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Abstract— Recently, a new class of orthogonal fre-
quency division multiplexing-continuous phase modulation
(OFDM-CPM) signals was introduced. In this paper, we
propose and investigate the use of multiamplitude CPM
signal mapper for reduction of PAPR. In this method,
two signal points represent the same information and we
choose the one that minimizes PAPR. The concept of par-
tial transmit sequences (PTS) is also used to select the
best signal points. Unlike other PAPR reduction schemes
such as partial transmit sequences, our method does not
require side information to be sent to the receiver. It is
shown through simulations that the proposed scheme re-
duces PAPR of 128-carrier OFDM-CPM signals by more
than 4 dB.

I. INTRODUCTION

OFDM is a good candidate for wireless multime-
dia communication by virtue of its excellent properties
in frequency-selective fading environment [1}, [2]. In
OFDM, data is transmitted over several parallel low data
rate channels. This provides data integrity due to fading,
relative to methods that employ single channel for high
data rate transmission. Among other benefits of OFDM
is that it fully exploits the advantages of digital signal
processing concepts [3].

A typical OFDM transmitter is shown in Fig. 1(a).
A serial-to-parallel converter serially takes in the data
stream and forms a parallel stream which is then sent to
a mapper that outputs complex numbers. The mapper
could be PSK, QAM, DPSK, DAPSK etc. Inverse fast
Fourier transform (IFFT) is then applied to the parallel
stream of complex numbers that results in orthogonal sig-
nals on the subchannels. In order to mitigate the effects
of ISI, a guard interval is inserted at the transmitter and
is removed at the receiver. The orthogonal signals are
then converted back into a serial stream, up converted to
desired carrier frequency and transmitted.

At the receiver (Fig.1(b)), the process described above
is reversed. The received signal is down converted, passed
through a serial-to-parallel converter, a guard interval re-
mover, an FFT block, a de-mapper and finally a parallel-
to-serial converter to eventually obtain the transmitted
data sequence. In the absence of noise and fading, trans-
mitted data is recovered without errors.

While in the literature OFDM-PSK, -QAM, -DPSK
and -DAPSK have been considered [4]-[7], OFDM-CPM
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Fig. 1. OFDM transmitter and receiver

signals that use the concept of correlated phase states
of a CPM signal have recently been introduced [8], [9].
One of the advantages of OFDM-CPM signals is that we
can systematically introduce correlation amongst adja-
cent OFDM symbols by an appropriate choice of para-
meter h (in typical CPM signals h is modulation index).
Furthermore, this correlation can be exploited in order to
reduce the BER in such a system.

In OFDM, as the number of subcarriers increase, the
effective waveform approaches that of a sample function
from a Gaussian process {10]. This results in occasional
peaks in the transmitted signal. The peak transmitted
power of an OFDM signal may be up to N times the av-
erage power, with N the number of carriers [11]. Large
peaks introduce an increased complexity of the analog-to-
digital (A/D) and digital-to-analog (D/A) converters and
degrade the efficiency of the RF power amplifier. Lin-
ear amplifiers that can handle the peak power are less
efficient. Hard limiting of the transmitted signal gener-
ates intermodulation among the subcarriers and results
in out-of-band radiation. Hence it is desired to reduce
the peak power of OFDM signals. Peak-to-average power
ratio (PAPR) is a good measure of these peaks. Worst
possible PAPR of an N-carrier OFDM system is N. It is
observed that highly correlated data sequences such as a
sequence of all zeros or ones, or a sequence of alternate
zeros and ones cause high signal peaks. A number of ap-
proaches have been suggested to alleviate the problem of
PAPR. Some of these employ partial transmit sequences
(PTS) [12]-[15], block codes [10},[16},(17], scrambling [18],
weighting [19], [20], selective mapping [21], symbol or bit
interleaving {22], phase optimization [13], and crest factor
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optimization [23].

We present a method that uses multiamplitude CPM
signals and partial transmit sequences to reduce PAPR
of OFDM-CPM signals. Unlike other PAPR reduction
schemes our method does not require side information to
be sent to the receiver. We show that gain of more than
4 dB in PAPR is possible with little complexity.

The paper is organized as follows. In Section II we
review OFDM-CPM signaling scheme. Multiamplitude
CPM signals are described in Section ITI while PAPR re-
duction algorithm is presented in Section IV. Simulation
results are presented in Section V and the paper is con-
cluded in Section VI.

II. OFDM-CPM SIGNALING SCHEME

As shown in Fig. 2, serial bit stream b;,1=0,1,2,...,
with bit duration of T} seconds is converted into blocks
of N bits represented by axp, k = 0,1,2,..., and p =
0,1,2,...,N~1, where N denotes the number of carriers
and a;, = 1. For example, ag, would denote the first
block of N bits and a; , the second block of N bits and
so on. The CPM mappers transform the incoming ap
into appropriate complex numbers ci , given by

Ck,p = COS (ak.?) + jsin (ak.p) ’ (1)
with

a,,,={
agpTh+ ¢;

where parameter h defines the CPM mapper and ¢ rep-
resents the initial mapping point that is assumed zero
without loss of generality. The angles 8, depend not
only on the current data but also on the past data. Fig.
3 shows values of 8y, as a function of time when h = 1.
Current value of 8 is determined by adding +h (if data
bit is a +1) or —mh (if data bit is a —1) to the previous
value of §. The corresponding complex numbers lie on a
circle.

The complex numbers from the output of CPM map-
pers are passed through pulse shaping filters g(t), then
modulated by orthogonal carriers and finally summed to
give the transmitted OFDM symbol which is mathemat-
ically represented as

z(t) = EZQ',g(t - kT)c"“P"‘.D St<oo (3)
k P

k=0

where
T, <t< LT

it
Skl
9(t) { 0;  elsewhere. )

In (3) and (4) T(= NT,) is the OFDM symbol duration
and T}, is the guard interval. If data is to be transmitted
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Fig. 3. Phase trellis for OFDM-CPM signaling

at the same information rate then sampling time T} of
the signal should be decreased to T} = () To. In
(4) L = 1 for full response signaling. The parameters h
and L can be chosen in various ways giving rise to some
of the following possible OFDM-CPM signals.

A. Single-h OFDM-CPM Signals

In this case, the value of h remains constant for all
OFDM symbols. By choosing h to be rational and 0 <
h < 1 it is possible to have finite number of points in the
CPM constellation to reduce receiver complexity. If h

226




“could be written as 2k/p, where k and p are integers then

p denotes the number of points in CPM constellation.
In Fig. 4 is shown the constellation diagram of CPM
mapper for h = } (four constellation points) and h = 3
(eight constellation points).
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'Fig. 4. Constellation diagram of CPM mapper for (a) & = 3 and
(b)h=1%

" B. Multi-h OFDM-CPM Signals

The value of h is cyclically chosen from a set of K val-
ues, {hy,ha,...,hx}. The value of h employed during
the ith symbol is given by ki, | = i modulo K. By re-
stricting h; to include only multiples of 1/g, g an integer,
one obtains a property that all phases at times nT (n
being observation interval) are some multiple of 2x/q. A
demodulator/decoder need only deal with transitions to
these g phases [24].

For example, the complex numbers of a 4-carrier
OFDM-CPM signal with Hy = {2, 1} for first two blocks
of data sequences are shown below (assuming initial map-
ping points to be 1 + ;0):

lak,psaks1,0] = [Ckp) Cht1,p],

: 1 ;1
+1 -1 + 715+J_715
+1 +1 t5 —m+is
-1 41| T |4 L3
P VI A

t1 HFtip

C. Asymmetric OFDM-CPM Signals

While in multi-h OFDM-CPM signals & values are in-
dependent of data bits ax,,(= %1), in asymmetric multi-h
signals h is made a function of axp. That is, the value
of h during the ith symbol interval is chosen h,; or k_;
accordingly as data is a +1 or 1 respectively. This gives
additional flexibility to the designers to optimize system
performance. For example, let {Aq, hs, Ao} be the set for
& 3-h scheme. One way of implementing asymmetric sig-
naling is to shift h_; with respect to A,; by one symbol
interval as shown below.

i: 1 2 3 4 5

6
h+,‘ H ha hb hc ha hb hc

h_,- : hb hc ha hb hc h
i.e., h_,‘ = h+(,‘+1) [25]

a
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'D. Partial Response OFDM-CPM Signals

In (4), by making L > 1 the pulse duration can be
extended to more than one OFDM symbol. Using a value
of L = 2,3,... systematic correlation can be furthered
amongst OFDM symbols which in turn can be exploited
for improvement in system performance.

III. MULTIAMPLITUDE CPM SIGNALS
A typical OFDM symbol is represented by:

N-1
Z(t)= Y Xne?™ht 0<t<NT,

n=0

where X,,{n =0,1,...,N — 1}, are the outputs of the
signal mapper, f, is the frequency of nth carrier, T is
the original bit period and N is the number of orthogonal
carriers.

PAPR is defined as [11]:

®)

PAPR = max|z(®)?
E [l=()1]

In single carrier communications, multiamplitude CPM
is a generalization of conventional CPM in which the sig-
nal amplitude is allowed to vary over a set of amplitude
values while the phase of the signal is constrained to be
continuous [26]. In this paper, we use two-component
CPM constellations in the signal mapper to reduce PAPR
where the signal amplitude is allowed to take one of the
two possible values. Fig. 5 shows two-component CPM
constellation for two values of ~ which are 1/2 and 2/3.
Black dots on the inner circle indicate mapping points
generated by CPM mappers while transparent dots on
the outer circle are alternate signal points representing
the same information as the black dots lying on the same
axis. Hence, each black dot has an alternate transparent
dot that could be chosen if it would reduce PAPR.

(6

"Fig. 5. Signal space diagram for two-component CPM with (a)
h=1/2and (b) h = 2/3

At the receiver the signal is decoded based on the phase
of complex numbers. This eliminates the need to send ad-
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ditional information to the receiver about the amplitudes
of complex numbers. ’

IV. PROPOSED ALGORITHM

Similar to the suboptimal PTS approach presented in
[11] the data block which is input to IFFT is partitioned
into disjoint subblocks or clusters. Let this input vector
be represented by X = [Xp, X1,..., XNn- 1]T Assuming
that we wish to use M disjoint subblocks of equal size,
partition the block X into M disjoint subblocks repre-
sented by Y, m = 1,2,..., M. In other words, all sub-
carrier positions in Y;, which are already represented in
another subblock are set to zero. Mathematically,

M
X=Z!Y,,. m

Next, we need to determine which of the M subblocks
should have their amplitudes expanded as shown in Fig.
5. Let am be a factor which is 3 if the amplitude of
subblock m is to be expanded and 1 if it is to remain the
same. Then,

M
= E amYm, (8)
m=1

and in the time domain,
M M
= z am JFFT (Y} = Z GmZm- 9)
m=1 m=]

In (9), the linearity of IFFT is exploited.

To begin, assume that @, = 1 for all m and compute z’
using (9) and then calculate the resulting PAPR. Expand
the amplitudes of elements of the first block by setting a;
equal to 3 and recompute PAPR. If the new PAPR is less
than that in the previous step, retain the new amplitudes
otherwise a; goes back to 1. The algorithm continues
until all the possible M blocks are explored in this fashion.

V. SIMULATION RESULTS

Figs. 6 and 7 show complementary cumulative distri-
bution function (CCDF) of a 128-carrier OFDM-CPM
system with 2 = 1/2 and h = 2/3 respectively when
the proposed algorithm is used. The simulation was run
for 10,000 OFDM blocks and the transmitted signal was
oversampled by a factor of four which is sufficient to cap-
ture the peaks. It can be seen that the PAPR for h =1/2
is marginally better than for h = 2/3 when using the pro-
posed algorithm. We investigated PAPR performance for
a number of h values and observed that the PAPR for var-
ious values of h differs only slightly. This gives additional
advantage as the system designer need not worry about
the PAPR performance while choosing h for an OFDM-
CPM system. For h = 1/2, the unmodified OFDM signal
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has a PAPR of 11.24 dB for 0.1% of the blocks. By using
the proposed scheme with 8 clusters (i.e., 16 symbols in
each cluster), the 0.1% PAPR reduces to 8.78 dB—a gain
of 2.46 dB. As we increase the number of clusters (which
corresponds to decreasing the number of symbols in each
cluster), PAPR reduces even further and for 32 clusters,
the 0.1% PAPR is 7.20 dB—a gain of 4.04 dB.

PrIPAPR > PAR)

7 8 9
PAP, (d8)

Fig. 6. Compl t ive distribution function of a 128-
cm:;rOPDMaCPMmhwwnumb«o{dmwh
h=
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Fig. 7. Complement lative di function of a 128-

m’ri;l‘ OFDM-CPM lystam for various number of clusters with
h=

Although we have demonstrated the usefulness of this
algorithm for OFDM-CPM signals, the algorithm can also
be used for typical OFDM signals with PSK or QAM
mappers. The PSK constellation can be expanded the
same way as CPM constellation is expanded to obtain
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multiamplitude constellation. Then the proposed algo-
rithm can be applied for reduction of PAPR. Similarly,
QAM constellation can be expanded as proposed in [27]
and the proposed algorithm can be used for reduction of
PAPR.

VI. CONCLUSIONS

PAPR of OFDM-CPM signals can be reduced by more
than 4 dB when multiamplitude CPM signals are used
along with partial transmit sequences. The complexity
and overhead of proposed algorithm is minimal and no
additional information need to be transmitted. The pro-
posed algorithm is also applicable to OFDM-PSK and
-QAM signals for reduction of PAPR.
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