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Abstract 
Existing estimation frameworks generally provide one-size-fits-all solutions that fail to produce 

accurate estimates in most environments. Research has shown that the accomplishment of accurate 
effort estimates is a long-term process that, above all, requires the extensive collection of effort 
estimation data by each organization. Collected data is generally characterized by a set of attributes 
that are believed to affect the development effort. The attributes that most affect development effort 
vary widely depending on the type of product being developed and the environment in which it is being 
developed. Thus, any new estimation framework must offer the flexibility of customizable attribute 
selection. Moreover, such attributes could provide the ability to incorporate empirical evidence and 
expert judgment into the effort estimation framework. Finally, because software is virtual and therefore 
intangible, the most important software metrics are notorious for being subjective according to the 
experience of the estimator. Consequently, a measurement and inference system that is robust to 
subjectivity and uncertainty must be in place. The Effort Estimation Framework with Customizable 
Attribute Selection (EEF-CAS) presented in this paper has been designed with the above requirements 
in mind. It is accompanied with four preparation process steps that allow for any organization 
implementing it to establish an estimation process. This estimation process facilitates data collection, 
framework customization to the organization’s needs, its calibration with the organization’s data, and 
the capability of continual improvement. The proposed framework described in this paper was 
validated in a real software development organization. 
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1. Introduction 
 

Software effort estimation has attracted, and continues to attract, significant research attention. In 
2007, Jørgensen and Shepperd [1] reviewed 304 software estimation papers from 76 journals. Even 
though this survey did not include research published in conference proceedings, it illustrated the great 
challenge of software effort estimation as well as its complexity and significance. 

This considerable attention has resulted from the need for accurate effort estimates for contract 
bidding, project planning and control, budgeting, and risk analysis. Based on these estimates, key 
project decisions are made, feasible performance objectives are defined, and schedules are set up. 
Overestimation leads to lost bids for projects, while underestimation leads to runaway projects and 
unsatisfied customers.  Unfortunately, software effort estimation still remains fairly inaccurate: on 
average, software projects expend thirty to forty percent more effort than estimated [2]. The reasons for 
this are numerous and include intrinsic software complexity, uncertainties in the software development 
process, dynamic and interdependent product and process variables, lack of software data, and diversity 
of software products and development methods. 

Yet, as the software industry continues to expand in wide-ranging and far-reaching directions, its 
products becoming vital components of every other industry in the world, it is important that accurate 
estimates no longer be perceived as luxuries but as essential information to the business of software 
development.  Thus, there exists a need for a reliable software development effort estimation 
framework.  

Even though the majority of software estimation research focuses on formal models [1], there is no 
conclusive evidence that formal models produce more accurate estimates than expert estimation [3]. An 
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approach is considered an expert estimation if the final quantification step which produces the actual 
estimate is a judgmental process; an expert assesses the effort based on available information. 
Nevertheless, intuition is part of the estimation process. On the other hand, if the final quantification 
step is mechanical, the approach is categorized as a formal model. Furthermore, Jørgensen’s survey [3] 
found that expert estimation produced more accurate estimates in ten of the sixteen studies reviewed. 
Moreover, expert estimation  approaches are, by large, the most commonly used approaches in industry 
[1, 2].  

Fenton and Neil [4] developed a list of the desired characteristics that a software development effort 
estimation framework must have.  The characteristics they list are: 

 The ability to handle diverse process and product variables 
 The ability to incorporate empirical evidence and expert judgment 
 The ability to determine genuine cause and effect relationships 
 The ability to handle uncertainty 
 The ability to handle incomplete information 
Other studies have identified further gaps in current software estimation research, such as the need 

to explore estimation methods in real-life estimation situations [1], the need to use newer data sets [1], 
the importance of feature selection [5], and the need for “white box” approaches which can explain 
cause-effect relationships [4, 6]. 

In response to these concerns, the Effort Estimation Framework with Customizable Attribute 
Selection (EEF-CAS) is proposed in this research. In the EEF-CAS attribute selection step, the 
organization selects the factors that it believes most influence the development task effort. These 
factors include any feature that can affect the amount of effort required, including system 
characteristics and personal skills. Therefore, EEF-CAS can accommodate different systems and 
personal skills.  

Multilayer feedforward neural networks are used to model the relationship between development 
effort and the factors that affect it, while fuzzy logic is incorporated to deal with the uncertainty and 
subjectivity present in these factors. And finally, rules (which can be validated by experts) are 
extracted from a trained neural network and embedded into the Adaptive Neuro-Fuzzy Inference 
System (ANFIS). The Effort Estimation Framework with Customizable Attribute Selection (EEF-CAS) 
thus should be able to handle diverse, organization-specific variables in its attribute selection stage, 
incorporate empirical evidence using neural networks, handle imprecision using fuzzy logic, and 
establish cause-effect relationships through rule extraction from a neural network  

The remainder of the paper is organized as follows: related work is reviewed in Section 2, while 
Section 3 portrays the proposed EEF-CAS. Section 4 depicts a case study; limitations of this work are 
presented in Section 5; and contributions and conclusions are drawn in Section 6. 

 
2. Related work 

 
There are three different categories of studies related to this research. The first category, described 

in Section 2.1, covers existing frameworks for software effort estimation. The second category, 
presented in Section 2.2, consists of studies which use a variety of soft computing approaches for effort 
estimation. The third category, described in Section 2.3, contains studies that deal with identification of 
influential factors for software effort estimation. 

 
2.1. Frameworks for software effort estimation 

 
A number of frameworks for software effort estimation have been proposed by various authors, 

including Shukla and Misra [8], Pendharkar and Rodger [9], Sharma and Verma [10], Ahmed et al. 
[11], and Huang et al. [12]. The work of Shukla and Misra [8] focused on effort estimation for software 
maintenance, while the other frameworks, as well as the proposed EEF-CAS, deal with estimation for 
software development. Pendharkar and Rodger [9] used a distributed problem-solving approach. Their 
software effort estimation model is based on four specific project attributes: team size, software size, 
language type, and CASE tool. The proposed EEF-CAS, however, is more flexible and allows the 
estimator to choose the project attributes. 
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Similar to this study, the three frameworks proposed by Sharma and Verma [10], Ahmed et al. [11], 
and Huang et al. [12] also used fuzzy logic. However, in contrast to this work, all  three studies were 
based on the COCOMO model. Sharma and Verma [10] extended COCOMO by incorporating 
fuzziness into size measurement, mode of development, and cost drivers. Ahmed et al. [11] proposed 
an adaptive fuzzy logic-based framework which consisted of two parts corresponding to the two parts 
of the COCOMO intermediate model: fuzzy COCOMO for nominal effort and fuzzy adjustment 
factors to fuzzify the COCOMO cost drivers. Huang et al. [12] used COCOMO as the algorithmic 
model within their framework; nevertheless, this default algorithmic model can be replaced by another. 
Another similarity between the work of Huang et al. [12] and this study is the use of an adaptive neuro-
fuzzy inference system (ANFIS). However, while Huang et al. used ANFIS to prepare input variables 
for the algorithmic model, we have used it in the final, optional model step for fine-tuning of fuzzy sets.  

 
2.2. Soft computing approaches for effort estimation 

 
Soft computing approaches to estimate effort are numerous; therefore, only a few representative 

studies are discussed here. Boetticher [13] used a multilayer backpropagation network to predict actual 
effort. Although this approach contains some novel ideas, the quantitative inputs must be known at a 
level of detail that is often impossible at the time estimates are created. Finnie and Wittig [14] also 
conducted experiments using neural networks. Both these studies showed that for estimation using 
neural networks, having more input attributes than the estimated size of the software yields more 
accurate results. 

In an attempt to build on the success of neural networks while avoiding the reasoning opacity that 
accompanies their use, Huang used neuro-fuzzy logic to estimate software development effort [15]. He 
did so by fuzzifying the inputs of the COCOMO model and then used them with data to train a neuro-
fuzzy system. Although the resulting neuro-fuzzy model outperformed COCOMO, its potential for 
further improvement is questionable because the model uses the COCOMO regression equation instead 
of rules to infer estimates. By doing so, the model inherits the limitations of the COCOMO regression 
technique. 

Idri and Elyassami [6] proposed the Fuzzy ID3 Decision Tree, which integrates ID3 decision trees 
with fuzzy logic. The decision-tree technique is a white-box approach which can provide explanations 
of cause-effect relationships while fuzzy logic handles uncertain and imprecise data. Azzeh et al. [7] 
proposed Fuzzy Grey Relational Analysis, which combined fuzzy set theory with Grey Relational 
Analysis. Bhatnagar et al. [16] provided a review of software effort estimation studies based on fuzzy 
logic. Even though this review is not comprehensive, clearly a number of studies have built upon the 
COCOMO model. By contrast, COCOMO does not form part of the EEF-CAS approach.  

 
2.3. Factors influencing software effort estimation 

 
The number and type of factors that are considered influential differ among estimation models and 

techniques. In practice, such factors vary greatly depending on the development environment and the 
type of system being built. However, the factors that are often found to have a strong effect on software 
development effort are expert judgment, task implementer capability, and complexity. 

Expert judgment: Jørgensen [17] summarized a number of studies on expert estimation, including 
how often it has been used in the software development industry, why it is preferred, and how well it 
performs compared to other estimation models. This study revealed that informal expert estimation is 
the most widely used estimation technique in companies all over the world. Although the results show 
that no existing effort estimation model is very accurate, they also show that experts are useful 
resources for estimation. In fact, most industry and academic researchers agree that an expert’s opinion 
is not only useful but often necessary when making estimates [18–20]. Consequently, expert judgment 
is taken into account by giving the expert the ability to select the attributes that are believed to most 
influence software development task effort by the organization implementing the EEF-CAS.  

Task implementer capability: another important factor that influences the estimated effort is the 
quality and capability of the task implementer [18, 19, 21]. Therefore, any estimation model must 
include implementer capability as one of its inputs. However, this can be challenging when software 
effort is being determined for a more granular task and the identity of the task implementer is known, 
because organizations can then be reluctant to evaluate the capability of that implementer. This 
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reluctance is due to the existing confidentiality agreement between employer and employee, which 
such an evaluation could breach, and to the decrease in morale that a low evaluation would produce. 
Therefore, in some organizations, it may be impossible to include implementer capability in the 
evaluation. In this case, other inputs can be included that evaluate the implementer’s level of 
familiarity with the technology, functionality, language, and domain associated with the task. Hence, in 
the proposed EEF-CAS, the estimator can select such profiling attributes. 

Complexity: this is another attribute that is considered to have a strong effect on software 
development effort [19–21]. Glass [18] has noted that for every 25% increase in problem complexity, 
there is a 100% increase in the complexity of the software solution. Moreover, managers consider 
complexity to be the most significant factor in project estimation [21]. 

Khalidi et al. [22] performed a regression analysis over six public cost estimation data sets to select 
a set of attributes which strongly affect the effort estimate. For each data set, they determined the most 
effective attributes. Next, they compared the results and proposed a standard set of metrics. The 
flexibility of the proposed EEF-CAS enables the estimator to select the profiling attributes that they 
believe influence their software development task effort. 

 
3. The effort estimation framework with customizable attribute selection 

 
The Effort Estimation Framework with Customizable Attribute Selection (EEF-CAS) has been 

designed to include several desired characteristics which are lacking in existing estimation frameworks. 
Specifically, EEF-CAS offers the following features: 

 Diverse variables are handled in the attribute selection stage when profiling attributes are 
chosen by the estimator. 

 Empirical evidence is incorporated through the use of historical data for neural network 
training. 

 Imprecision and uncertainties are handled using fuzzy logic inference. 
 Cause-effect relationships are determined by rule extraction from the neural network. 

Fig. 1 depicts the EEF-CAS preparation process. As shown, there are four preparation steps that 
must be completed before the EEF-CAS is closely customized to the organization’s environment and 
ready for use:  

1. Attribute selection 
2. Data set separation for  

a. Qualitative attributes 
b. Quantitative attributes 

3. Neural network training  
4. Rule extraction and ANFIS implementation.  

In the first step, qualitative and quantitative profiling attributes that are believed to most influence 
software development task effort are selected by the organization implementing the EEF-CAS. These 
attributes are defined and a measuring system is applied to each of them, allowing them to function as 
metrics. These attributes then serve as inputs to the EEF-CAS and each software development task is 
profiled with them. The profile, together with the actual effort required to complete the task (known 
once the task has been completed) are considered as one data point. When a sufficient amount of data 
points have been collected, the second step of the preparation process begins:  The values of each 
attribute are separated into fuzzy and Boolean sets. The Boolean sets allow the attribute values to be 
transformed into Boolean data. The fuzzy sets are not used until Step 4 of the preparation process. The 
third step consists of using the Boolean data to train neural networks where the output of the neural 
network is estimated effort. In the fourth and final step, rules that model the relationship between the 
profiling attributes and development effort are extracted from the most successfully trained neural 
network of Step 3. They are then embedded into an adaptive neuro-fuzzy inference system, as are the 
fuzzy sets determined in Step 2. Finally, the historical data collected is used, once again, to train the 
ANFIS and fine-tune the fuzzy sets. At this point, the EEF-CAS is calibrated to the organization’s 
environment and ready to be used to estimate future software development tasks.  
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Figure 1. The Effort Estimation Framework with Customizable Attribute Selection (EEF-CAS) 

 
3.1. Step 1: Attribute selection 

 
A profiling attribute is a measurable system characteristic, personal skill, or anything else that can 

affect the amount of effort required to complete a software development task.  
Research has shown that of the hundreds of parameters which can affect software development 

effort, only a few may influence productivity in a given environment [23]. Therefore, the first EEF-
CAS step allows the estimator to select the factors that it believes most influence development effort, 
given their product and the environment in which they operate. To enable each organization to select 
the few attributes that most affect its productivity, it is recommended that many attributes be initially 
selected for measurement and recording. Those that turn out to be irrelevant during the neural network 
training stage, EEF-CAS Step 3, can be discarded, and the most strongly predictive ones can be kept. 
Ideally, the final number of profiling attributes selected as inputs to the EEF-CAS should be small. The 
reason for this is that the EEF-CAS uses a neural network to learn input-output relationships from 
historical data, and the larger the number of input attributes, the larger will be the volume of data 
needed to train the neural network successfully. In fact, the number of data points needed to train a 
neural network grows exponentially with additional inputs [24]. 

The EEF-CAS can accommodate both quantitative and qualitative profiling attributes. Although 
quantitative attributes can be directly used as numbers, qualitative attributes must be clearly defined to 
indicate what is being measured. 

 
3.1.1. Defining and applying the measuring system 

 
The EEF-CAS qualitative attribute measuring system was designed to allow the use of qualitative 

attributes and to enable each such attribute to be measured according to the needs of the organization 
using it. Such a measuring system requires that each qualitative attribute be defined and then be further 
decomposed into sub-attributes. Each sub-attribute should be a factor that affects the evaluation of the 
profiling attribute. Once the user evaluates the sub-attributes, their values can be averaged and used as 
the value of the overall profiling attribute. To facilitate this process, Tables 1 and 2 were designed and 
should be completed for each selected qualitative profiling attribute. Table 1 should also be used to 
define quantitative attributes.  
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2. Data Set 
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3. Neural Network 
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Table 1. Format for defining profiling attributes 
Name The name of the attribute and any short names used for it. 
Definition A clear and concise definition that indicates what is being measured by the attribute. 

All attributes should be defined in terms of how they affect effort. 
Rationale The rationale used to select the attribute. One or more examples may be given to 

clarify the rationale. 
Implementation A way of combining all the sub-attributes into a single unit of measurement (usually 

the arithmetic mean). Also, any clarifying notes on how the attribute should be 
perceived or evaluated.  

 
Table 2. Format for defining profiling sub-attributes 

Sub-Attribute Name 
Definition A clear and concise definition of the sub-attribute 
Definitions of 
Scale Values 

Low  The definition of the “Low” scale value 
for this particular sub-attribute. 

An arrow depicting the direction 
in which the effort estimate 
varies with increasing sub-
attribute value. 

Medium-Low No definition required. 
Medium The definition of the “Medium” scale 

value for this particular sub-attribute. 
Medium-High No definition required. 
High The definition of the “High” scale value 

for this particular sub-attribute. 

 
The definitions of the scale values required in Table 2 serve as guidelines for the estimator. Each 

scale value corresponds to a number between one and five, with one corresponding to the Low set and 
five corresponding to the High set. The overall profiling attribute value is the arithmetic mean of the 
values of its sub-attributes. 

Although breaking down profiling attributes into sub-attributes does lengthen the process, it is 
beneficial in the long term because it enables the collection of more accurate data. Qualitative attributes 
that affect software development effort usually encompass several aspects of the quality they describe. 
For example, when defining the required reliability of a software system, one could consider how a 
system failure would affect the environment and the users of the system (i.e., a mere inconvenience 
versus endangerment of human life), the acceptable frequency of failures (mean time to failure, or 
MTTF), and the acceptable repair time (mean time to repair, or MTTR). Although all three of these 
factors affect the reliability of a system, they do so in different ways, often resulting in different 
evaluations. Therefore, clustering these three factors and measuring them as one would introduce a 
large amount of uncertainty and inaccuracy into the measurement. On the other hand, decomposing the 
attribute into sub-attributes makes it possible to collect more accurate data. 

Table 3 shows the application of Table 1 to the Reliability profiling attribute, and Table 4 shows the 
application of Table 2 to its sub-attributes. 

 
3.1.2. Data collection 
 

After profiling attributes have been chosen and defined and the qualitative data measuring system 
has been established, data collection can commence. However, the question remains of what is a 
sufficient number of data points. Research has shown that the number of training data points required 
for a neural network that contains W weighted connections is given by Baum and Haussler [25]: 


W

m 
, 

where m is the number of training data points and ε is the allowable fraction of error on the training 
set. If ε is assumed to be less than 0.125, then approximately ten training data points are required for 
each weighted connection in the neural network. Therefore, assuming that an organization knows the 
largest network architecture to be used in EEF-CAS Step 3, it must collect at least ten times as many 
data points as the number of weighted connections within it. 
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Table 3. The Reliability profiling attribute 
Name Reliability 
Definition The degree of reliability required from the component or functionality implemented 

in the task. 
Rationale A task that involves the development of a highly reliable component or 

functionality generally requires more effort. 
Implementation Each sub-attribute is evaluated as Low, Medium-Low, Medium, Medium-High, or 

High, corresponding to values between 1 and 5, respectively. The average of the 
sub-attribute values is the overall attribute value.  

 
Table 4. Definition of Reliability sub-attributes 

Criticality 
Definition The problem created if the component or functionality implemented in this task fails. 
Definitions of 
Scale Values 

Low  No critical data will be lost.   
Medium Some business data may be lost causing a day’s work set back. 
High Business data will be lost causing a major set back 

Mean Time to Failure (MTTF) 
Definition The degree of importance that the particular component/functionality being implemented 

should rarely fail. 
Definitions of 
Scale Values 

Low  May fail often (once every few days).  
Medium May fail between once a month and once in three months. 
High Should not fail more than once in six months.  

Mean Time to Repair (MTTR) 
Definition The degree of importance that the particular component/functionality being implemented in 

the task have a short repair time.  
Definitions of 
Scale Values 

Low  Not a significant problem if the component/ functionality is down 
for a week or less. 

 

Medium Important that it not be down for more than a day. 
High Very important that it not be down for more than an hour. 

 
3.2. Step 2: Data set separation 

 
The second EEF-CAS step is data set separation. To be able to extract rules from a trained neural 

network using the rule-extraction technique, the data with which the neural network is trained must be 
Boolean rather than continuous. Subsection 3.2.1 describes the separation of the range of values for 
qualitative attributes into fuzzy sets and then into Boolean sets, while Subsection 3.2.2 describes the 
separation of the range of values for quantitative attributes into Boolean sets and then into fuzzy sets. 
Note that the data set separation process must also be applied to the output attribute, effort.  

 
3.2.1. Data set separation for qualitative attributes 

 
Each qualitative profiling attribute can have a value between one and five, and therefore when these 

values are normalized, the range of values becomes 0.2 to one. The value zero is reserved to indicate 
the value “not applicable”.  

Next, the boundaries of the fuzzy sets are determined. Each qualitative attribute is separated into 
three fuzzy sets, Low, Medium, and High, as shown in Fig. 2 [26]. The generalized bell function was 
selected as the membership function for two reasons: it is nonlinearly smooth, and it offers three 
adaptable parameters with which the shape of the function can be customized during ANFIS training 
[27]. 

The boundaries of the fuzzy sets Low and Medium are determined so that the crossover point for 
each set is at the Medium-Low value of two, or 0.4 when normalized, as shown in Fig. 2. Likewise, the 
boundaries of the fuzzy sets Medium and High can be determined so that the crossover point for each 
set is at the Medium-High value of four, or 0.8 when normalized. The crossover point of a fuzzy set A 
is any point where μA(x) =0.5. The rationale for locating the fuzzy set crossover points at these values is 
simple and straightforward: the points Medium-Low and Medium-High are designed to be the points 
halfway between one set and the next one. Therefore, it is only logical that they would be used as the 
fuzzy-set crossover points. Fig. 2 illustrates this concept by showing that the crossover points of the 
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fuzzy sets occur at the Medium-Low and Medium-High values. This condition determines the values for 
parameters a and b of the generalized bell function. In addition, the center of each of the membership 
functions, the parameter c of the generalized bell function, is located at the corresponding value that it 
represents, as illustrated by the dashed lines. For example, the center of the generalized bell function 
representing fuzzy set Low is at 0.2. 
 

 
Figure 2. Fuzzy sets of qualitative profiling attributes 

 
After the fuzzy sets have been determined, the Boolean sets can be established. The boundaries of 

the Boolean sets should be located at the crossover points of each fuzzy set. The points at the 
boundaries should be included in the set that has the smaller range of values included. Therefore, data 
points with qualitative attribute values of 0.4 should be included in the Low set.  

Once the boundaries of the Boolean sets have been determined, the data value transformation from 
continuous to Boolean can proceed. Each continuous value is transformed into a three-element Boolean 
vector, where one signifies the set to which the value belongs and zero signifies the two sets to which it 
does not. The Boolean vector’s first element represents the Low set, its second element represents the 
Medium set, and its third element represents the High set, i.e., [Low Medium High]. Only one of the 
three sets must be set to one, and the other two must be set to zero. For example, Table 5 shows a 
fictional data point profiled by two qualitative attributes. The first row contains attribute values and the 
overall data point in continuous vector format, [0.633 0.25]. The second row contains the Boolean 
transformation of the data point shown in the first row. The Attribute 1 value has been transformed into 
[0 1 0] because the value 0.633 falls within the bounds of the Medium set. The Attribute 2 value has 
been transformed into [1 0 0] because the value 0.25 belongs to the Low set. 

 
Table 5. Conversion of a continuous data point into Boolean format 

Format Qualitative 
Attribute 1  

Qualitative 
Attribute 2  

Data Point  

Continuous 0.633 0.25 [0.633 0.25] 
Boolean [0 1 0] [1 0 0] [[0 1 0] [1 0 0]] 

 
3.2.2. Data set separation for quantitative attributes 

 
Because the range and distribution of values used for quantitative attributes is organization-

dependent, it is challenging to define an exact process for separating quantitative attribute values into 
sets. However, guidelines are provided here that should be followed when determining these sets.  

First and foremost, each Boolean set must contain a sufficient number of data points so that the 
neural network is able to associate certain input values with that particular set. If only the minimum 
number of points has been collected (i.e., ten times the number of weighted connections in the largest 
neural network architecture to be used), the quantitative-attribute Boolean sets can be separated so that 
each set contains an approximately equal amount of data. This will ensure that each neural-network 
training set contains enough data for the neural network to learn. If the amount of data collected greatly 
exceeds the minimum required amount, then other approaches can be used, such as self-organizing 
maps or clustering algorithms. 

In most cases, because data collection takes a long time, most companies will start implementing the 
second EEF-CAS step once they have gathered what they consider to be sufficient data. In this case, 
the Boolean set boundaries must be determined based on an equal-data-amount criterion.  

Once the Boolean set boundaries have been determined, the fuzzy set membership functions can be 
defined for the sets of quantitative profiling attributes. The generalized bell function is the membership 
function of choice. The width of each bell membership function, which is controlled by the parameter a, 

 
b

a

cx
cbaxbell

2

1

1
,,;




 [26] 
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should be equal to the width of the corresponding Boolean set. Moreover, the center of the generalized 
membership function of each fuzzy set, which is controlled by the parameter c, should be located at the 
median value of the set it represents. For example, to determine where the center of the generalized bell 
membership function of the fuzzy set Low should be located, the median of the data values contained in 
the Boolean set Low should be used. The reason why the median, rather than the mean, was chosen as 
the center of the generalized bell membership functions was that the finite breakdown point of the 
median is much higher than that of the mean [28]. The finite breakdown point is the smallest 
proportion of outliers that can result in the mean or the median being arbitrarily large or small for a 
given set of observations [28].  

Finally, for the quantitative output attribute, Effort, no fuzzy sets are required because the zero-order 
Sugeno inference system implemented in the ANFIS does not require fuzzy sets for the output attribute. 
Instead, one constant value must be selected to represent each output set. For the same reasons 
discussed above, the median is the preferred representative value for each output attribute set.  

 
3.3. Step 3: Neural network training 

 
This third step of EEF-CAS, neural network training, is performed using Boolean data from the data 

set separation step. This step involves to some extent trial and error because of the many different 
factors that can influence how successfully a neural network can be trained. In this section, the three 
most significant factors will be discussed: the inputs, the number of hidden neurons, and the number of 
epochs. 

The most important factors are the inputs: the stronger the relationship between the inputs and the 
outputs, the easier it is for the neural network to learn the relationship [29]. To determine the 
combination of profiling attributes that have the greatest influence on development effort, different 
combinations of the inputs must be tested. The number of profiling attributes collected and the number 
of sets defined for each attribute determine the number of inputs to the network. For example, if three 
profiling attributes are selected, and the values of each one are separated into three sets, Low, Medium, 
and High, then the neural network will have nine inputs.  

The next factor that affects neural network training is the number of neurons used in the middle 
(hidden) layer. As the number of neurons in the hidden layer increases, so does the accuracy of the 
neural network in predicting the output of the training data [30]. However, if the number of hidden 
neurons is too large, the network loses its ability to generalize and models itself too closely to the 
training data. Consequently, over-fitting occurs, and the network performs well when the training data 
are used, but poorly when new data are entered [30]. Although several methods have been proposed to 
determine the number of hidden-layer neurons [30–32], at this stage of this research, a trial-and-error 
process has been used. Several different networks with varying numbers of hidden neurons were 
trained and tested, and the architecture which yielded the best results in accurately predicting both 
training and testing data was chosen.  

Finally, the number of training epochs can be varied to determine whether training the neural 
networks with more epochs yields significantly more accurate results. Although it has been shown that 
most networks can be successfully trained with 1000 epochs, this number can sometimes vary [33].  

 
3.4. Step 4: Rule extraction and ANFIS implementation 

 
The final EEF-CAS step is optional and consists of rule extraction and ANFIS implementation. 

Upon its completion, the EEF-CAS can be used as a effort estimator for software development tasks. 
The framework is functional without this step, but its omission results in the inability to establish 
cause-effect relationships because rule extraction from the neural network will not be performed.  

 
3.4.1. Rule extraction  

 
Rules are extracted from the neural network that was most successfully trained in Step 3. 

Specifically, the most general rules are extracted from its hidden-layer neurons and its output-layer 
neurons and then combined to create rules that model the relationship between the profiling attributes 
and the output effort.  
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The framework can accommodate different rule extraction techniques, including the decomposition 
approach in which the focus is on extracting rules at the level of individual hidden and output neurons 
[34]. Each hidden and output neuron is interpreted as a Boolean rule, and the rules are extracted by 
finding combinations of incoming weights whose sum exceeds the threshold of the neuron. Specifically, 
the approach proposed by Krishnan et al. [35] has been used here, which provides a simple yet efficient 
technique for rule extraction from feedforward neural networks with Boolean inputs. By sorting the 
input weights to a neuron and ordering the weights suitably, Krishnan et al. pruned the search space, 
increasing algorithm efficiency. 

 
3.4.2. ANFIS implementation 

 
Neuro-fuzzy systems combine fuzzy inference and neural computing to provide a mechanism that 

learns from data and is robust to uncertainty and incomplete data. Here, the Adaptive Neuro-Fuzzy 
Inference System (ANFIS) [36] is used, which combines Sugeno fuzzy inference [29, 37] with a 
multilayer feedforward neural network [38]. The rule base of a zero-order Sugeno ANFIS system must 
be known in advance, while the parameters of the membership functions used for the fuzzy sets of the 
inputs are adjusted during the training of the ANFIS system.  

The rules extracted from the neural network in the previous EEF-CAS step are embedded into an 
ANFIS system. For example, suppose that the following five rules were extracted from the neural 
network: 

IF Attribute 1 is Low AND Attribute 2 is Medium THEN Output is MML. 
IF Attribute 1 is High THEN Output is MH. 
IF Attribute 2 is Low THEN Output is ML. 
IF Attribute 1 is Medium AND Attribute 2 is Low THEN Output is MM. 
IF Attribute 1 is Medium AND Attribute 2 is High THEN Output is MMH. 
MML denotes the median of the set Med-Low, MH the median of the set High, and so on. The 

medians of the Output sets are determined in EEF-CAS Step 2. Fig. 3 shows the ANFIS system into 
which the rules would be embedded.  

Layer 1: Each neuron function is a bell membership function that corresponds to the fuzzy set of 
one of the input attributes, as determined in EEF-CAS Step 2. For example, the first neuron in the first 
layer is associated with the Attribute 1 fuzzy set Low1. Its output is the membership grade of Attribute 
1 in its fuzzy set Low1. 

Layer 2: Each neuron in this layer corresponds to the antecedent of one of the rules. For instance, 
the first neuron corresponds to the antecedent of the first rule, AR1. Its inputs are the membership grade 
of Attribute 1 in its fuzzy set Low1 and the membership grade of Attribute 2 in its fuzzy set Medium2. 
The output is the firing strength of the first rule. 

 
Figure 3. An ANFIS system upon which the EEF-CAS has been implemented 
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Layer 4: Each neuron i in this layer corresponds to the consequent of the rule represented by neuron 
i in the second layer. The output is the product of the consequent of the rule it represents and the rule’s 
firing strength. 

Layer 5: The outputs of the fourth layer neurons are summed and output as the effort estimate. 
Once the fuzzy sets, medians, and rules have been embedded into the ANFIS, the historical data 

collected in EEF-CAS Step 1 are used to train the ANFIS. By training the ANFIS with historical data, 
the bell-shaped fuzzy sets of the input profiling attributes are fine-tuned by having their a, b, and c 
parameters, representing the width, side slope, and center location of the bell function, modified 
according to historical data. Upon completion of training, the ANFIS is ready to be used for software 
effort estimation. 
 
4. Case study 
 

The evaluation of the proposed EEF-CAS was performed on a use case involving the Industrial 
Partner, a Fortune 500 company with a workforce of over 100,000 people worldwide and annual 
revenue of over $30 billion dollars. The data were collected during the development of three different 
products and two releases of each, for a total of six projects. The development team consisted of an 
average of six people, and the team was located on two different continents.  

Originally, the Industrial Partner estimated to have approximately 2000 historical data points 
scattered in different spreadsheet files. Therefore, the data had to be centralized before knowing the 
true value of the number of data points. Once the data was centralized into one common database, it 
was discovered than only about 1400 data points existed. Subsequently, data points that contained 
estimates but no actual values (i.e. bad data), and data points of tasks that did not belong to the 
implementation phase were also filtered out. Non-implementation tasks were filtered out because 
finding a common set of attributes for tasks of all phases of the software development cycle would be 
difficult.  

Furthermore, all implementation tasks with estimated or actual effort size of over 100 hours or 
magnitude of relative error (MRE) greater than 50% were filtered out, leaving only 313 data points. 
The reason for filtering out tasks with a MRE greater than 50 was that allowing a large range of MRE 
values required a very high volume of data points to train the neural network. Due to the fact that a 
high volume of data was not available, the MRE range was limited. Finally, tasks with estimated or 
actual effort size over 100 hours were filtered out because they were quite rare, and therefore the few 
data points that did exist would bias the neural network into creating an input-output relationship that 
was incorrect.  

The following sections describe and discuss the four steps of the EEF-CAS application together 
with the results achieved in each step. 

 
4.1. Step 1: Attribute selection 

 
Through collaboration with the Industrial Partner, it was decided to focus on the implementation 

phase because finding a common set of attributes for tasks of all phases of the software development 
cycle would be very challenging. After careful analysis of hundreds of metrics used in existing 
estimation models or researched internally by the Industrial Partner, the profiling attributes were 
selected for their usefulness, measurability, and significance. Each selected profiling attribute was 
defined and described using a set of sub-attributes into which it was decomposed. Initially, the 
following eight attributes were selected: Skill Level of Implementer, Familiarity with Technology, 
Familiarity with Programming Language, User Interface, Complexity, Familiarity with Functionality, 
Familiarity with Domain, and Estimated Size. Examples of profiling attributes (with its sub-attributes) 
are shown in Tables 6 and 7. 

After the profiling attributes were determined, clearly defined, and characterized by the measuring 
system, they were used to profile historical implementation tasks of the Industrial Partner. During the 
profiling process, it became apparent that the attribute Skill Level of Implementer would be difficult to 
use because the Industrial Partner considered its evaluation to be a breach of the confidentiality 
agreement between the employer and the employee. As a result, that attribute was removed from the 
profiling set. 
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Table 6. Description of Familiarity with Functionality 
Name Familiarity with Functionality, Functionality 
Definition The degree to which the implementer’s familiarity with the functionality influences the 

estimate.  
SUB-ATTRIBUTES 
Similarity The degree to which the current task resembles something that the implementer has 

previously implemented. 
Product 
Knowledge 

How familiar the implementer is with the application/product being developed. This will 
provide a measure of how well the implementer understands the effect of this 
component/functionality on existing components/functionality.  

Component 
Knowledge 

How familiar the implementer is with the component involved in the current task.  

 
Table 7. Description of Estimated Size 

Name Estimated Size 
Definition The degree to which the size of the task, in hours, influences the estimate. 

 
Because of the low volume of data available to train the neural networks, it was considered 

beneficial to use as few inputs as possible. Therefore, after all the historical tasks had been profiled, 
several tests were conducted to see whether any of the profiling attributes could be eliminated. Because 
the User Interface attribute was applicable only to certain implementation tasks and only forty percent 
of the data made use of it, it was decided that the data were insufficient to evaluate the significance of 
this attribute correctly. Consequently, the User Interface attribute was eliminated. 

In addition, several attributes were found to have equal values for a suspiciously large number of 
data points. It was suspected that the members of the development team who profiled the data 
perceived some of the “Familiarity with” attributes as very similar and therefore consistently evaluated 
these attributes similarly. Tests were conducted to evaluate the amount of similarity between the 
following attributes: Familiarity with Functionality, Familiarity with Technology, Familiarity with 
Domain, Familiarity with Programming Language, and Complexity. The Complexity attribute was 
included only to serve as a comparison measure. The results obtained are presented in Table 8.  

It is apparent that more than 55% of the data set contains the same values for the attributes 
Familiarity with Technology and Familiarity with Language. This degree of similarity between the two 
attributes was definitely abnormal, and therefore one of them had to be eliminated. It was determined 
that the attribute which showed the highest similarity with other attributes would be eliminated. At 
34.7%, the similarity between the Technology and Domain attributes was higher than that between the 
Language and Domain attributes (31.5%). Furthermore, at 22.3%, the similarity between the 
Technology and Functionality attributes was also higher than that between the Language and 
Functionality attributes (16.9%). Therefore, the Technology attribute was more often perceived to be 
the same as the Domain and Functionality attributes, compared to the Language attribute. As a result, 
the Familiarity with Technology attribute was eliminated, as shown by the shaded row in Table 7. 
Similar observations led to removal of the Familiarity with Domain attribute. 

The remaining attributes of Functionality and Language had a low degree of similarity between 
them (16.9%) and were therefore retained. Therefore, the Familiarity with Functionality, Familiarity 
with Language, Estimated Size, and Complexity attributes were used as inputs to neural network 
training.  

 
Table 8. Similarities between profiling attributes 

 Familiarity with 
Language 

Familiarity with 
Domain 

Familiarity with 
Functionality 

Complexity 

Familiarity with 
Technology 

55.7% 34.7% 22.3% 10.8% 

Familiarity with 
Language 

 31.5% 16.9% 10.8% 

Familiarity with 
Domain 

  25.8% 15% 

Familiarity with 
Functionality 

   9% 
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4.2. Step 2: Data set separation 
 
Each data point was defined by four profiling attributes: Complexity, Functionality, Language, 

Estimated Size, and the output attribute, Actual Effort. The qualitative profiling attributes Functionality,  
Language, and Complexity could take on any value between one and five, or when normalized, 
between 0.2 and one. The Estimated Size and Actual Effort attributes could take on any positive value 
between zero and one hundred. All the attribute values were normalized to be between 0 and 1.  

 
4.2.1. Qualitative profiling attributes 

 
The procedure described in Section 3.2 was used to separate the possible range of values into three 

fuzzy sets: Low, Medium, and High. The boundaries of the Boolean sets were located at the crossover 
points of each fuzzy set. Table 9 shows the Boolean transformation of the qualitative profiling 
attributes of the sample data to Boolean sets.  

 
Table 9. Sample qualitative attributes transformed into Boolean sets 

Complexity Functionality Language 
Continuous Boolean Continuous Boolean Continuous Boolean 
0.4 [1 0 0] 0.2 [1 0 0] 0.2 [1 0 0] 
0.9 [0 0 1] 0.4 [1 0 0] 0.8 [0 0 1] 
0.2 [1 0 0] 0.866667 [0 0 1] 0.7 [0 1 0] 

 
4.2.2. Quantitative attributes 

 
The remaining profiling attribute, Estimated Size, and the output attribute, Actual Effort, were not 

separated into sets because they were quantitative in nature. To determine Boolean sets and then fuzzy 
sets for these attributes, the equal-data-amount criterion was used. 

For the Estimated Size profiling attribute, the sets into which the data were separated are shown in 
Table 10. To illustrate the equal data principle that determined the boundaries of the sets, the 
percentage of data points within each set is also included. The same approach was applied to the output 
attribute, Actual Effort.  

 
Table 10. The Estimated Size Boolean sets 

Set Name Range of Values  
in the Set (hours) 

% of Data 
Points  

Median Boolean vector 

Low 0< Estimated Size <4 18.2% 1.83 [1 0 0 0 0 0] 
Medium-Low 4<= Estimated Size <8 17.9% 4.83 [0 1 0 0 0 0] 
Medium 8<= Estimated Size <11 17.9% 8 [0 0 1 0 0 0] 
Medium-High 11<= Estimated Size <17 16.0% 16 [0 0 0 1 0 0] 
High 17<= Estimated Size <30 15.0% 24 [0 0 0 0 1 0] 
Very High Estimated Size >=30 16.6% 42 [0 0 0 0 0 1] 

 
Once the Boolean sets had been determined, the fuzzy sets could be determined for the profiling 

attribute Estimated Size. For each set in Table 9, the median shown was used as the center of the 
generalized bell membership function, and the width of the membership function was based on the 
width of the Boolean set. The slope of the sides of each generalized bell function, which is controlled 
by the parameter b as described in Section 3.2.1, was set to two for all the sets. During the ANFIS 
training stage in Step 4, this parameter would be varied to optimize the results.  

 
4.3. Step 3: Neural network training 

 
The third step consists of training neural networks with the Boolean data and selecting the network 

that achieved the most accurate classification results. 
To determine the network architecture and the combination of inputs that would most accurately 

describe the factors affecting software implementation task effort, three parameters were varied during 
network training: inputs, number of hidden neurons, and number of training epochs. 
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In an attempt to discover the combination of one or more profiling attributes that best predicted the 
output of the neural network, the number and combinations of profiling attributes used as input to the 
neural network were varied. The four profiling attributes used as inputs created fifteen different 
combinations of from one to four attributes. Therefore, for every other parameter varied during the 
training phase, fifteen different input combinations had to be tested, resulting in fifteen experiments for 
each test case. In the figures, the inputs have been abbreviated using the first letter of the attribute 
name: L for Language, C for Complexity, F for Functionality and E for Estimated Size. 

To determine the number of hidden neurons, three different neural network architectures were used: 
one with fifteen neurons in the hidden layer, another with thirty-five, and a final one with fifty neurons.  

The final parameter varied was the number of epochs used to train the neural networks. In Test Case 
1, the number of epochs was limited to 1000; Test Case 2 involved the same experiments, but the 
number of epochs was increased to 5000.  

Network accuracy was evaluated by means of two measures: classification correctness and the 
Mean Squared Error (MSE). A correct classification was considered to be a point that was classified 
into the right output set. Nevertheless, software effort estimation research commonly uses Magnitude 
of Relative Error (MRE), Mean MRE (MMER), and prediction Pred(p) [6] as accuracy measures. 
However, this research used MSE because the Industrial Partner considered it the most suitable, 
primarily due to familiarity and use in other domains. 

 
4.3.1. Test case 1 

 
Fig. 4 and Fig. 5 show the results of testing all fifteen input combinations and all three network 

architectures when each of the networks was trained with 1000 epochs. The average percentage of 
correctly classified data points is shown in Fig. 4 and the average mean squared error (MSE) in Fig. 5. 
Overall, the trained networks performed poorly: the average percentage of correctly classified data 
points varied from 5.29% to 33.42%. The networks with only Estimated Size as input performed 
significantly better than the rest of the input combinations, especially with the network architecture 
with 50 hidden neurons. However, even at the highest data classification success rate of 33.42%, the 
results were too poor to enable accurate rule extraction from the network.  
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Figure 4. Test Case 1: Classification accuracy 
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Figure 5. Test Case 1: Mean squared error 

 
In terms of network architecture, Fig. 4 shows that changing the number of neurons in the hidden 

layer from thirty-five to fifty did not significantly improve network performance. The average increase 
in classification accuracy was only one percent between the two different network architectures. In fact, 
in experiments 3, 4, 7, 10, and 13, the network classification accuracy actually decreased with fifty 
neurons. On the other hand, the network architecture with thirty-five hidden neurons clearly 
outperformed the network with fifteen hidden neurons, especially in experiments 2, 5, 9, and 12 where 
the classification accuracy nearly doubled. 

The MSE values for this experiment were also high, ranging from approximately 0.12 when only 
Estimated Size was used to 0.35 when Language was the only network input. 
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4.3.2. Test case 2 
 
Fig. 6 and Fig. 7 show the results produced by training neural networks of all three architectures and 

all fifteen input combinations with 5000 epochs.  
It is interesting to note that although the average MSE of all experiments decreased significantly, 

the average percentage of accurately classified data points also decreased for some of the experiments. 
The classification performance of the network with fifty hidden neurons and Estimated Size as the only 
input increased to 48%, and in turn, all networks that included this profiling attribute as an input 
showed improved classification performance. For example, in Fig. 6, experiments 2, 5, 8, 9, 11, 12, 14, 
and 15 all showed higher classification accuracy than the same experiments in Fig. 4, regardless of the 
network architecture. However, most networks that did not include Estimated Size as an input 
decreased in classification accuracy. 

The lowest average MSE value observed was 0.081, when only Estimated Size was used as an input 
to the network architecture with fifty hidden neurons. Once again, this is a significantly high error rate 
that would not allow accurate rules to be extracted from the network. Further tests were conducted to 
determine whether increasing the number of training epochs to 10,000 would significantly increase the 
classification accuracy of any of the experiments; however, at best, only a 3% accuracy increase was 
observed. 
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Figure 6. Test Case 2: Classification accuracy 
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Figure 7 Test Case 2: Mean squared error 

 
4.3.3. Analysis and discussion 

 
It was believed that the poor results in Test Cases 1 and 2 could be due to several reasons: poor data 

set boundaries, lack of data for training the neural networks, or low data quality. Each of these 
hypotheses was examined, and further tests were conducted when possible. 

The first hypothesis stated that the poor results were caused by the poorly located boundaries of the 
sets into which the attributes Estimated Size and Actual Effort were separated. Specifically, the 
hypothesis said that the clustering of the sets of these two attributes, which was based on the equal-data 
criterion, was inadequate. To test this hypothesis, two more test cases were developed. In these two 
cases, the Estimated Size attribute was not separated into sets, but rather was simply normalized and 
entered into the neural networks as a value between zero and one. In addition, the output attribute, 
Actual Effort, was also normalized and not separated into sets, meaning that the networks had only one 
output neuron in their third layers.  
This change eliminated any error that was introduced by separating the two quantitative attributes into 
sets. A data point was considered to be correctly classified if the network output was within 20% of the 
actual effort. The idea was to emulate a network that estimated implementation tasks that were within 
20% of the actual value using what corresponds to the Pred(20) metric. This percentage was chosen 
from the work of Stutzke, which points out that typically an estimate within 20% of the actual effort is 
adequate for project cost and schedule estimation [20, 39]. 

Fig. 8 and Fig. 9 show the results of Test Case 3, where 1000 epochs were used to train each 
network, and Fig. 10 and Fig. 11 shows those of Test Case 4, where 5000 epochs were used. The 
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average MSE for all the network architectures decreased in both cases compared to the average MSE 
values of Test Case 1 (Fig. 4 and Fig. 5).  

In both Test Cases 3 and 4, the lowest MSE values, 0.0094 and 0.0046 respectively, were achieved 
when Estimated Size was the only input to the network architecture with fifty hidden neurons. 
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Figure 8. Test Case 3: Classification accuracy 
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Figure 9. Test Case 3: Mean squared error 
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Figure 10. Test Case 4: Classification accuracy 
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Figure 11. Test Case 4: Mean squared error. 

 
However, despite the lower MSE values, in comparison to Test Cases 1 and 2, the average 

percentage of correctly classified data points dropped. Overall, while the network was more 
successfully trained with the data when the quantitative attributes were not separated into sets, the 
classification accuracy dropped. This shows that the main problem was not the set boundaries 
determined in the second EEF-CAS step, as assumed in the first hypothesis. 

The second hypothesis was that the poor results were caused by the small amount of data. Because 
no more data points were available, there was no practical way of determining whether more data 
would yield better results. However, theoretically the findings of Baum and Haussler [25], which were 
summarized in Section 3.1.2, could be used to test this second hypothesis. Assuming an error of 0.125, 
for every weighted connection, there should be approximately ten training data points. In the best-case 
scenario, the network with the smallest number of weighted connections, the network consisted of 
three neurons in the first layer, corresponding to the sets of the single profiling attribute used as an 
input, fifteen hidden neurons in the middle layer, and six output neurons in the third layer. This 
network architecture would total 135 weighted connections, and, as a result, theoretically a minimum 
of 1350 data points would be required. This is a much larger number than the 313 data points that were 
available. The third hypothesis, which stated that the quality of the training data might have been low, 
leading to poor classification results, cannot be proved true or false due to the lack of data. If additional 
data were collected and if the classification accuracy continued to be low, then the data quality 
hypothesis could be further investigated.  

Overall, the data were insufficient to proceed to the fourth step of the EEF-CAS, rule extraction. 
However, given that only 313 data points were available, the results are promising. 
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4.4. Step 4: Rule extraction and ANFIS implementation 
 
EEF-CAS Step 4 could not be implemented in this research due to the low classification accuracy 

achieved in Step 3. Collection of additional data might improve the network accuracy to a point that 
would enable rule extraction and ANFIS implementation. However, at the moment, the Industrial 
Partner is not prepared to invest additional time and effort in data collection. Nevertheless, Section 3.4 
describes in detail how the full EEF-CAS implementation would be completed. 

 
5. Limitations 
 

The drawback of the proposed approach is the need to achieve relatively high classification 
accuracy in the EEF-CAS third step to proceed to the last step, rule extraction and ANFIS 
implementation. In the present case study, insufficient accuracy prevented completion of the last step. 
However, this step is optional because the framework is functional without it. An estimate is still 
produced, although because rule extraction from the neural network has been omitted, and thus cause-
effect relationships are not established. Performing this last step would also increase estimation 
accuracy because the fuzzy sets determined in Step 2 are fine-tuned in this step. 

In an attempt to increase practical application of this research as well as to address the lack of real-
life studies [1], the present use case consists of a real-life scenario involving a multinational industrial 
partner. This imposed the use of classification correctness and Mean Squared Error (MSE) as 
estimation metrics, rather than other measures typically used in software estimation, such as Magnitude 
of Relative Error (MRE), Mean MRE (MMER), and prediction Pred(p) [6]. Nevertheless, the industrial 
environment made it possible to examine the application of the proposed approach in a practical setting.  

Moreover, the real-life scenario provided an opportunity to demonstrate how the attribute selection 
step is conducted. At the same time, this scenario, in conjunction with the organization-specific 
attribute selection stage, prevented comparison of the estimation accuracy with that of other 
approaches. An accuracy comparison could possibly have been performed using public data sets such 
as COCOMO’81 [40] or ISBSG [41]; however, this would have limited how the EEF-CAS attribute 
selection step could be performed because this stage requires close involvement of  the organization 
implementing the estimation. If a public data set were used, the EEF-CAS attribute selection stage 
would have been limited to choosing attributes from the available set. Consequently, the definition of 
attributes and sub-attributes, data collection, attribute analysis, and selection could not have been 
performed. As a result, an essential part of the EEF-CAS would have been omitted. 
 
6. Conclusions 
 

Most software effort estimation research has focused on improving accuracy [1]. Specifically, much 
research has focused on formal models [1]; however, there is no conclusive evidence that formal 
models produce more accurate estimates than expert estimation [3]. Furthermore, expert estimation 
approaches prevail in industry [1, 2].  

Nevertheless, the ability to produce accurate software development effort estimates is essential to 
the software industry. Based on them project scope is determined, quality standards are set in place, 
and cost and schedule constraints are defined. Yet, software development effort estimates are often 
plagued by omissions, uncertainty, and bias [20]. Existing estimation models continue to frequently 
produce inaccurate estimates, instigating research studies that attempt to determine the properties they 
lack. After decades of such studies and practical experience, a number of deficiencies have been found 
that hinder existing estimation models from producing accurate estimates. This research focused on 
developing a new effort estimation model that amends those deficiencies by incorporating within it the 
following characteristics [4]: 

1. The ability to handle diverse process and product variables. 
2. The ability to incorporate empirical evidence and expert judgment. 
3. The ability to determine genuine cause and effect relationships. 
4. The ability to handle uncertainty. 
5. The ability to handle incomplete information. 
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Furthermore, the proposed Effort Estimation Framework with Customizable Attribute Selection 
(EEF-CAS) incorporates diverse, company-specific profiling attributes in the attribute selection stage, 
while empirical evidence is included through neural network training. Fuzzy logic addresses 
imprecision and uncertainty, and rule extraction from a neural network establishes cause-effect 
relationships.  

The EEF-CAS provides a flexible and customizable framework for software estimation in which 
components can be adjusted or substituted to accommodate a specific estimation environment. 
Different system characteristics and personal skills are accommodated in the attribute selection stage, 
where the estimator selects the factors that it believes most influence the task effort.  

Because few estimation studies exist in which evaluations are performed in real-life estimation 
scenarios [1], the EEF-CAS was evaluated on a case study involving a multinational industrial partner. 
Even though in the present case study, the last, optional EEF-CAS step could not be performed due to 
low classification accuracy in the third step, the results are promising. The EEF-CAS framework has 
satisfied the stated requirements; however, its success is highly dependent on the quality and amount of 
available data. The use of different, readily available software evaluation data sets might have achieved 
better classification, but it would have greatly restricted the attribute selection stage and would not 
have allowed observation of the framework in a real-life setting. 

The EEF-CAS as a framework identifies the main steps in the estimation process, providing 
flexibility of implementation. Consequently, in addition to applying EEF-CAS on a new use case, the 
authors plan to explore the proposed framework by applying different techniques in some of the steps, 
for example, exploring self-organizing maps or different clustering algorithms to determine boundaries 
for the quantitative attributes and making use of algorithms to determine better neural network 
architectures in Step 3. In conclusion, the Effort Estimation Framework with Customizable Attribute 
Selection proposed in this paper provides a successful foundation for overcoming many of the 
obstacles faced by existing software development effort estimation models. 
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