPM (REC)
system with h=0.88, using a two-bit noncoherent
threshold receiver that makes a decision on either of the
two bits, can outperform orthogonal FSK. The improve-
ment thus obtained is of the order of 1 dB. The optimum
single-h CPM (REC) systems for n = 3, 4 and 5 have per-
formance improvements, relative to that of single-bit
orthogonal FSK, of 2, 2.25 and 2.5 dB, respectively. The
optimum CPM (REC) system for n = 5, however, turns
out to be inferior to the PSK system by nearly 1.25 dB. It
is anticipated that a CPM (REC) system with observa-
tion length greater than 5T can perform quite close to
(within about 0.5 dB) the PSK system. Likewise, observa-
tions regarding CPM systems with HCS and RC phase
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functions reveal similar performances but with different
modulation indices.

1F
0.88, 6=1,n=2
072,8=2,n=3
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_60 -85 -50 -45 -40 -35 -30 -25
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Fig. 17  Performance of optimum noncoherent threshold receiver for

optimum CPM (REC) systems for class A noise model (A =0.35,
=05 x107%
L =13400 M = 1000
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Fig. 18  Performance of {h;, h,} muiti-h CPM (REC) system (n =2,
& = I) relative to optimum CPM (REC) system (n=2,0=I)inclass A
noise (A =035,T" =05x 107?)
L=1340,M = 1000,§ = —55dB,n =2, =1

h2

To understand the tradeoffs inherent in noncoherent
multi-h CPM systems, in Figs. 18-21 and 22-25 per-
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formances of {h,, h,} REC and HCS systems have been
plotted relative to optimum single-h REC and HCS

B ,OPT, ACS

OO 01 02 03 04 05 06 07 08 09 10
h2

Fig.25 n=56=3

systems, respectively. In all these plots, optimum
decision-bit locations are employed and S is fixed at
—55dB and M’ at 1000. From plots given in Fig. 20, it is
amply clear that there exists a wide range of 2-h CPM
(REC) stytems ({hy, h,}; 0.5 < hy, h, < 1.0) that perform
close to the optimum {h,, h,} CPM (REC) system for
observation length 4T. That is, we can choose {h;, h,}
CPM (REC) system, for n = 4, that performs close to and
is more bandwidth-efficient than the optimum single-h
CPM (REC) system. In a similar fashion, the plots of
Figs. 22-25 can be used in arriving at optimum {,, h,}
CPM (HSC) systems relative to optimum single-h
systems.

7 Conclusions

In this paper, we have considered the problem of coher-
ent and incoherent threshold detection of CPM signals in
non-Gaussian noise. Receiver structures have been
derived and their performances for detecting multi-h
CPM with rectangular, half-cycle sinusoidal and raised-
cosine phase functions have been obtained in closed
form. For both coherent and incoherent (slow-fading)
detection situations, optimum CPM signalling param-
eters have been determined, and, for the incoherent (fast-
fading) case we have arrived at the optimum threshold
receiver structure, whose performance analysis appears
analytically intractable. Although the use of time-varying
modulation indices in CPM seems to offer no further
improvement in error-probability performance relative to
optimum single-h CPM systems, the former systems for
threshold signalling can be designed that are more band-
width efficient with negligible degradation in per-
formance compared to the latter systems.
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9 Appendix A

The ith bit correlator reference signals in Fig. 1, for
multi-h CPM, may be shown to be given by

s(t, a, = +1) = /(25) cos Qmh{q(t — ( — 1T)
x cos 2nf,t + AP L) (— DT <t <iT (16)

where ¢(t) is defined in eqn. 5 for the three phase func-
tions (REC, HCS, RC) considered in this paper. The ref-
erence signals during the first bit interval are given by

St ay = +1) = /(25) cos 2.t + 2mhEq(1),
0<t<T (17)

Denoting the transmitted signal by s”(¢, a; = +1, A), the
decision variable r# in Fig. | may be written as

= 5 Fe) @ = +1)

— st a, = — )]st a, = +1, A) (18)

The mean and variance of r¥ conditioned on hypothesis
H, and jth of the 2"~1 possible data sequences of
(a,, ..., a,), may be shown to be given by

“_‘I’ E{r:/Hl’ AJ}

R

_Lf{s_”(t.-, a, = +1) = sty a, = — 1)}
i=1

x sP(t;, a; = +1, A) 19

o2 =var {r}/H, A}
M
=~ ¥ (0, = +1) =, a, = — 1)
ic1
x [L —(Ls’(t;,a, = +1, Aj)z] (20)
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where
—w© d 2
L= f [E pn(r)] [pu(r)] ' dr 2n

Making use of a small signal approximation, SL < 1, and
for large M approximating the summations in eqns. 19
and 20 by integrals, the mean and variance required in
the evaluation of error probability via eqn. 7 are given by

u? = SLM’ {cl + sin h{f) Zzﬁp(k)[sm 0P + ck]} 22)

02 = SLM'{2C, + (1 — cos mhi{§}) ¥ B2(k)D,} (23)

where
1 — sinc (2K}, REC
C, =41 — cos nhif}J o(nhiB), HCS (24)
— P(h{‘l’i), RC

(aj/2rhEN[cos 8% — cos (8%
+ 2nal K], REC

= 25
G Jolalmhif)) sin (afnhf) + 6%), HCS 25)
sin (0)P(af h{f)) + cos O R(alh{E), RC
and
1 + sinc 2h{f), REC
Dy, = {1 + cos (rhif)J o(nhif), HCS (26)
1 + P(h{f)), RC
In eqns. 22-26,
k-1 i
0P =n Z alhig) 27
Bk) = 1—1 cos*® mh{p (28)
Jo(x) = 1/n f cos (x cos ) dO (29)
0
2n
P(x)=1/2n f cos (xy — x sin y) dy (30)
0
and
2n
R(x) = 1/2=n j sin {xy — x sin y) dy 31)
0

The quantity af.) is given in Table 1 of Reference 10.

10 Appendix B

In obtaining the complex correlator references required
in the receiver shown in Fig. 2, we assume, for conve-
nience, that all possible waveforms have zero excess
phase at the beginning of the decision-bit interval and
that ¢t = 0 corresponds to the beginning of this interval.
Then, the reference signals for multi-h CPM during the
decision bit § are given by

st a; = +£1) = exp [jQ2nf.t + 27h'P};,4(1))]

0<t<T (32

The complex reference signals during the ith bit interval
after and before the decision bit interval are given by
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[T cos (2nh®), q(t))e> /<
k

N I1<k<gn;; (k- 1DT <t <kT
sAtas= 1 1)=4 |

" {p)
H cos (2mh®), . gt — kT))ei@nset+ahvi

I1<k<n kT <t<(k+ 1T (33)
where
- K
1;1 = 1_‘[1 cos”® ghip (34)
and
K

+
[I= 0s™(P nh(-f)[i] (35)
k i

The quantities o(.) in eqn. 35 are as given by Table 1 of
Reference 10 and y(.) in eqn. 34 is given by Table 1 of
this Appendix. n, denotes the number of bits observed
before the decision bit interval and n, after the decision
bit interval.

=1

Table 1: Values of y,(k) (k=1,2,...:m=0,1,...)
k k) yalk)  y5(k) v« (k)

mK+1 m m m eom

mK+2 m+1 m m ceom

mK+3 m+1 m+1 m ceem

mK+K m+1 m+1 m+1 - m

For the sake of convenience, we represent the sequence
of modulation indices employed over the n bit intervals
by

(h)P = (h(p) h{ﬁ: 1p -

Imp P KB By i) (36)
It can easily be seen that the various possible arrange-
ments of modulation indices over the n observation inter-

vals can be written as

) = (oo gy by by By g By, )
()2 = (s hg by by hyy o b by, )

: (37
(h)k_( K Z’hk l’hKahl"'<’hK9h1"")

In eqns. 36 and 37, the modulation indices indicated in
bold refer to the ones used during the decision bit inter-
val, and p refers to the suffix of the modulation index
employed during this interval.

The performance of the receiver shown in Fig. 2 may
be evaluated by conditioning on H, and A4;, and
assuming that a particular sequence of modulation
indices is employed over n-bit intervals, say p. The
received ith sample is then given by

rt) = \J(25) cos [2nf. t, + Pt a5 = +1, 4) + 6]

M;0<t,<nT (38)
Because, in the receiver, summation and squaring oper-
ations are involved, the random phase 6 is set equal to
zero and performance analysis is carried out. By noting
the transformation on the input sample given by eqn. 10,

the first two moments of the ith sample at the output of
the nonlinearity are given by

E{zhy, 4} = —LJ(28) cos 2f, t; + ¢P(t;, a,
+1,4) (39

+n(t) 1<i<

I

and
E{z,-z/,,h,,j} =L (40)
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where L is given by eqn. 21. With reference to Fig. 2, Y;
and Y, for a particular sequence of modulation indices,
say p, in terms of the received samples z;, can be
expressed as

M
Yiu, 4= 2 20, 4,50t a; = 1)
i=1

I=1fora;=+1;l=2fora;= —1 (41)

By noting the action of the nonlinearity on the received
samples in eqn. 41, and making use of the CLT, it is
casily observed that Y} are complex Gaussian random
variables. By making use of Reference 21, the conditional
probability of an error is given by

prob [| Y§I* — | Y3 > <O/H,, 4]
= 1201 = Qul/y, V) + Qul/x, /)] (42)

where
YU L [P + 108" — 2 Re (uf;ud;07)
X 262 1—|p??

Lug;* — Iu‘é'lz}

+ Pl ¥ R IR ¥ a3 A BN (43)
J1=1p 1

where Qy(.,.) is the Marcum-Q function [22]. The

various quantities in eqn. 43 can be shown to be given by

M
uh; >~ Ly28 Y. cos 2nf.t; + PPt;,a; = +1,4)
i=1
x sH(t;, a5 = +1) 44)

M
8, ~ L, /2s;cos Qf.t, + $P(ti, ay = +1, A))

x st(t;, a5 = —1) 5
M
a2~ LY [$0,a,= 2D {46)
i=1
and
M
pPal = LY ¥t a5 = +1)s8(t;, a5 = —1) @7
i=1

where * denotes the complex conjugate. In arriving at
eqns. 46 and 47, we have made use of the small-signal
approximation SL < 1. For large values of M, approx-
imating the summations in eqns. 4447 by integrals and
using suffixes —1, 0, +1 to denote contributions from
before, during and after the decision bit interval in these
integrals, for multi-h CPM signals we obtain the follow-
ing expressions:

;= (LM/2)\/2SKA_ + Ao + A1) (48)
43, = (LM'/2)\/(2SXB_, + By + B 1) 49
o:=LM(V_,+V,+ V.9 (50)
pPol =LM(R_, + Ro + R,)) (51

Denoting, for the sake of convenience, the transmitted bit
sequence to be {a; i= —ny, ..., =1, 0, +1, ..., +n,},
the various quantities in eqns. 48-51 can be shown to be
given by

ny
A-1=kZ CiA_y (52)
=1
Ay = ZC:A+II¢ (53)
k=1
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where
1 + sinc (W), exp (—jal, th*)), REC
A_y =31 + Jolal  mh®) exp (—ja_ wh®y), HCS
1 + p(h'?y) — jal, R(h%y), RC
(549
1 + sinc (WP} 1y exp (—jay  ThY s 1), REC
Acp=91+ Jo(aﬁknh(f)[kﬂl? exp (—ja’ mh¥ ¢ 1), HCS
1+ P(h(f)[k+ 1) —J@ R(h(f)[k+ - RC
(55
and
+
CE = 05[] exp (~j65) (56)
k-1
T 57
r=1
k—1 .
;’: =n Z a’, h(f)[ﬁ 1] (58)
r=1
The quantity
A, = 1, REC, HCS, RC, (39)
and B, is related A, via
B_, = A_,, REC, HCS, RC (60)
and

B,, = 4,, exp (—j2rh'®),;). REC, HCS, RC (61)
The quantity B, is given by
sine (h'%),) exp (—jmh®);y), REC

Jolwh®),)) exp (—jzh®),,), HCS (62)
P(HZyy) — jROEE) ), RC

The various quantities in eqn. 50 are given via

B, =

Vo= SIGTV ©3)
and

Vo= S 0CT Ve (64
where

1 + sinc (2h%),p), REC

V_1e =31+ cos (Th®)Jo(mh®),), HCS (65)
1 + P(hP)), RC
and
1 + sine (2h®, , 1), REC
Vi =41+ cos (mh 1 ) omh P+ 1)), HCS (66)

[+ PPl 1), RC

The relationship between Vy, and R, ; may be shown to
be given by

R, =V, exp(—j2nh%},), REC, HCS, RC 67)
and
R_, = V_,, REC, HCS, RC (68)

The quantity
R, =B, (69)
for all three phase functions REC, HCS, and RC.
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