
EEF-CAS: An Effort Estimation Framework with Customizable Attribute
Selection

Besa Muslimi, *Katarina Grolinger, Miriam A.M. Capretz, Mark Benko
Department of Electrical and Computer Engineering, Faculty of Engineering, Western

University, London, Canada
bmuslimi@alumni.uwo.ca, {kgroling, mcapretz}@uwo.ca, markbenko@hotmail.com

*Corresponding Author

Abstract
Existing estimation frameworks generally provide one-size-fits-all solutions that fail to produce

accurate estimates in most environments. Research has shown that the accomplishment of accurate
effort estimates is a long-term process that, above all, requires the extensive collection of effort
estimation data by each organization. Collected data is generally characterized by a set of attributes
that are believed to affect the development effort. The attributes that most affect development effort
vary widely depending on the type of product being developed and the environment in which it is being
developed. Thus, any new estimation framework must offer the flexibility of customizable attribute
selection. Moreover, such attributes could provide the ability to incorporate empirical evidence and
expert judgment into the effort estimation framework. Finally, because software is virtual and therefore
intangible, the most important software metrics are notorious for being subjective according to the
experience of the estimator. Consequently, a measurement and inference system that is robust to
subjectivity and uncertainty must be in place. The Effort Estimation Framework with Customizable
Attribute Selection (EEF-CAS) presented in this paper has been designed with the above requirements
in mind. It is accompanied with four preparation process steps that allow for any organization
implementing it to establish an estimation process. This estimation process facilitates data collection,
framework customization to the organization’s needs, its calibration with the organization’s data, and
the capability of continual improvement. The proposed framework described in this paper was
validated in a real software development organization.

Keywords: Software Development Effort Estimation, Customizable Attribute Selection

 Expert Judgment, Empirical Evidence, Neuro-Fuzzy Inference

1. Introduction

Software effort estimation has attracted, and continues to attract, significant research attention. In
2007, Jørgensen and Shepperd [1] reviewed 304 software estimation papers from 76 journals. Even
though this survey did not include research published in conference proceedings, it illustrated the great
challenge of software effort estimation as well as its complexity and significance.

This considerable attention has resulted from the need for accurate effort estimates for contract
bidding, project planning and control, budgeting, and risk analysis. Based on these estimates, key
project decisions are made, feasible performance objectives are defined, and schedules are set up.
Overestimation leads to lost bids for projects, while underestimation leads to runaway projects and
unsatisfied customers. Unfortunately, software effort estimation still remains fairly inaccurate: on
average, software projects expend thirty to forty percent more effort than estimated [2]. The reasons for
this are numerous and include intrinsic software complexity, uncertainties in the software development
process, dynamic and interdependent product and process variables, lack of software data, and diversity
of software products and development methods.

Yet, as the software industry continues to expand in wide-ranging and far-reaching directions, its
products becoming vital components of every other industry in the world, it is important that accurate
estimates no longer be perceived as luxuries but as essential information to the business of software
development. Thus, there exists a need for a reliable software development effort estimation
framework.

Even though the majority of software estimation research focuses on formal models [1], there is no
conclusive evidence that formal models produce more accurate estimates than expert estimation [3]. An

EEF-CAS: An Effort Estimation Framework with Customizable Attribute Selection
Besa Muslimi, Katarina Grolinger, Miriam A.M. Capretz, Mark Benko

International Journal of Advancements in Computing Technology(IJACT)
Volume5, Number13, September 2013

14

approach is considered an expert estimation if the final quantification step which produces the actual
estimate is a judgmental process; an expert assesses the effort based on available information.
Nevertheless, intuition is part of the estimation process. On the other hand, if the final quantification
step is mechanical, the approach is categorized as a formal model. Furthermore, Jørgensen’s survey [3]
found that expert estimation produced more accurate estimates in ten of the sixteen studies reviewed.
Moreover, expert estimation approaches are, by large, the most commonly used approaches in industry
[1, 2].

Fenton and Neil [4] developed a list of the desired characteristics that a software development effort
estimation framework must have. The characteristics they list are:

 The ability to handle diverse process and product variables
 The ability to incorporate empirical evidence and expert judgment
 The ability to determine genuine cause and effect relationships
 The ability to handle uncertainty
 The ability to handle incomplete information
Other studies have identified further gaps in current software estimation research, such as the need

to explore estimation methods in real-life estimation situations [1], the need to use newer data sets [1],
the importance of feature selection [5], and the need for “white box” approaches which can explain
cause-effect relationships [4, 6].

In response to these concerns, the Effort Estimation Framework with Customizable Attribute
Selection (EEF-CAS) is proposed in this research. In the EEF-CAS attribute selection step, the
organization selects the factors that it believes most influence the development task effort. These
factors include any feature that can affect the amount of effort required, including system
characteristics and personal skills. Therefore, EEF-CAS can accommodate different systems and
personal skills.

Multilayer feedforward neural networks are used to model the relationship between development
effort and the factors that affect it, while fuzzy logic is incorporated to deal with the uncertainty and
subjectivity present in these factors. And finally, rules (which can be validated by experts) are
extracted from a trained neural network and embedded into the Adaptive Neuro-Fuzzy Inference
System (ANFIS). The Effort Estimation Framework with Customizable Attribute Selection (EEF-CAS)
thus should be able to handle diverse, organization-specific variables in its attribute selection stage,
incorporate empirical evidence using neural networks, handle imprecision using fuzzy logic, and
establish cause-effect relationships through rule extraction from a neural network

The remainder of the paper is organized as follows: related work is reviewed in Section 2, while
Section 3 portrays the proposed EEF-CAS. Section 4 depicts a case study; limitations of this work are
presented in Section 5; and contributions and conclusions are drawn in Section 6.

2. Related work

There are three different categories of studies related to this research. The first category, described

in Section 2.1, covers existing frameworks for software effort estimation. The second category,
presented in Section 2.2, consists of studies which use a variety of soft computing approaches for effort
estimation. The third category, described in Section 2.3, contains studies that deal with identification of
influential factors for software effort estimation.

2.1. Frameworks for software effort estimation

A number of frameworks for software effort estimation have been proposed by various authors,

including Shukla and Misra [8], Pendharkar and Rodger [9], Sharma and Verma [10], Ahmed et al.
[11], and Huang et al. [12]. The work of Shukla and Misra [8] focused on effort estimation for software
maintenance, while the other frameworks, as well as the proposed EEF-CAS, deal with estimation for
software development. Pendharkar and Rodger [9] used a distributed problem-solving approach. Their
software effort estimation model is based on four specific project attributes: team size, software size,
language type, and CASE tool. The proposed EEF-CAS, however, is more flexible and allows the
estimator to choose the project attributes.

EEF-CAS: An Effort Estimation Framework with Customizable Attribute Selection
Besa Muslimi, Katarina Grolinger, Miriam A.M. Capretz, Mark Benko

15

Similar to this study, the three frameworks proposed by Sharma and Verma [10], Ahmed et al. [11],
and Huang et al. [12] also used fuzzy logic. However, in contrast to this work, all three studies were
based on the COCOMO model. Sharma and Verma [10] extended COCOMO by incorporating
fuzziness into size measurement, mode of development, and cost drivers. Ahmed et al. [11] proposed
an adaptive fuzzy logic-based framework which consisted of two parts corresponding to the two parts
of the COCOMO intermediate model: fuzzy COCOMO for nominal effort and fuzzy adjustment
factors to fuzzify the COCOMO cost drivers. Huang et al. [12] used COCOMO as the algorithmic
model within their framework; nevertheless, this default algorithmic model can be replaced by another.
Another similarity between the work of Huang et al. [12] and this study is the use of an adaptive neuro-
fuzzy inference system (ANFIS). However, while Huang et al. used ANFIS to prepare input variables
for the algorithmic model, we have used it in the final, optional model step for fine-tuning of fuzzy sets.

2.2. Soft computing approaches for effort estimation

Soft computing approaches to estimate effort are numerous; therefore, only a few representative

studies are discussed here. Boetticher [13] used a multilayer backpropagation network to predict actual
effort. Although this approach contains some novel ideas, the quantitative inputs must be known at a
level of detail that is often impossible at the time estimates are created. Finnie and Wittig [14] also
conducted experiments using neural networks. Both these studies showed that for estimation using
neural networks, having more input attributes than the estimated size of the software yields more
accurate results.

In an attempt to build on the success of neural networks while avoiding the reasoning opacity that
accompanies their use, Huang used neuro-fuzzy logic to estimate software development effort [15]. He
did so by fuzzifying the inputs of the COCOMO model and then used them with data to train a neuro-
fuzzy system. Although the resulting neuro-fuzzy model outperformed COCOMO, its potential for
further improvement is questionable because the model uses the COCOMO regression equation instead
of rules to infer estimates. By doing so, the model inherits the limitations of the COCOMO regression
technique.

Idri and Elyassami [6] proposed the Fuzzy ID3 Decision Tree, which integrates ID3 decision trees
with fuzzy logic. The decision-tree technique is a white-box approach which can provide explanations
of cause-effect relationships while fuzzy logic handles uncertain and imprecise data. Azzeh et al. [7]
proposed Fuzzy Grey Relational Analysis, which combined fuzzy set theory with Grey Relational
Analysis. Bhatnagar et al. [16] provided a review of software effort estimation studies based on fuzzy
logic. Even though this review is not comprehensive, clearly a number of studies have built upon the
COCOMO model. By contrast, COCOMO does not form part of the EEF-CAS approach.

2.3. Factors influencing software effort estimation

The number and type of factors that are considered influential differ among estimation models and

techniques. In practice, such factors vary greatly depending on the development environment and the
type of system being built. However, the factors that are often found to have a strong effect on software
development effort are expert judgment, task implementer capability, and complexity.

Expert judgment: Jørgensen [17] summarized a number of studies on expert estimation, including
how often it has been used in the software development industry, why it is preferred, and how well it
performs compared to other estimation models. This study revealed that informal expert estimation is
the most widely used estimation technique in companies all over the world. Although the results show
that no existing effort estimation model is very accurate, they also show that experts are useful
resources for estimation. In fact, most industry and academic researchers agree that an expert’s opinion
is not only useful but often necessary when making estimates [18–20]. Consequently, expert judgment
is taken into account by giving the expert the ability to select the attributes that are believed to most
influence software development task effort by the organization implementing the EEF-CAS.

Task implementer capability: another important factor that influences the estimated effort is the
quality and capability of the task implementer [18, 19, 21]. Therefore, any estimation model must
include implementer capability as one of its inputs. However, this can be challenging when software
effort is being determined for a more granular task and the identity of the task implementer is known,
because organizations can then be reluctant to evaluate the capability of that implementer. This

EEF-CAS: An Effort Estimation Framework with Customizable Attribute Selection
Besa Muslimi, Katarina Grolinger, Miriam A.M. Capretz, Mark Benko

16

reluctance is due to the existing confidentiality agreement between employer and employee, which
such an evaluation could breach, and to the decrease in morale that a low evaluation would produce.
Therefore, in some organizations, it may be impossible to include implementer capability in the
evaluation. In this case, other inputs can be included that evaluate the implementer’s level of
familiarity with the technology, functionality, language, and domain associated with the task. Hence, in
the proposed EEF-CAS, the estimator can select such profiling attributes.

Complexity: this is another attribute that is considered to have a strong effect on software
development effort [19–21]. Glass [18] has noted that for every 25% increase in problem complexity,
there is a 100% increase in the complexity of the software solution. Moreover, managers consider
complexity to be the most significant factor in project estimation [21].

Khalidi et al. [22] performed a regression analysis over six public cost estimation data sets to select
a set of attributes which strongly affect the effort estimate. For each data set, they determined the most
effective attributes. Next, they compared the results and proposed a standard set of metrics. The
flexibility of the proposed EEF-CAS enables the estimator to select the profiling attributes that they
believe influence their software development task effort.

3. The effort estimation framework with customizable attribute selection

The Effort Estimation Framework with Customizable Attribute Selection (EEF-CAS) has been

designed to include several desired characteristics which are lacking in existing estimation frameworks.
Specifically, EEF-CAS offers the following features:

 Diverse variables are handled in the attribute selection stage when profiling attributes are
chosen by the estimator.

 Empirical evidence is incorporated through the use of historical data for neural network
training.

 Imprecision and uncertainties are handled using fuzzy logic inference.
 Cause-effect relationships are determined by rule extraction from the neural network.

Fig. 1 depicts the EEF-CAS preparation process. As shown, there are four preparation steps that
must be completed before the EEF-CAS is closely customized to the organization’s environment and
ready for use:

1. Attribute selection
2. Data set separation for

a. Qualitative attributes
b. Quantitative attributes

3. Neural network training
4. Rule extraction and ANFIS implementation.

In the first step, qualitative and quantitative profiling attributes that are believed to most influence
software development task effort are selected by the organization implementing the EEF-CAS. These
attributes are defined and a measuring system is applied to each of them, allowing them to function as
metrics. These attributes then serve as inputs to the EEF-CAS and each software development task is
profiled with them. The profile, together with the actual effort required to complete the task (known
once the task has been completed) are considered as one data point. When a sufficient amount of data
points have been collected, the second step of the preparation process begins: The values of each
attribute are separated into fuzzy and Boolean sets. The Boolean sets allow the attribute values to be
transformed into Boolean data. The fuzzy sets are not used until Step 4 of the preparation process. The
third step consists of using the Boolean data to train neural networks where the output of the neural
network is estimated effort. In the fourth and final step, rules that model the relationship between the
profiling attributes and development effort are extracted from the most successfully trained neural
network of Step 3. They are then embedded into an adaptive neuro-fuzzy inference system, as are the
fuzzy sets determined in Step 2. Finally, the historical data collected is used, once again, to train the
ANFIS and fine-tune the fuzzy sets. At this point, the EEF-CAS is calibrated to the organization’s
environment and ready to be used to estimate future software development tasks.

EEF-CAS: An Effort Estimation Framework with Customizable Attribute Selection
Besa Muslimi, Katarina Grolinger, Miriam A.M. Capretz, Mark Benko

17

Figure 1. The Effort Estimation Framework with Customizable Attribute Selection (EEF-CAS)

3.1. Step 1: Attribute selection

A profiling attribute is a measurable system characteristic, personal skill, or anything else that can

affect the amount of effort required to complete a software development task.
Research has shown that of the hundreds of parameters which can affect software development

effort, only a few may influence productivity in a given environment [23]. Therefore, the first EEF-
CAS step allows the estimator to select the factors that it believes most influence development effort,
given their product and the environment in which they operate. To enable each organization to select
the few attributes that most affect its productivity, it is recommended that many attributes be initially
selected for measurement and recording. Those that turn out to be irrelevant during the neural network
training stage, EEF-CAS Step 3, can be discarded, and the most strongly predictive ones can be kept.
Ideally, the final number of profiling attributes selected as inputs to the EEF-CAS should be small. The
reason for this is that the EEF-CAS uses a neural network to learn input-output relationships from
historical data, and the larger the number of input attributes, the larger will be the volume of data
needed to train the neural network successfully. In fact, the number of data points needed to train a
neural network grows exponentially with additional inputs [24].

The EEF-CAS can accommodate both quantitative and qualitative profiling attributes. Although
quantitative attributes can be directly used as numbers, qualitative attributes must be clearly defined to
indicate what is being measured.

3.1.1. Defining and applying the measuring system

The EEF-CAS qualitative attribute measuring system was designed to allow the use of qualitative

attributes and to enable each such attribute to be measured according to the needs of the organization
using it. Such a measuring system requires that each qualitative attribute be defined and then be further
decomposed into sub-attributes. Each sub-attribute should be a factor that affects the evaluation of the
profiling attribute. Once the user evaluates the sub-attributes, their values can be averaged and used as
the value of the overall profiling attribute. To facilitate this process, Tables 1 and 2 were designed and
should be completed for each selected qualitative profiling attribute. Table 1 should also be used to
define quantitative attributes.

1. Attribute
Selection

2. Data Set
Separation

3. Neural Network
Training

4. Rule Extraction
& ANFIS
Implementation

Analyze
Candidate
Attributes

Select Profiling
Attributes

Define & Apply
Measuring
System

Collect Data

Qualitative
Attributes

Quantitative
Attributes

Determine
Fuzzy Sets

Determine
Boolean Sets

Embed Rules
into ANFIS

Vary Input
Combinations

Extract Rules

Determine
Boolean Sets

Determine
Fuzzy Sets

Embed Fuzzy
Sets into
ANFIS

Train ANFIS

Vary Number
of Hidden
Neurons

Vary Number
of Training
Epochs

EEF-CAS: An Effort Estimation Framework with Customizable Attribute Selection
Besa Muslimi, Katarina Grolinger, Miriam A.M. Capretz, Mark Benko

18

Table 1. Format for defining profiling attributes
Name The name of the attribute and any short names used for it.
Definition A clear and concise definition that indicates what is being measured by the attribute.

All attributes should be defined in terms of how they affect effort.
Rationale The rationale used to select the attribute. One or more examples may be given to

clarify the rationale.
Implementation A way of combining all the sub-attributes into a single unit of measurement (usually

the arithmetic mean). Also, any clarifying notes on how the attribute should be
perceived or evaluated.

Table 2. Format for defining profiling sub-attributes

Sub-Attribute Name
Definition A clear and concise definition of the sub-attribute
Definitions of
Scale Values

Low The definition of the “Low” scale value
for this particular sub-attribute.

An arrow depicting the direction
in which the effort estimate
varies with increasing sub-
attribute value.

Medium-Low No definition required.
Medium The definition of the “Medium” scale

value for this particular sub-attribute.
Medium-High No definition required.
High The definition of the “High” scale value

for this particular sub-attribute.

The definitions of the scale values required in Table 2 serve as guidelines for the estimator. Each

scale value corresponds to a number between one and five, with one corresponding to the Low set and
five corresponding to the High set. The overall profiling attribute value is the arithmetic mean of the
values of its sub-attributes.

Although breaking down profiling attributes into sub-attributes does lengthen the process, it is
beneficial in the long term because it enables the collection of more accurate data. Qualitative attributes
that affect software development effort usually encompass several aspects of the quality they describe.
For example, when defining the required reliability of a software system, one could consider how a
system failure would affect the environment and the users of the system (i.e., a mere inconvenience
versus endangerment of human life), the acceptable frequency of failures (mean time to failure, or
MTTF), and the acceptable repair time (mean time to repair, or MTTR). Although all three of these
factors affect the reliability of a system, they do so in different ways, often resulting in different
evaluations. Therefore, clustering these three factors and measuring them as one would introduce a
large amount of uncertainty and inaccuracy into the measurement. On the other hand, decomposing the
attribute into sub-attributes makes it possible to collect more accurate data.

Table 3 shows the application of Table 1 to the Reliability profiling attribute, and Table 4 shows the
application of Table 2 to its sub-attributes.

3.1.2. Data collection

After profiling attributes have been chosen and defined and the qualitative data measuring system
has been established, data collection can commence. However, the question remains of what is a
sufficient number of data points. Research has shown that the number of training data points required
for a neural network that contains W weighted connections is given by Baum and Haussler [25]:

W

m
,

where m is the number of training data points and ε is the allowable fraction of error on the training
set. If ε is assumed to be less than 0.125, then approximately ten training data points are required for
each weighted connection in the neural network. Therefore, assuming that an organization knows the
largest network architecture to be used in EEF-CAS Step 3, it must collect at least ten times as many
data points as the number of weighted connections within it.

EEF-CAS: An Effort Estimation Framework with Customizable Attribute Selection
Besa Muslimi, Katarina Grolinger, Miriam A.M. Capretz, Mark Benko

19

Table 3. The Reliability profiling attribute
Name Reliability
Definition The degree of reliability required from the component or functionality implemented

in the task.
Rationale A task that involves the development of a highly reliable component or

functionality generally requires more effort.
Implementation Each sub-attribute is evaluated as Low, Medium-Low, Medium, Medium-High, or

High, corresponding to values between 1 and 5, respectively. The average of the
sub-attribute values is the overall attribute value.

Table 4. Definition of Reliability sub-attributes

Criticality
Definition The problem created if the component or functionality implemented in this task fails.
Definitions of
Scale Values

Low No critical data will be lost.
Medium Some business data may be lost causing a day’s work set back.
High Business data will be lost causing a major set back

Mean Time to Failure (MTTF)
Definition The degree of importance that the particular component/functionality being implemented

should rarely fail.
Definitions of
Scale Values

Low May fail often (once every few days).
Medium May fail between once a month and once in three months.
High Should not fail more than once in six months.

Mean Time to Repair (MTTR)
Definition The degree of importance that the particular component/functionality being implemented in

the task have a short repair time.
Definitions of
Scale Values

Low Not a significant problem if the component/ functionality is down
for a week or less.

Medium Important that it not be down for more than a day.
High Very important that it not be down for more than an hour.

3.2. Step 2: Data set separation

The second EEF-CAS step is data set separation. To be able to extract rules from a trained neural

network using the rule-extraction technique, the data with which the neural network is trained must be
Boolean rather than continuous. Subsection 3.2.1 describes the separation of the range of values for
qualitative attributes into fuzzy sets and then into Boolean sets, while Subsection 3.2.2 describes the
separation of the range of values for quantitative attributes into Boolean sets and then into fuzzy sets.
Note that the data set separation process must also be applied to the output attribute, effort.

3.2.1. Data set separation for qualitative attributes

Each qualitative profiling attribute can have a value between one and five, and therefore when these

values are normalized, the range of values becomes 0.2 to one. The value zero is reserved to indicate
the value “not applicable”.

Next, the boundaries of the fuzzy sets are determined. Each qualitative attribute is separated into
three fuzzy sets, Low, Medium, and High, as shown in Fig. 2 [26]. The generalized bell function was
selected as the membership function for two reasons: it is nonlinearly smooth, and it offers three
adaptable parameters with which the shape of the function can be customized during ANFIS training
[27].

The boundaries of the fuzzy sets Low and Medium are determined so that the crossover point for
each set is at the Medium-Low value of two, or 0.4 when normalized, as shown in Fig. 2. Likewise, the
boundaries of the fuzzy sets Medium and High can be determined so that the crossover point for each
set is at the Medium-High value of four, or 0.8 when normalized. The crossover point of a fuzzy set A
is any point where μA(x) =0.5. The rationale for locating the fuzzy set crossover points at these values is
simple and straightforward: the points Medium-Low and Medium-High are designed to be the points
halfway between one set and the next one. Therefore, it is only logical that they would be used as the
fuzzy-set crossover points. Fig. 2 illustrates this concept by showing that the crossover points of the

EEF-CAS: An Effort Estimation Framework with Customizable Attribute Selection
Besa Muslimi, Katarina Grolinger, Miriam A.M. Capretz, Mark Benko

20

fuzzy sets occur at the Medium-Low and Medium-High values. This condition determines the values for
parameters a and b of the generalized bell function. In addition, the center of each of the membership
functions, the parameter c of the generalized bell function, is located at the corresponding value that it
represents, as illustrated by the dashed lines. For example, the center of the generalized bell function
representing fuzzy set Low is at 0.2.

Figure 2. Fuzzy sets of qualitative profiling attributes

After the fuzzy sets have been determined, the Boolean sets can be established. The boundaries of

the Boolean sets should be located at the crossover points of each fuzzy set. The points at the
boundaries should be included in the set that has the smaller range of values included. Therefore, data
points with qualitative attribute values of 0.4 should be included in the Low set.

Once the boundaries of the Boolean sets have been determined, the data value transformation from
continuous to Boolean can proceed. Each continuous value is transformed into a three-element Boolean
vector, where one signifies the set to which the value belongs and zero signifies the two sets to which it
does not. The Boolean vector’s first element represents the Low set, its second element represents the
Medium set, and its third element represents the High set, i.e., [Low Medium High]. Only one of the
three sets must be set to one, and the other two must be set to zero. For example, Table 5 shows a
fictional data point profiled by two qualitative attributes. The first row contains attribute values and the
overall data point in continuous vector format, [0.633 0.25]. The second row contains the Boolean
transformation of the data point shown in the first row. The Attribute 1 value has been transformed into
[0 1 0] because the value 0.633 falls within the bounds of the Medium set. The Attribute 2 value has
been transformed into [1 0 0] because the value 0.25 belongs to the Low set.

Table 5. Conversion of a continuous data point into Boolean format

Format Qualitative
Attribute 1

Qualitative
Attribute 2

Data Point

Continuous 0.633 0.25 [0.633 0.25]
Boolean [0 1 0] [1 0 0] [[0 1 0] [1 0 0]]

3.2.2. Data set separation for quantitative attributes

Because the range and distribution of values used for quantitative attributes is organization-

dependent, it is challenging to define an exact process for separating quantitative attribute values into
sets. However, guidelines are provided here that should be followed when determining these sets.

First and foremost, each Boolean set must contain a sufficient number of data points so that the
neural network is able to associate certain input values with that particular set. If only the minimum
number of points has been collected (i.e., ten times the number of weighted connections in the largest
neural network architecture to be used), the quantitative-attribute Boolean sets can be separated so that
each set contains an approximately equal amount of data. This will ensure that each neural-network
training set contains enough data for the neural network to learn. If the amount of data collected greatly
exceeds the minimum required amount, then other approaches can be used, such as self-organizing
maps or clustering algorithms.

In most cases, because data collection takes a long time, most companies will start implementing the
second EEF-CAS step once they have gathered what they consider to be sufficient data. In this case,
the Boolean set boundaries must be determined based on an equal-data-amount criterion.

Once the Boolean set boundaries have been determined, the fuzzy set membership functions can be
defined for the sets of quantitative profiling attributes. The generalized bell function is the membership
function of choice. The width of each bell membership function, which is controlled by the parameter a,

b

a

cx
cbaxbell

2

1

1
,,;

 [26]

EEF-CAS: An Effort Estimation Framework with Customizable Attribute Selection
Besa Muslimi, Katarina Grolinger, Miriam A.M. Capretz, Mark Benko

21

should be equal to the width of the corresponding Boolean set. Moreover, the center of the generalized
membership function of each fuzzy set, which is controlled by the parameter c, should be located at the
median value of the set it represents. For example, to determine where the center of the generalized bell
membership function of the fuzzy set Low should be located, the median of the data values contained in
the Boolean set Low should be used. The reason why the median, rather than the mean, was chosen as
the center of the generalized bell membership functions was that the finite breakdown point of the
median is much higher than that of the mean [28]. The finite breakdown point is the smallest
proportion of outliers that can result in the mean or the median being arbitrarily large or small for a
given set of observations [28].

Finally, for the quantitative output attribute, Effort, no fuzzy sets are required because the zero-order
Sugeno inference system implemented in the ANFIS does not require fuzzy sets for the output attribute.
Instead, one constant value must be selected to represent each output set. For the same reasons
discussed above, the median is the preferred representative value for each output attribute set.

3.3. Step 3: Neural network training

This third step of EEF-CAS, neural network training, is performed using Boolean data from the data

set separation step. This step involves to some extent trial and error because of the many different
factors that can influence how successfully a neural network can be trained. In this section, the three
most significant factors will be discussed: the inputs, the number of hidden neurons, and the number of
epochs.

The most important factors are the inputs: the stronger the relationship between the inputs and the
outputs, the easier it is for the neural network to learn the relationship [29]. To determine the
combination of profiling attributes that have the greatest influence on development effort, different
combinations of the inputs must be tested. The number of profiling attributes collected and the number
of sets defined for each attribute determine the number of inputs to the network. For example, if three
profiling attributes are selected, and the values of each one are separated into three sets, Low, Medium,
and High, then the neural network will have nine inputs.

The next factor that affects neural network training is the number of neurons used in the middle
(hidden) layer. As the number of neurons in the hidden layer increases, so does the accuracy of the
neural network in predicting the output of the training data [30]. However, if the number of hidden
neurons is too large, the network loses its ability to generalize and models itself too closely to the
training data. Consequently, over-fitting occurs, and the network performs well when the training data
are used, but poorly when new data are entered [30]. Although several methods have been proposed to
determine the number of hidden-layer neurons [30–32], at this stage of this research, a trial-and-error
process has been used. Several different networks with varying numbers of hidden neurons were
trained and tested, and the architecture which yielded the best results in accurately predicting both
training and testing data was chosen.

Finally, the number of training epochs can be varied to determine whether training the neural
networks with more epochs yields significantly more accurate results. Although it has been shown that
most networks can be successfully trained with 1000 epochs, this number can sometimes vary [33].

3.4. Step 4: Rule extraction and ANFIS implementation

The final EEF-CAS step is optional and consists of rule extraction and ANFIS implementation.

Upon its completion, the EEF-CAS can be used as a effort estimator for software development tasks.
The framework is functional without this step, but its omission results in the inability to establish
cause-effect relationships because rule extraction from the neural network will not be performed.

3.4.1. Rule extraction

Rules are extracted from the neural network that was most successfully trained in Step 3.

Specifically, the most general rules are extracted from its hidden-layer neurons and its output-layer
neurons and then combined to create rules that model the relationship between the profiling attributes
and the output effort.

EEF-CAS: An Effort Estimation Framework with Customizable Attribute Selection
Besa Muslimi, Katarina Grolinger, Miriam A.M. Capretz, Mark Benko

22

The framework can accommodate different rule extraction techniques, including the decomposition
approach in which the focus is on extracting rules at the level of individual hidden and output neurons
[34]. Each hidden and output neuron is interpreted as a Boolean rule, and the rules are extracted by
finding combinations of incoming weights whose sum exceeds the threshold of the neuron. Specifically,
the approach proposed by Krishnan et al. [35] has been used here, which provides a simple yet efficient
technique for rule extraction from feedforward neural networks with Boolean inputs. By sorting the
input weights to a neuron and ordering the weights suitably, Krishnan et al. pruned the search space,
increasing algorithm efficiency.

3.4.2. ANFIS implementation

Neuro-fuzzy systems combine fuzzy inference and neural computing to provide a mechanism that

learns from data and is robust to uncertainty and incomplete data. Here, the Adaptive Neuro-Fuzzy
Inference System (ANFIS) [36] is used, which combines Sugeno fuzzy inference [29, 37] with a
multilayer feedforward neural network [38]. The rule base of a zero-order Sugeno ANFIS system must
be known in advance, while the parameters of the membership functions used for the fuzzy sets of the
inputs are adjusted during the training of the ANFIS system.

The rules extracted from the neural network in the previous EEF-CAS step are embedded into an
ANFIS system. For example, suppose that the following five rules were extracted from the neural
network:

IF Attribute 1 is Low AND Attribute 2 is Medium THEN Output is MML.
IF Attribute 1 is High THEN Output is MH.
IF Attribute 2 is Low THEN Output is ML.
IF Attribute 1 is Medium AND Attribute 2 is Low THEN Output is MM.
IF Attribute 1 is Medium AND Attribute 2 is High THEN Output is MMH.
MML denotes the median of the set Med-Low, MH the median of the set High, and so on. The

medians of the Output sets are determined in EEF-CAS Step 2. Fig. 3 shows the ANFIS system into
which the rules would be embedded.

Layer 1: Each neuron function is a bell membership function that corresponds to the fuzzy set of
one of the input attributes, as determined in EEF-CAS Step 2. For example, the first neuron in the first
layer is associated with the Attribute 1 fuzzy set Low1. Its output is the membership grade of Attribute
1 in its fuzzy set Low1.

Layer 2: Each neuron in this layer corresponds to the antecedent of one of the rules. For instance,
the first neuron corresponds to the antecedent of the first rule, AR1. Its inputs are the membership grade
of Attribute 1 in its fuzzy set Low1 and the membership grade of Attribute 2 in its fuzzy set Medium2.
The output is the firing strength of the first rule.

Figure 3. An ANFIS system upon which the EEF-CAS has been implemented

Low1

AR1

AR2 N2

N1

MH

MML

Medium1

High1

Low2

Medium2

High2

AR4

AR3

AR5

N3

N4

N5

ML

MM

MMH

Layer 1

Attribute 2

Attribute 1

Layer 2 Layer 3 Layer 4 Layer 5

EEF-CAS: An Effort Estimation Framework with Customizable Attribute Selection
Besa Muslimi, Katarina Grolinger, Miriam A.M. Capretz, Mark Benko

23

Layer 4: Each neuron i in this layer corresponds to the consequent of the rule represented by neuron
i in the second layer. The output is the product of the consequent of the rule it represents and the rule’s
firing strength.

Layer 5: The outputs of the fourth layer neurons are summed and output as the effort estimate.
Once the fuzzy sets, medians, and rules have been embedded into the ANFIS, the historical data

collected in EEF-CAS Step 1 are used to train the ANFIS. By training the ANFIS with historical data,
the bell-shaped fuzzy sets of the input profiling attributes are fine-tuned by having their a, b, and c
parameters, representing the width, side slope, and center location of the bell function, modified
according to historical data. Upon completion of training, the ANFIS is ready to be used for software
effort estimation.

4. Case study

The evaluation of the proposed EEF-CAS was performed on a use case involving the Industrial
Partner, a Fortune 500 company with a workforce of over 100,000 people worldwide and annual
revenue of over $30 billion dollars. The data were collected during the development of three different
products and two releases of each, for a total of six projects. The development team consisted of an
average of six people, and the team was located on two different continents.

Originally, the Industrial Partner estimated to have approximately 2000 historical data points
scattered in different spreadsheet files. Therefore, the data had to be centralized before knowing the
true value of the number of data points. Once the data was centralized into one common database, it
was discovered than only about 1400 data points existed. Subsequently, data points that contained
estimates but no actual values (i.e. bad data), and data points of tasks that did not belong to the
implementation phase were also filtered out. Non-implementation tasks were filtered out because
finding a common set of attributes for tasks of all phases of the software development cycle would be
difficult.

Furthermore, all implementation tasks with estimated or actual effort size of over 100 hours or
magnitude of relative error (MRE) greater than 50% were filtered out, leaving only 313 data points.
The reason for filtering out tasks with a MRE greater than 50 was that allowing a large range of MRE
values required a very high volume of data points to train the neural network. Due to the fact that a
high volume of data was not available, the MRE range was limited. Finally, tasks with estimated or
actual effort size over 100 hours were filtered out because they were quite rare, and therefore the few
data points that did exist would bias the neural network into creating an input-output relationship that
was incorrect.

The following sections describe and discuss the four steps of the EEF-CAS application together
with the results achieved in each step.

4.1. Step 1: Attribute selection

Through collaboration with the Industrial Partner, it was decided to focus on the implementation

phase because finding a common set of attributes for tasks of all phases of the software development
cycle would be very challenging. After careful analysis of hundreds of metrics used in existing
estimation models or researched internally by the Industrial Partner, the profiling attributes were
selected for their usefulness, measurability, and significance. Each selected profiling attribute was
defined and described using a set of sub-attributes into which it was decomposed. Initially, the
following eight attributes were selected: Skill Level of Implementer, Familiarity with Technology,
Familiarity with Programming Language, User Interface, Complexity, Familiarity with Functionality,
Familiarity with Domain, and Estimated Size. Examples of profiling attributes (with its sub-attributes)
are shown in Tables 6 and 7.

After the profiling attributes were determined, clearly defined, and characterized by the measuring
system, they were used to profile historical implementation tasks of the Industrial Partner. During the
profiling process, it became apparent that the attribute Skill Level of Implementer would be difficult to
use because the Industrial Partner considered its evaluation to be a breach of the confidentiality
agreement between the employer and the employee. As a result, that attribute was removed from the
profiling set.

EEF-CAS: An Effort Estimation Framework with Customizable Attribute Selection
Besa Muslimi, Katarina Grolinger, Miriam A.M. Capretz, Mark Benko

24

Table 6. Description of Familiarity with Functionality
Name Familiarity with Functionality, Functionality
Definition The degree to which the implementer’s familiarity with the functionality influences the

estimate.
SUB-ATTRIBUTES
Similarity The degree to which the current task resembles something that the implementer has

previously implemented.
Product
Knowledge

How familiar the implementer is with the application/product being developed. This will
provide a measure of how well the implementer understands the effect of this
component/functionality on existing components/functionality.

Component
Knowledge

How familiar the implementer is with the component involved in the current task.

Table 7. Description of Estimated Size

Name Estimated Size
Definition The degree to which the size of the task, in hours, influences the estimate.

Because of the low volume of data available to train the neural networks, it was considered

beneficial to use as few inputs as possible. Therefore, after all the historical tasks had been profiled,
several tests were conducted to see whether any of the profiling attributes could be eliminated. Because
the User Interface attribute was applicable only to certain implementation tasks and only forty percent
of the data made use of it, it was decided that the data were insufficient to evaluate the significance of
this attribute correctly. Consequently, the User Interface attribute was eliminated.

In addition, several attributes were found to have equal values for a suspiciously large number of
data points. It was suspected that the members of the development team who profiled the data
perceived some of the “Familiarity with” attributes as very similar and therefore consistently evaluated
these attributes similarly. Tests were conducted to evaluate the amount of similarity between the
following attributes: Familiarity with Functionality, Familiarity with Technology, Familiarity with
Domain, Familiarity with Programming Language, and Complexity. The Complexity attribute was
included only to serve as a comparison measure. The results obtained are presented in Table 8.

It is apparent that more than 55% of the data set contains the same values for the attributes
Familiarity with Technology and Familiarity with Language. This degree of similarity between the two
attributes was definitely abnormal, and therefore one of them had to be eliminated. It was determined
that the attribute which showed the highest similarity with other attributes would be eliminated. At
34.7%, the similarity between the Technology and Domain attributes was higher than that between the
Language and Domain attributes (31.5%). Furthermore, at 22.3%, the similarity between the
Technology and Functionality attributes was also higher than that between the Language and
Functionality attributes (16.9%). Therefore, the Technology attribute was more often perceived to be
the same as the Domain and Functionality attributes, compared to the Language attribute. As a result,
the Familiarity with Technology attribute was eliminated, as shown by the shaded row in Table 7.
Similar observations led to removal of the Familiarity with Domain attribute.

The remaining attributes of Functionality and Language had a low degree of similarity between
them (16.9%) and were therefore retained. Therefore, the Familiarity with Functionality, Familiarity
with Language, Estimated Size, and Complexity attributes were used as inputs to neural network
training.

Table 8. Similarities between profiling attributes

 Familiarity with
Language

Familiarity with
Domain

Familiarity with
Functionality

Complexity

Familiarity with
Technology

55.7% 34.7% 22.3% 10.8%

Familiarity with
Language

 31.5% 16.9% 10.8%

Familiarity with
Domain

 25.8% 15%

Familiarity with
Functionality

 9%

EEF-CAS: An Effort Estimation Framework with Customizable Attribute Selection
Besa Muslimi, Katarina Grolinger, Miriam A.M. Capretz, Mark Benko

25

4.2. Step 2: Data set separation

Each data point was defined by four profiling attributes: Complexity, Functionality, Language,

Estimated Size, and the output attribute, Actual Effort. The qualitative profiling attributes Functionality,
Language, and Complexity could take on any value between one and five, or when normalized,
between 0.2 and one. The Estimated Size and Actual Effort attributes could take on any positive value
between zero and one hundred. All the attribute values were normalized to be between 0 and 1.

4.2.1. Qualitative profiling attributes

The procedure described in Section 3.2 was used to separate the possible range of values into three

fuzzy sets: Low, Medium, and High. The boundaries of the Boolean sets were located at the crossover
points of each fuzzy set. Table 9 shows the Boolean transformation of the qualitative profiling
attributes of the sample data to Boolean sets.

Table 9. Sample qualitative attributes transformed into Boolean sets

Complexity Functionality Language
Continuous Boolean Continuous Boolean Continuous Boolean
0.4 [1 0 0] 0.2 [1 0 0] 0.2 [1 0 0]
0.9 [0 0 1] 0.4 [1 0 0] 0.8 [0 0 1]
0.2 [1 0 0] 0.866667 [0 0 1] 0.7 [0 1 0]

4.2.2. Quantitative attributes

The remaining profiling attribute, Estimated Size, and the output attribute, Actual Effort, were not

separated into sets because they were quantitative in nature. To determine Boolean sets and then fuzzy
sets for these attributes, the equal-data-amount criterion was used.

For the Estimated Size profiling attribute, the sets into which the data were separated are shown in
Table 10. To illustrate the equal data principle that determined the boundaries of the sets, the
percentage of data points within each set is also included. The same approach was applied to the output
attribute, Actual Effort.

Table 10. The Estimated Size Boolean sets

Set Name Range of Values
in the Set (hours)

% of Data
Points

Median Boolean vector

Low 0< Estimated Size <4 18.2% 1.83 [1 0 0 0 0 0]
Medium-Low 4<= Estimated Size <8 17.9% 4.83 [0 1 0 0 0 0]
Medium 8<= Estimated Size <11 17.9% 8 [0 0 1 0 0 0]
Medium-High 11<= Estimated Size <17 16.0% 16 [0 0 0 1 0 0]
High 17<= Estimated Size <30 15.0% 24 [0 0 0 0 1 0]
Very High Estimated Size >=30 16.6% 42 [0 0 0 0 0 1]

Once the Boolean sets had been determined, the fuzzy sets could be determined for the profiling

attribute Estimated Size. For each set in Table 9, the median shown was used as the center of the
generalized bell membership function, and the width of the membership function was based on the
width of the Boolean set. The slope of the sides of each generalized bell function, which is controlled
by the parameter b as described in Section 3.2.1, was set to two for all the sets. During the ANFIS
training stage in Step 4, this parameter would be varied to optimize the results.

4.3. Step 3: Neural network training

The third step consists of training neural networks with the Boolean data and selecting the network

that achieved the most accurate classification results.
To determine the network architecture and the combination of inputs that would most accurately

describe the factors affecting software implementation task effort, three parameters were varied during
network training: inputs, number of hidden neurons, and number of training epochs.

EEF-CAS: An Effort Estimation Framework with Customizable Attribute Selection
Besa Muslimi, Katarina Grolinger, Miriam A.M. Capretz, Mark Benko

26

In an attempt to discover the combination of one or more profiling attributes that best predicted the
output of the neural network, the number and combinations of profiling attributes used as input to the
neural network were varied. The four profiling attributes used as inputs created fifteen different
combinations of from one to four attributes. Therefore, for every other parameter varied during the
training phase, fifteen different input combinations had to be tested, resulting in fifteen experiments for
each test case. In the figures, the inputs have been abbreviated using the first letter of the attribute
name: L for Language, C for Complexity, F for Functionality and E for Estimated Size.

To determine the number of hidden neurons, three different neural network architectures were used:
one with fifteen neurons in the hidden layer, another with thirty-five, and a final one with fifty neurons.

The final parameter varied was the number of epochs used to train the neural networks. In Test Case
1, the number of epochs was limited to 1000; Test Case 2 involved the same experiments, but the
number of epochs was increased to 5000.

Network accuracy was evaluated by means of two measures: classification correctness and the
Mean Squared Error (MSE). A correct classification was considered to be a point that was classified
into the right output set. Nevertheless, software effort estimation research commonly uses Magnitude
of Relative Error (MRE), Mean MRE (MMER), and prediction Pred(p) [6] as accuracy measures.
However, this research used MSE because the Industrial Partner considered it the most suitable,
primarily due to familiarity and use in other domains.

4.3.1. Test case 1

Fig. 4 and Fig. 5 show the results of testing all fifteen input combinations and all three network

architectures when each of the networks was trained with 1000 epochs. The average percentage of
correctly classified data points is shown in Fig. 4 and the average mean squared error (MSE) in Fig. 5.
Overall, the trained networks performed poorly: the average percentage of correctly classified data
points varied from 5.29% to 33.42%. The networks with only Estimated Size as input performed
significantly better than the rest of the input combinations, especially with the network architecture
with 50 hidden neurons. However, even at the highest data classification success rate of 33.42%, the
results were too poor to enable accurate rule extraction from the network.

0

5

10

15

20

25

30

35

Average
% of

accurately
classified

data
points

1
- C 2

- E 3
- F 4

- L

5
- C

&E

6
- C

&F

7
- C

&L

8
- E

&F

9
- E

&L

10
 -

F&L

11
 -

C&E&F

12
 -

C&E&L

13
 -

C&F&L

14
 -

E&F&L

15
 -

C&E&F&L

AVERAGE

Experiment number & input names

15 Hidden Nodes 35 Hidden Nodes 50 Hidden Nodes

Figure 4. Test Case 1: Classification accuracy

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Average
MSE of
trained
neural

network

1
- C 2

- E 3
- F 4

- L

5
- C

&E

6
- C

&F

7
- C

&L

8
- E

&F

9
- E

&L

10
 -

F&L

11
 -

C&E&F

12
 -

C&E&L

13
 -

C&F&L

14
 -

E&F&L

15
 -

C&E&F&
L

AVERAGE

Experiment number & input names

15 Hidden Nodes 35 Hidden Nodes 50 Hidden Nodes

Figure 5. Test Case 1: Mean squared error

In terms of network architecture, Fig. 4 shows that changing the number of neurons in the hidden

layer from thirty-five to fifty did not significantly improve network performance. The average increase
in classification accuracy was only one percent between the two different network architectures. In fact,
in experiments 3, 4, 7, 10, and 13, the network classification accuracy actually decreased with fifty
neurons. On the other hand, the network architecture with thirty-five hidden neurons clearly
outperformed the network with fifteen hidden neurons, especially in experiments 2, 5, 9, and 12 where
the classification accuracy nearly doubled.

The MSE values for this experiment were also high, ranging from approximately 0.12 when only
Estimated Size was used to 0.35 when Language was the only network input.

EEF-CAS: An Effort Estimation Framework with Customizable Attribute Selection
Besa Muslimi, Katarina Grolinger, Miriam A.M. Capretz, Mark Benko

27

4.3.2. Test case 2

Fig. 6 and Fig. 7 show the results produced by training neural networks of all three architectures and

all fifteen input combinations with 5000 epochs.
It is interesting to note that although the average MSE of all experiments decreased significantly,

the average percentage of accurately classified data points also decreased for some of the experiments.
The classification performance of the network with fifty hidden neurons and Estimated Size as the only
input increased to 48%, and in turn, all networks that included this profiling attribute as an input
showed improved classification performance. For example, in Fig. 6, experiments 2, 5, 8, 9, 11, 12, 14,
and 15 all showed higher classification accuracy than the same experiments in Fig. 4, regardless of the
network architecture. However, most networks that did not include Estimated Size as an input
decreased in classification accuracy.

The lowest average MSE value observed was 0.081, when only Estimated Size was used as an input
to the network architecture with fifty hidden neurons. Once again, this is a significantly high error rate
that would not allow accurate rules to be extracted from the network. Further tests were conducted to
determine whether increasing the number of training epochs to 10,000 would significantly increase the
classification accuracy of any of the experiments; however, at best, only a 3% accuracy increase was
observed.

0

5

10

15

20

25

30

35

40

45

50

Average
% of

accurately
classified

data points

1
- C 2

- E 3
- F 4

- L

5
- C

&E

6
- C

&F

7
- C

&L

8
- E

&F

9
- E

&L

10
 -

F&L

11
 -

C&E&F

12
 -

C&E&L

13
 -

C&F&L

14
 -

E&F&L

15
 -

C&E&F&L

AVERAGE

Experiment number & input names

15 Hidden Nodes 35 Hidden Nodes 50 Hidden Nodes

Figure 6. Test Case 2: Classification accuracy

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Average
MSE of
trained
neural

networks

1
- C 2

- E 3
- F

4
- L

5
- C

&E

6
- C

&F

7
- C

&L

8
- E

&F

9
- E

&L

10
 -

F&L

11
 -

C&E&F

12
 -

C&E&L

13
 -

C&F&L

14
 -

E&F&L

15
 -

C&E&F&L

AVERAGE

Experiment number & input names

15 Hidden Nodes 35 Hidden Nodes 50 Hidden Nodes

Figure 7 Test Case 2: Mean squared error

4.3.3. Analysis and discussion

It was believed that the poor results in Test Cases 1 and 2 could be due to several reasons: poor data

set boundaries, lack of data for training the neural networks, or low data quality. Each of these
hypotheses was examined, and further tests were conducted when possible.

The first hypothesis stated that the poor results were caused by the poorly located boundaries of the
sets into which the attributes Estimated Size and Actual Effort were separated. Specifically, the
hypothesis said that the clustering of the sets of these two attributes, which was based on the equal-data
criterion, was inadequate. To test this hypothesis, two more test cases were developed. In these two
cases, the Estimated Size attribute was not separated into sets, but rather was simply normalized and
entered into the neural networks as a value between zero and one. In addition, the output attribute,
Actual Effort, was also normalized and not separated into sets, meaning that the networks had only one
output neuron in their third layers.
This change eliminated any error that was introduced by separating the two quantitative attributes into
sets. A data point was considered to be correctly classified if the network output was within 20% of the
actual effort. The idea was to emulate a network that estimated implementation tasks that were within
20% of the actual value using what corresponds to the Pred(20) metric. This percentage was chosen
from the work of Stutzke, which points out that typically an estimate within 20% of the actual effort is
adequate for project cost and schedule estimation [20, 39].

Fig. 8 and Fig. 9 show the results of Test Case 3, where 1000 epochs were used to train each
network, and Fig. 10 and Fig. 11 shows those of Test Case 4, where 5000 epochs were used. The

EEF-CAS: An Effort Estimation Framework with Customizable Attribute Selection
Besa Muslimi, Katarina Grolinger, Miriam A.M. Capretz, Mark Benko

28

average MSE for all the network architectures decreased in both cases compared to the average MSE
values of Test Case 1 (Fig. 4 and Fig. 5).

In both Test Cases 3 and 4, the lowest MSE values, 0.0094 and 0.0046 respectively, were achieved
when Estimated Size was the only input to the network architecture with fifty hidden neurons.

0

5

10

15

20

25

Average
% of

accurately
classified

data points

1
- C 2

- E 3
- F 4

- L

5
- C

&E

6
- C

&F

7
- C

&L

8
- E

&F

9
- E

&L

10
 -

F&L

11
 -

C&E&F

12
 -

C&E&L

13
 -

C&F&L

14
 -

E&F&L

15
 -

C&E&F&L

AVERAGE

Experiment number & input names

15 Hidden Nodes 35 Hidden Nodes 50 Hidden Nodes

Figure 8. Test Case 3: Classification accuracy

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Average
MSE of
trained
neural

networks

1
- C

2
- E 3

- F 4
- L

5
- C

&E

6
- C

&F

7
- C

&L

8
- E

&F

9
- E

&L

10
 -

F&L

11
 -

C&E&F

12
 -

C&E&L

13
 -

C&F&L

14
 -

E&F&L

15
 -

C&E&F&
L

AVERAGE

Experiment number & input names

15 Hidden Nodes 35 Hidden Nodes 50 Hidden Nodes

Figure 9. Test Case 3: Mean squared error

0

5

10

15

20

25

30

35

Average
% of

accurately
classified

data points

1
- C 2

- E 3
- F 4

- L

5
- C

&E

6
- C

&F

7
- C

&L

8
- E

&F

9
- E

&L

10
 -

F&L

11
 -

C&E&F

12
 -

C&E&L

13
 -

C&F&L

14
 -

E&F&L

15
 -

C&E&F&L

AVERAGE

Experiment number & input names

15 Hidden Nodes 35 Hidden Nodes 50 Hidden Nodes

Figure 10. Test Case 4: Classification accuracy

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Average
MSE of
trained
neural

networks

1
- C 2

- E 3
- F 4

- L

5
- C

&E

6
- C

&F

7
- C

&L

8
- E

&F

9
- E

&L

10
 -

F&L

11
 -

C&E&F

12
 -

C&E&L

13
 -

C&F&L

14
 -

E&F&L

15
 -

C&E&F&L

AVERAG
E

Experiment number & input names

15 Hidden Nodes 35 Hidden Nodes 50 Hidden Nodes

Figure 11. Test Case 4: Mean squared error.

However, despite the lower MSE values, in comparison to Test Cases 1 and 2, the average

percentage of correctly classified data points dropped. Overall, while the network was more
successfully trained with the data when the quantitative attributes were not separated into sets, the
classification accuracy dropped. This shows that the main problem was not the set boundaries
determined in the second EEF-CAS step, as assumed in the first hypothesis.

The second hypothesis was that the poor results were caused by the small amount of data. Because
no more data points were available, there was no practical way of determining whether more data
would yield better results. However, theoretically the findings of Baum and Haussler [25], which were
summarized in Section 3.1.2, could be used to test this second hypothesis. Assuming an error of 0.125,
for every weighted connection, there should be approximately ten training data points. In the best-case
scenario, the network with the smallest number of weighted connections, the network consisted of
three neurons in the first layer, corresponding to the sets of the single profiling attribute used as an
input, fifteen hidden neurons in the middle layer, and six output neurons in the third layer. This
network architecture would total 135 weighted connections, and, as a result, theoretically a minimum
of 1350 data points would be required. This is a much larger number than the 313 data points that were
available. The third hypothesis, which stated that the quality of the training data might have been low,
leading to poor classification results, cannot be proved true or false due to the lack of data. If additional
data were collected and if the classification accuracy continued to be low, then the data quality
hypothesis could be further investigated.

Overall, the data were insufficient to proceed to the fourth step of the EEF-CAS, rule extraction.
However, given that only 313 data points were available, the results are promising.

EEF-CAS: An Effort Estimation Framework with Customizable Attribute Selection
Besa Muslimi, Katarina Grolinger, Miriam A.M. Capretz, Mark Benko

29

4.4. Step 4: Rule extraction and ANFIS implementation

EEF-CAS Step 4 could not be implemented in this research due to the low classification accuracy

achieved in Step 3. Collection of additional data might improve the network accuracy to a point that
would enable rule extraction and ANFIS implementation. However, at the moment, the Industrial
Partner is not prepared to invest additional time and effort in data collection. Nevertheless, Section 3.4
describes in detail how the full EEF-CAS implementation would be completed.

5. Limitations

The drawback of the proposed approach is the need to achieve relatively high classification
accuracy in the EEF-CAS third step to proceed to the last step, rule extraction and ANFIS
implementation. In the present case study, insufficient accuracy prevented completion of the last step.
However, this step is optional because the framework is functional without it. An estimate is still
produced, although because rule extraction from the neural network has been omitted, and thus cause-
effect relationships are not established. Performing this last step would also increase estimation
accuracy because the fuzzy sets determined in Step 2 are fine-tuned in this step.

In an attempt to increase practical application of this research as well as to address the lack of real-
life studies [1], the present use case consists of a real-life scenario involving a multinational industrial
partner. This imposed the use of classification correctness and Mean Squared Error (MSE) as
estimation metrics, rather than other measures typically used in software estimation, such as Magnitude
of Relative Error (MRE), Mean MRE (MMER), and prediction Pred(p) [6]. Nevertheless, the industrial
environment made it possible to examine the application of the proposed approach in a practical setting.

Moreover, the real-life scenario provided an opportunity to demonstrate how the attribute selection
step is conducted. At the same time, this scenario, in conjunction with the organization-specific
attribute selection stage, prevented comparison of the estimation accuracy with that of other
approaches. An accuracy comparison could possibly have been performed using public data sets such
as COCOMO’81 [40] or ISBSG [41]; however, this would have limited how the EEF-CAS attribute
selection step could be performed because this stage requires close involvement of the organization
implementing the estimation. If a public data set were used, the EEF-CAS attribute selection stage
would have been limited to choosing attributes from the available set. Consequently, the definition of
attributes and sub-attributes, data collection, attribute analysis, and selection could not have been
performed. As a result, an essential part of the EEF-CAS would have been omitted.

6. Conclusions

Most software effort estimation research has focused on improving accuracy [1]. Specifically, much
research has focused on formal models [1]; however, there is no conclusive evidence that formal
models produce more accurate estimates than expert estimation [3]. Furthermore, expert estimation
approaches prevail in industry [1, 2].

Nevertheless, the ability to produce accurate software development effort estimates is essential to
the software industry. Based on them project scope is determined, quality standards are set in place,
and cost and schedule constraints are defined. Yet, software development effort estimates are often
plagued by omissions, uncertainty, and bias [20]. Existing estimation models continue to frequently
produce inaccurate estimates, instigating research studies that attempt to determine the properties they
lack. After decades of such studies and practical experience, a number of deficiencies have been found
that hinder existing estimation models from producing accurate estimates. This research focused on
developing a new effort estimation model that amends those deficiencies by incorporating within it the
following characteristics [4]:

1. The ability to handle diverse process and product variables.
2. The ability to incorporate empirical evidence and expert judgment.
3. The ability to determine genuine cause and effect relationships.
4. The ability to handle uncertainty.
5. The ability to handle incomplete information.

EEF-CAS: An Effort Estimation Framework with Customizable Attribute Selection
Besa Muslimi, Katarina Grolinger, Miriam A.M. Capretz, Mark Benko

30

Furthermore, the proposed Effort Estimation Framework with Customizable Attribute Selection
(EEF-CAS) incorporates diverse, company-specific profiling attributes in the attribute selection stage,
while empirical evidence is included through neural network training. Fuzzy logic addresses
imprecision and uncertainty, and rule extraction from a neural network establishes cause-effect
relationships.

The EEF-CAS provides a flexible and customizable framework for software estimation in which
components can be adjusted or substituted to accommodate a specific estimation environment.
Different system characteristics and personal skills are accommodated in the attribute selection stage,
where the estimator selects the factors that it believes most influence the task effort.

Because few estimation studies exist in which evaluations are performed in real-life estimation
scenarios [1], the EEF-CAS was evaluated on a case study involving a multinational industrial partner.
Even though in the present case study, the last, optional EEF-CAS step could not be performed due to
low classification accuracy in the third step, the results are promising. The EEF-CAS framework has
satisfied the stated requirements; however, its success is highly dependent on the quality and amount of
available data. The use of different, readily available software evaluation data sets might have achieved
better classification, but it would have greatly restricted the attribute selection stage and would not
have allowed observation of the framework in a real-life setting.

The EEF-CAS as a framework identifies the main steps in the estimation process, providing
flexibility of implementation. Consequently, in addition to applying EEF-CAS on a new use case, the
authors plan to explore the proposed framework by applying different techniques in some of the steps,
for example, exploring self-organizing maps or different clustering algorithms to determine boundaries
for the quantitative attributes and making use of algorithms to determine better neural network
architectures in Step 3. In conclusion, the Effort Estimation Framework with Customizable Attribute
Selection proposed in this paper provides a successful foundation for overcoming many of the
obstacles faced by existing software development effort estimation models.

7. References

[1] Magne Jørgensen, Martin Shepperd, “A Systematic Review of Software Development Cost

Estimation Studies”, IEEE Transactions on Software Engineering, vol. 33, no. 1, pp.33-53, 2007.
[2] Kjetil Moløkken, Magne Jørgensen, “A Review of Surveys on Software Effort Estimation”, In

Proceedings of the International Symposium on Empirical Software Engineering, pp.223-230,
2003.

[3] Magne Jørgensen, “Forecasting of Software Development Work Effort: Evidence on Expert
Judgment and Formal Models”, International Journal of Forecasting, vol. 23, no. 3, pp.449-462,
2007.

[4] Norman E. Fenton, Martin Neil, “Software Metrics: Roadmap”, In Proceedings of the Conference
on the Future of Software Engineering, pp.357-370, 2000.

[5] Ekrem Kocaguneli, Ayse Tosun, Ayse Bener, “AI-based Models for Software Effort Estimation”,
In Proceedings of the 36th EUROMICRO Conference on Software Engineering and Advanced
Applications, pp.323-326, 2010.

[6] Ali Idri, Sanaa Elyassami, “Applying Fuzzy ID3 Decision Tree for Software Effort Estimation”,
International Journal of Computer Sciences Issues, vol. 8, no. 4, pp.131-138, 2011.

[7] Mohammad Azzeh, Daniel Neagu, Peter I. Cowling, “Fuzzy Grey Relational Analysis for
Software Effort Estimation”, Empirical Software Engineering, vol. 15, no. 1, pp.60-90, 2010.

[8] Ruchi Shukla, A. K. Misra, “AI-based Framework for Dynamic Modeling of Software
Maintenance Effort Estimation”, In Proceedings of the International Conference on Computer and
Automation Engineering, pp.313-317, 2009.

[9] Parag C. Pendharkar, James A. Rodger, “A Distributed Problem-Solving Framework for
Probabilistic Software Effort Estimation”, Expert Systems, vol. 29, no. 5, pp.492-505, 2011.

[10] Vishal Sharma, Harsh Kumar Verma, “Optimized Fuzzy Logic-Based Framework for Effort
Estimation in Software Development”, International Journal on Computer Sciences Issues, vol. 7,
no. 2, pp.30-38, 2010.

[11] Moataz A. Ahmed, Moshood Omolade Saliu, Jarallah AlGhamdi, “Adaptive Fuzzy Logic-Based
Framework for Software Development Effort Prediction”, Information and Software Technology,
vol. 47, no. 2, pp.31-48, 2005.

EEF-CAS: An Effort Estimation Framework with Customizable Attribute Selection
Besa Muslimi, Katarina Grolinger, Miriam A.M. Capretz, Mark Benko

31

[12] Xishi Huang, Danny Ho, Jing Ren, Luiz F. Capretz, “A Soft Computing Framework for Software
Effort Estimation”, Soft Computing, vol. 10, no. 2, pp.170-177, 2006.

[13] Gary D. Boetticher, “Using Machine Learning to Predict Project Effort: Empirical Case Studies in
Data-Starved Domains”, In Proceedings of Model-based Requirements Workshop, pp.17-24, 2001.

[14] Gavin Finnie, Gerhard E. Wittig, “AI Tools for Software Development Effort Estimation”, In
Proceedings of the International Conference on Software Engineering: Education and Practice,
pp.346-352, 1996.

[15] Xishi Huang, “A Neuro-Fuzzy Model for Software Cost Estimation”, Dissertation, University of
Western Ontario, 2003.

[16] Roheet Bhatnagar, Vandana Bhattacharjee, Mrinal Kanti Ghose, “A Proposed Novel Framework
for Early Effort Estimation using Fuzzy Logic Techniques”, Global Journal of Computer Science
and Technology, vol. 10, no. 14, pp.66-71, 2010.

[17] Magne Jørgensen, “A Review of Studies on Expert Estimation of Software Development Effort”,
Journal of Systems and Software, vol. 70, no. 1, pp.37-60, 2004.

[18] Robert L. Glass, “Facts and Fallacies of Software Engineering”, Addison-Wesley, Boston MA,
USA, 2003.

[19] Roger S. Pressman, “Software Engineering: A Practitioner's Approach”, McGraw-Hill Higher
Education, Boston MA, USA, 2009.

[20] Richard D. Stutzke, “Estimating Software-Intensive Systems: Projects, Products, and Processes”,
Addison Wesley, Upper Saddle River NJ, USA, 2005.

[21] Jessica Keyes, “Software Engineering Handbook”, Auerbach Publications, Boca Raton FL, USA,
2003.

[22] Nesreen Al Khalidi, Ahmad A. Saifan, Izzat M. Alsmadi, “Selecting a Standard Set of Attributes
for Cost Estimation of Software Projects”, In Proceedings of the International Conference on
Computer, Information and Telecommunication Systems, pp.1-5, 2012.

[23] Katrina Maxwell, Luk Van Wassenhove, Soumitra Dutta, “Performance Evaluation of General and
Company-Specific Models in Software Development Effort Estimation”, Management Science,
vol. 45, no. 6, pp.787-803, 1999.

[24] Robert Fullér, “Introduction to Neuro-fuzzy Systems”, Physica-Verlag: Heidelberg NY, USA,
2000.

[25] Eric B. Baum, David Haussler, “What Size Net Gives Valid Generalization”, Neural Computation,
vol. 1, no. 1, pp.151-160, 1989.

[26] Sivanandam SN, Sumathi S, Deepa SN, “Introduction to Fuzzy Logic using MATLAB”, Springer:
Berlin and Heidelberg, Germany, 2007.

[27] Jyh-Shing Roger Jang, Chuen-Tsai Sun, Eiji Mizutani, “Neuro-Fuzzy and Soft Computing: A
Computational Approach to Learning and Machine Intelligence”. Prentice-Hall, Upper Saddle
River NJ, USA, 1997.

[28] Rand R. Wilcox, “Fundamentals of Modern Statistical Methods: Substantially Improving Power
and Accuracy”, Springer: New York, USA, 2010.

[29] Michael Negnevitsky, “Artificial Intelligence: A Guide to Intelligent Systems”, 2nd ed. Addison-
Wesley, Harlow, UK, 2005.

[30] Murata N, Yoshizawa S, Amari S, “Network Information Criterion: Determining the Number of
Hidden Units for an Artificial Neural-network Model”, IEEE Transactions on Neural Networks,
vol. 5, no. 6, pp.865-872, 1994.

[31] Noboru Murata , Shuji Yoshizawa , Shun-ichi Amari, “Finding the Number of Hidden Neurons for
an MLP Neural Network using Coarse to Fine Search Technique”, In Proceedings of the 10th
International Conference On Information Sciences, Signal Processing and their Applications,
pp.606-609, 2010.

[32] Eu Jin Teoh, Cheng Xiang, Kay Chen Tan, “Estimating the number of hidden neurons in a
feedforward network using singular value decomposition”, IEEE Transactions on Neural
Networks, vol. 17, no. 6, pp.1623-1629, 2006.

[33] Gary D. Boetticher, “An Assessment of Metric Contribution in the Construction of a Neural
Network-Based Effort Estimator”, In Proceedings of the Second Int. Workshop on Soft Computing
Applied to Software Engineering, 2001.

EEF-CAS: An Effort Estimation Framework with Customizable Attribute Selection
Besa Muslimi, Katarina Grolinger, Miriam A.M. Capretz, Mark Benko

32

[34] Robert Andrews, Joachim Diederich, Alan B. Tickle, “Survey and Critique of Techniques for
Extracting Rules from Trained Artificial Neural Networks”, Knowledge-Based Systems, vol. 8,
no. 6, pp.373-389, 1995.

[35] Krishnan R, Sivakumar G, Bhattacharya P, “A Search Technique for Rule Extraction from Trained
Neural Networks”, Pattern Recognition Letters, vol. 20, no. 3, pp.273-280, 1999.

[36] Jyh-Shing Roger Jang, “ANFIS: Adaptive-network-based Fuzzy Inference System”, IEEE
Transactions on Systems, Man, and Cybernetics, vol. 23, no. 3, pp.665-685, 1993.

[37] Michio Sugeno, “Industrial Applications of Fuzzy Control”, Elsevier Science Inc., New York,
USA, 1985.

[38] Huajin Tang, Kay Chen Tan, Zhang Yi, “Neural Networks: Computational Models and
Applications”, Springer: Berlin, Heidelberg, New York, USA, 2007.

[39] Saleem Basha, Dhavachelvan Ponnurangam, “Analysis of Empirical Software Effort Estimation
Models”, International Journal of Computer Science and Information Security, vol. 7, no. 3, pp.68-
77, 2010.

[40] Barry W. Boehm, “Software Engineering Economics”, Prentice-Hall, Englewood Cliffs NJ, USA,
1981.

[41] International Software Benchmarking Standards Group, ISBSG dataset, http://www.isbsg.org/,
2012.

EEF-CAS: An Effort Estimation Framework with Customizable Attribute Selection
Besa Muslimi, Katarina Grolinger, Miriam A.M. Capretz, Mark Benko

33

