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ABSTRACT Smart meter popularity has resulted in the ability to collect big energy data and has created
opportunities for large-scale energy forecasting. Machine Learning (ML) techniques commonly used for
forecasting, such as neural networks, involve computationally intensive training typically with data from
a single building or a single aggregated load to predict future consumption for that same building or
aggregated load. With hundreds of thousands of meters, it becomes impractical or even infeasible to
individually train a model for each meter. Consequently, this paper proposes Similarity-Based Chained
Transfer Learning (SBCTL), an approach for building neural network-based models for many meters
by taking advantage of already trained models through transfer learning. The first model is trained in a
traditional way whereas all other models transfer knowledge from the existing models in a chain-like manner
according to similarities between energy consumption profiles. A Recurrent Neural Network (RNN) was
used as the base forecasting model, two initialization techniques were considered, and different similarity
measures were explored. The experiments show that SBCTL achieves accuracy comparable to traditional
ML training while taking only a fraction of time.

INDEX TERMS Big Data, Deep Learning, Energy Forecasting, Gated Recurrent Units, Recurrent Neural
Network, Smart Meters, Transfer Learning

I. INTRODUCTION

SMART meters are being installed in industrial, com-
mercial, and residential buildings at increasing rates:

presently there are over 70 million smart meters in the USA
and over 96 million in China [1]. A number of smart meters
together with their possibly frequent reading intervals results
in a massive quantity of electricity consumption data. These
Big Data have created new opportunities for analyzing en-
ergy use, designing demand-response programs, identifying
savings opportunities, and measuring energy efficiency, but
they also caused challenges related to processing such large
data.

Energy forecasting has been attracting significant research
interest because of the increased importance of preserving the
environment, availability of smart meter data, and forecasting
importance for both, retailers [2] and consumers [3]. Sensor-
based energy forecasting relies on historical data from smart
meters or other sensors, often in conjunction with meteo-
rological information, to infer future energy consumption.

Examples of Machine Learning (ML) techniques used for
this task include Neural Networks (NN) [4], Support Vec-
tor Machine (SVM) [4], and their variants [5]. These ML
techniques achieve good accuracy [1]; however, they are
typically computationally complex and, with a high number
of readings, it may be time-consuming to train a prediction
model even for a single building/meter [6].

Recently, Recurrent Neural Networks (RNN) have out-
performed other energy forecasting models [7]. An RNN is
a type of NN where connections span adjacent time steps
and form a directed graph along a temporal sequence. This
makes them suitable for capturing time-dependencies and
for dealing with time series data such as smart meter data.
Because of spanning adjacent time steps, the total number
of connections among neurons in an RNN is larger than in
a traditional feed-forward neural network. Consequently, the
number of weights to learning during training is increased,
and so is the training time.

Many machine learning techniques, including RNNs, re-
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quire training a forecasting model with historical data from
a single building or a group of buildings to predict future
consumption for that same building or the group of buildings.
As training even a single forecasting model can be compu-
tationally expensive and time-consuming [6], repeating the
same process for hundreds of thousands of meters becomes
impractical or even infeasible.

Transfer learning has been identified as one of the open re-
search areas in smart meter data analytics [1]; it is motivated
by the fact that people can intelligently apply knowledge
learned in the past to solve new problems in a new context
in a faster and/or better way [8]. In traditional ML, models
are built for a specific domain (e.g. specific smart meter)
and task (e.g. energy prediction), and then used for the same
domain and task (e.g. predict future consumption for the
same meter). On the other hand, transfer learning aims to
take advantage of knowledge gained on one domain/task and
apply it to a different domain/task. Consequently, transfer
learning has the potential to enable training machine learning
models for many meters/buildings without the computational
cost involved with training each model separately.

This paper proposes Similarity-based Chained Transfer
Learning (SBCTL), a novel solution for building neural
network-based forecasting models for a large number of
smart meters. The model for the first meter is trained in
a traditional manner using a Sequence-to-Sequence RNN;
hyperparameters are optimized and weights learned using
data from that meter. Next, the model is built for the meter
with the energy consumption pattern the most similar to
the pattern of the first meter, but the training process starts
with the pre-trained model from the first meter. The process
continues in a chain-like manner according to similarities in
energy consumption patterns. Note that the SBCTL objective
is not to improve accuracy for an individual meter, but to
reduce training time when dealing with many meters. In the
three experiments with different data sets (one with over
400 smart meters), SBCTL achieved accuracy comparable to
traditional NN models while taking only a fraction of time.

The rest of the paper is organized as follows: Section II
describes the background, Section III discusses the related
work, Section IV presents SBCTL, Section V explains the
experiments and corresponding results, and finally Section
VI concludes the paper.

II. BACKGROUND
This section introduces the feed-forward and recurrent neural
networks and presents transfer learning concepts.

A. FEED-FORWARD AND RECURRENT NEURAL
NETWORKS
Feed-forward neural network (FFNN) consists of intercon-
nected neurons organized in an input layer, hidden layer(s),
and an output layer [9]. Neurons in each hidden layer are
fully connected with neurons in the preceding and the sub-
sequent layer; however, there are no connections among
neurons in the same layer. The training process starts with

initializing weights w between neurons to random values
[9]; this initial state if referred to as the seed. The training
samples are passed forward through the network and back-
propagation is applied to minimize the objective function
by updating the weights w [9]. An epoch refers to one
forward pass and one backward pass of all training data;
training typically requires a number of epochs for weights
to converge. When the weights are updated using gradient
descent, there is a possibility of getting stuck in a local
minimum. To avoid this, training is often repeated by starting
from different initial random states or seeds.

Recurrent neural networks (RNNs) are NN where connec-
tions between nodes form a directed graph along a temporal
sequence [9]. RNN cells contain internal states capable of
remembering information in sequential time steps, which
makes them well-suited for time series forecasting tasks such
as energy prediction. In traditional RNNs, the weights w
are updated using back-propagation through time (BPTT)
algorithm; however, this method suffers from the vanishing
gradient problem [10]. To overcome this problem, the Long-
Short Term Memory (LSTM) cell was designed [9]. To
simplify LSTM while still maintaining the core functionality,
the Gated Recurrent Unit (GRU) cell was introduced [11].
GRU cells compute reset gate r, update gate z, cell activation
k, and hidden state h as [11]:

r[t] = �(Wxrx[t] + bxr +Whrh[t�1] + bhr) (1)
z[t] = �(Wxzx[t] + bxz +Whzh[t�1] + bhz) (2)
k[t] = tanh(Wxkx[t] + bxk + rt � (Whkh[t�1] + bhk))

(3)
h[t] = (1� z[t])� k[t] + z[t] � h[t�1] (4)

where � is the sigmoid activation function, tanh is the hy-
perbolic tanh activation function, and � represents element-
wise multiplication. The input-hidden weight matrices are
Wx’s and hidden-hidden weight matrices are Wh’s. Simi-
larly, the bx’s and bh’s are the corresponding biases.

Sequence-to-Sequence (Seq2eqS) RNNs have been ex-
tensively used for language translation and recently have
demonstrated success in energy forecasting [7]. They consist
of two RNNs, an encoder and decoder RNN. This struc-
ture improves consecutive sequence prediction and allows
Seq2Seq RNNs to have varying input and output lengths.
Seq2Seq RNN can be used with LSTM or GRU cells.

B. TRANSFER LEARNING
Transfer learning is a machine learning approach where
knowledge gained while performing a task in one domain is
used to improve learning in a different domain or applied for
a different task [8]. It is defined as follows [8]:

Definition 1 (Transfer Learning): Given a source domainDS

and learning task TS , a target domain DT and learning task
TT , transfer learning aims to help improve the learning of the
target predictive function rT (�) in DT using the knowledge
in DS and TS , where DS 6= DT , or TS 6= TT . [8]
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Here, a domain is a pair D = fF; P (X)g, where F =
ff1; :::; fkg is a feature space, X is a set of learning samples
X = fx1; :::; xmg, and P (X) is the marginal probability
distribution of X . Domains are considered different if either
marginal probability distributions or feature spaces are dif-
ferent.

Fig. 1 illustrates the difference between traditional ma-
chine learning and transfer learning. The traditional ML algo-
rithms learn from a single domain for each model separately,
whereas transfer learning uses the knowledge gained from
multiple source domains to improve learning on the target
domain. Different knowledge, such as instances, parameters,
and relational knowledge, can be transferred across tasks and
domains [8] .

In the energy forecasting with smart meter data, there
is a single task (energy forecasting), but there are differ-
ent domains: smart meters are considered different domains
because they differ in energy consumption patterns and
marginal probability distributions. SBCTL proposed here
transfers weights and hyperparameters learned on the source
domain (meter) to improve learning on the target domain.
Thus, SBCTL belongs to the category of parameter transfer
approaches.

III. RELATED WORK
Many approaches have been used for sensor-based energy
forecasting; examples include fuzzy Bayesian [12], Support
Vector Machine (SVM) [13], neural network [4] and ARIMA
[14]. Tang et al. [12] were interested in predicting energy
on an annual basis and they proposed probabilistic energy
forecasting based on fuzzy Bayesian theory and expert pre-
diction. Grolinger et al. [6] combined local learning with
support vector regression (SVR) to reduce computation time
while maintaining forecasting accuracy. Amber et al. [4]
compared Multiple Regression (MR), Genetic Programming
(GP), Artificial Neural Network (ANN), Deep Neural Net-
work (DNN), and Support Vector Machine (SVM). Artificial
Neural Network achieved better accuracy than the remaining
four algorithms.

FIGURE 1: Traditional machine learning and transfer learn-
ing.

Several algorithms were combined to form ensemble
learning models. Li et al. [15] proposed teaching-learning
based optimization with artificial neural network for hourly
energy prediction. Khairalla et al. [16] investigated Stack-
ing Multi-Learning Ensemble (SMLE) model and combined
Support Vector Regression (SVR), neural network, and linear
regression learners. Baesmat et al. [5] proposed the weighted
combination of ARIMA and RELM for city-level energy
forecasting.

In recent years, recurrent neural networks have gained
popularity in forecasting because of their ability to cap-
ture time-dependencies. Han et al. [17] proposed wind and
photovoltaic power generation prediction based on copula
function and LSTM network whereas Jiao et al. [18] de-
signed multiple sequence LSTM RNN for non-residential
load forecasting. Bouktif et al. [10] also used LSTM for
energy forecasting but they combined it with genetic al-
gorithm (GA) to find optimal time lags and the number
of layers for the LSTM model. Standard LSTM was com-
pared to Sequence-to-Sequence (Seq2Seq) architecture [19]
and on one-minute time-step resolution datasets, Seq2Seq
performed better. Similarly, in experiments performed by
Sehovac et al. [7], Seq2Seq RNN also outperformed standard
RNN.

As can be seen, the use of NN-based solutions has been
quite popular [7], [10], [15]–[19] and recently Seq2Seq RNN
provided increased prediction accuracy [7], [19]. Neverthe-
less, all the reviewed NN approaches focus on building a
prediction model for a specific building or an aggregated
load using historical data from that same building or the
same aggregated load. In contrast, our work aims to reduce
computation needed to create prediction models for a large
number of smart meters taking advantage of transfer learning.

Transfer learning has been applied in different domains
and for different tasks. For visual recognition, Zhu et al.
[20] proposed a weakly-supervised cross-domain dictionary
learning method. In Natural Language Processing (NLP),
Hu et al. [21] improved mispronunciation detection with
a deep neural network trained acoustic model and transfer
learning-based Logistic Regression classifiers. In software
engineering, Ma et al. [22] and Nam et al. [23] addressed
cross-company software defect classification. In contrast to
domain-specific solutions [20]–[23], Li et al. [24] aimed to
develop a transfer learning model for a variety of applications
and presented augmented feature representations for domain
adaptation. Similarly, Mozafari et al. [25] were interested in
transfer between different domains and proposed a SVM-
based model-transferring method for heterogeneous domain
adaptation. These works [20]–[25] focus on feature augmen-
tation whereas our work belongs to the parameter transfer
category as it transfers model parameters.

Parameter transfer is often found associated with pre-
trained neural networks in computer vision [8]. Krizhevsky
et al. [26] trained ImageNet, a large, deep Convolutional
Neural Network (CNN) for classifying 1.2 million pictures.
It is computationally expensive and time-consuming to train
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such a neural network with 650,000 neurons and 60 million
parameters; nevertheless, once such a network is trained, it
is a good foundation for other image classification problems.
Menegola et al. [27] used pre-trained ImageNet to develop
an approach for melanoma screening. Similarly, a pre-trained
AlexNet, another deep CNN architecture, was used to detect
pathological brain in magnetic resonance images [28]. These
parameter-transfer approaches deal with image classification
whereas SBCTL addresses forecasting with time series data.

In the energy domain, Mocanu et al. [29], Grubinger et al.
[30], and Ribeiro et al. [31] applied transfer learning to pro-
vide prediction models for buildings with limited historical
data by using data from other similar buildings with rich data
sets. Wile those studies [29]–[31] aim to solve the limited
data issue for target buildings, our objective is to reduce
computation needed to train prediction models for a large
number of buildings.

IV. SIMILARITY-BASED CHAINED TRANSFER
LEARNING
This paper proposes the Similarity-Based Chained Transfer
Learning (SBCTL) approach for building neural network-
based energy forecasting models for a large number of
buildings by applying transfer learning. The approach takes
advantage of the initial neural network model trained with a
single meter data to initialize training models for other smart
meters. SBCTL is illustrated in Fig. 2 and details of each
stage are described in the following subsections.

A. DATA PREPARATION
The smart meter data typically contain energy readings such
as consumption and demand, and the corresponding date and

FIGURE 2: Similarity-Based Chained Transfer Learning
(SBCTL).

time. If the reading intervals are different, all smart meter
data are processed to make intervals between the readings the
same. In the case of energy consumption, meters with finer
reading granularity are converted to a coarser granularity by
adding consumption readings.

Whereas feature selection is often considered in energy
forecasting studies [32], SBCTL does not include it, as
SBCTL is primarily designed for forecasting using smart
meter data with limited number of features; in experiments
we used only seven features. Nevertheless, when working
with more features, SBCTL could be augmented by adding
feature selection step.

Let us denote this meter data as m1;m2; :::;mk 2 M ,
where M is the set of all meters and k is the number
of meters. This data is processed into two data sets: the
similarity set D and the forecasting set G. Meter n data in
D is denoted as dn, dn 2 D, and the same meter data in G is
denoted by gn, gn 2 G. Although both dn and gn belong to
the same meter, they are different in the number of features
and time spans.

Similarity set D is created for calculation of similarities
among energy consumption patterns recorded by different
meters. It contains only energy consumption readings with-
out any additional features because similarity is concerned
solely with usage patterns. To capture quarterly and monthly
patterns, D set must contain at least one year of energy
readings. Each meter data dn must start at the same date/time
to ensure alignment of temporal patterns.

Forecasting set G, in addition to energy readings, contains
other features generated from date and time such as day
of the year, and weekday/weekend. Data pre-processing for
this set depends on the type of the forecasting model used.
As Sequence-to-Sequence (Seq2Seq) RNNs [7] have shown
great results in energy forecasting for individual smart me-
ters, they are used in SBCTL to build the initial model as
well as to refine transferred models.

To enable the use of Seq2Seq RNN, data is prepared
applying the sliding window techniques proposed by Sehovac
et al. [7]. One input sample consists of a matrix X 2 RT�f ,
where T is the length of the input sequence or the number of
time steps in a window and f is the number of features. Note
that energy readings for all time steps of the input sequence
are included as input features. If the input sample ends at
time t, the corresponding target sequence consists of load
values for time steps t + 1 to t + N . This way, T time steps
are used to predict the next N time steps ahead. The next
sample is generated by sliding the window for one time step
and repeating the same process.

The forecasting set is divided into training and test sets:
first 80% of data is assigned for training and the last 20% for
testing. This way, older data is used to train the model, and
newer (test) data is used to evaluate and compare models. To
capture monthly and quarterly patterns, the training set must
contain at least one year of data; thus, the forecasting set G
contains at least 15 months of data.

The complete SBCTL approach is given by Algorithm
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Algorithm 1 SBCTL

1: Input : Set M consisting of all meter data, initialization
2: Output : Models for all meters

3: D  transform1 (M) // similarity set
4: G transform2 (M) // forecasting set (training)
5: D  normalization(D)
6: L(di; dj) similarity (di; dj), for all di; dj 2 D; i < j
7: T  M // initialize target set
8: S  fg // initialize source set

9: if initialization == A // From the most similar pair
10: (p; q) arg min

i;j
L(di; dj); for di; dj 2 D; i < j

11: elseif initialization == B // From the center
12: dcenter  mean(di); for di 2 D
13: p arg min

i
L(di; dcenter); for di 2 D

14: q  arg min
i

L(dp; di); for di 2 D; i 6= p

15: mm
p  train initial model for mp with gp data

16: S = S
S
fmpg // add to source

17: T = T=S // remove from target

18: while T 6= fg do
19: mm

q  transfer learning (mm
p ) with gq data

20: S = S
S
fmqg // add to source

21: T = T=S // remove from target
22: if T 6= fg
23: (p; q) arg min

i;j
L(di; dj); for mi 2 S;mj 2 T

24: Return : Models for all meters {mm
1 ;m

m
2 :::m

m
k g

1. For simplification, in the algorithm, G refers to only
the training part of the forecasting set. The approach starts
with data preparation, specifically by creating sets D and G,
lines 3 and 4, and continues with the steps described in the
remaining subsections.

B. SIMILARITY CALCULATION

Similarity calculation gives a numeric value to similarities
between each possible pair of meters. Here, we are interested
in energy patterns and not in the actual values of energy
consumption. Therefore, all values from similarity data set
D are first scaled to bring them to the same range (line 5 in
Algorithm 1). Min-max normalization is performed for each
meter separately resulting in each meter values in [0,1] range.

Next, similarity between all pairs of meters is calculated
(line 6, Algorithm 1); four different metrics are considered.
Euclidean, Cosign, and Manhattan distances between meter i
and j are calculated as follows:

LEucl(di; dj) =

vuut NX
t=1

(dt
i � dt

j)2 (5a)

LCosign(di; dj) = 1�
PN

t=1(dt
id

t
j)qPN

t=1(dt
i)

2

qPN
t=1(dt

j)2

(5b)

LManh(di; dj) =
NX

t=1

j(dt
i � dt

j)j (5c)

for di; dj 2 D; i < j (5d)

The fourth metrics considered is Dynamic Time Warp-
ing (DTW) distance [33]. DTW was selected because it is
capable of measuring similarity between the two temporal
sequences which may vary in speed. A well known example
of a DTW application is automatic speech recognition where
DTW is capable of handling different speaking speeds. In
energy data, DTW could potentially capture peak shifts or
prolonged peak periods. To control how much the sequences
can be "warped" for the comparison calculation, a locality
constraint referred to as the window is commonly added.
In our work, experiments consider different window sizes in
order to examine their impact on the forecasting accuracy.

For k number of meters, the outcome of the similarity
calculation is a k � k upper oblique matrix; this similarity
matrix is denoted as Sk�k

im . The lower the distance value
between two meters, the more similar are the meters.

C. SET FIRST SOURCE-TARGET METER PAIR
The main idea behind SBCTL is to use a similarity measure
to determine the source and target meters for the transfer
process. To start with, none of the meters have an associated
prediction model. Therefore, as indicated in lines 7 and 8,
Algorithm 1, all meters belong to the target set T and the
source set S is empty. Throughout the process, the target
set will always have only the meters that do not yet have
the corresponding prediction model and the source set will
contain meters with an already trained model. Two different
initialization techniques are considered:

Initialization A: Starting from the pair of the most similar
meters. As indicated in Algorithm 1, line 10, the two meters
that correspond to the minimum value in the similarity matrix
Sk�k

im are assigned as a starting source-target pair (p; q).
Either one of the two meters in the pair can be set as the
source p; experiments will evaluate switching p and q in the
first source-target pair.

Initialization B: Starting from the meter that is the closest
to the center. First, the center is calculated from the similarity
data set D (Algorithm 1, line 12). For each time step t in the
similarity set, the arithmetic mean dt

center is calculated as:

dt
center =

1

k

kX
i=1

dt
i (6)
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where k stands for the number of meters and dt
i is a reading

from meter i at time step t.
The meter that is the closest to this center C according

to selected similarity metrics is chosen as the initial meter p
(Algorithm 1, line 13). The meter that is the most similar to
the initial meter p is selected as meter q (Algorithm 1, line
14).

D. BUILD INITIAL MODEL
This step is responsible for building the first prediction model
which will serve as a starting point for the transfer learning.
The initial model is built for the meter that was assigned as
the source p (line 10 or 13, Algorithm 1). As indicated in line
15, the initial model for metermp is trained using forecasting
data set gp.

SBCTL is designed for NN-based algorithms; therefore,
all models, including the initial one, must be built using a
same NN approach. Specifically, a Seq2Seq RNN [7] is used
because of its recent success. A Seq2Seq RNN [7] consists
of an encoder RNN and decoder RNN as illustrated in Fig. 3.
An input sequence x[1]; :::; x[T ] is passed through the encoder
RNN to obtain an encoded representation of the input vector
referred to as the context vector (~c). The decoder RNN
extracts information from this context vector at each output
time step to obtain the prediction sequence fŷ[1]; :::; ŷ[N ]g.
The initial input for the decoder RNN is the context value
ŷ[0] derived from the context vector.

This first model is trained in a traditional way: weights
are initialized to random values and model is trained for a
sufficient number of epochs ensuring that weights converge.
To avoid local minimum, the process is repeated starting with
a different set of random initial values referred to as seeds.
The best model among all runs with different seeds is chosen
for forecasting and used in the following SBCTL steps.

NN hyperparameters such as a number of layers and neu-
rons, are also tuned in this step by splitting the training data
into the training and validation sets; model selection is done
on the validation set. After tuning hyperparameters for the
initial model, they remain the same throughout the transfer
learning and for all meter models. In contrast, the weights
learned during the initial model training are used as a starting
point for other models, but the weights do change.

The result of the training and tuning is the prediction

FIGURE 3: Sequence-to-Sequence Recurrent Neural Net-
work.

model for meter p denoted as mm
p (Algorithm 1, line 15).

Note that mp indicates meter data for the meter p and mm
p

denotes the trained model for the same meter p. Because
meter p now has the forecasting model, it is added to the
set of source meters S, line 16, and removed from the set of
target meters T , line 17. This initial model is now available
for transfer learning.

E. TRANSFER LEARNING
The initial model mm

p is used as a seed for building all other
prediction models through transfer learning. The assumption
is that if the meters share some similarity, so should their
trained models. Thus, if we use the initial prediction model
as a starting point for building the model for the most similar
meter, the training should be reduced.

The meter to transfer knowledge to is the q meter from
the (p; q) pair. Because the pair is determined according
to similarities, SBCTL ensures that the transfer happens
between more similar meters. As indicated in line 19, existing
model mm

p trained previously for meter p and with data
set gp, is now used as a starting point for building meter
q model. Model mm

p continues training, but now with the
target meter data gq to obtain model mm

q . Network structure
and hyperparameters determined during training for the first
meter remain the same throughout the transfer learning and
for all forecasting models. The weights from the source
meter model mm

p are transferred to the target meter q, but
they change through training with the target meter data gq .
The number of training epoch needed for the weights to
converge is lower because the training starts from the pre-
trained weights.

If the two meters from the pair are very similar, the trans-
ferred model, without any training with the target meter data,
may already provide reasonable accuracy: we refer to transfer
without additional training as epoch 0. The evaluation will
explore how many epochs with target data are needed to
achieve comparable accuracy to traditional NN training.

The result of the training with the transferred model is
the new model mm

q , line 19. Next, as meter q now has the
forecasting model, it is added to the set of source meters S,
line 20, and removed from the set of target meters T , line 21.
This additional model now is available for transfer learning.

If there are still meters that do not have a corresponding
prediction model, in other words, if the target set T is not
empty (lines 22 and 18), the SBCTL will proceed to Set
Next Source-Target Meter Pair step. If forecasting models are
trained for all meters, the SBCTL process is completed.

F. SET NEXT SOURCE-TARGET METER PAIR
In this step, the next source-target meter pair (p; q) is se-
lected for transfer learning. As indicated in the algorithm’s
name SBCTL, the processed is chained: building the next
forecasting model depends on the previously built models.
In each loop of the chained process, the forecasting model
will always be transferred from one meter in the source set S
to one meter in the target set T .
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To determine which model should be trained next, the
similarity distances calculated in line 6 are used. Because the
transfer needs to happen from an already trained model, we
are interested in finding a meter from the target set T that is
the most similar to any meter in the source set S. Thus, line
23 in Algorithm 1 finds the pair with minimum distance L
under the constraint that mp 2 S and mq 2 T . The model
will be transferred from from mp to mq .

When the next source-target pair (p; q) is set (line 23),
SBCTL continues to transfer learning, line 19, described in
subsection IV-E.

G. ML MODELS FOR ALL METERS
This is the final output of the SBCTL process. As indicated
in line 18, the transfer learning process completes when the
target set is empty T = fg and all meters belong to the
source set S. The algorithm results are the trained ML models
for all meters mm

1 ;m
m
2 :::m

m
k .

V. EVALUATION
This section introduces the evaluation process, describes the
three experiments with different data sets, and discusses the
findings. Experiments one and two consider smaller data sets
consisting of 7 and 19 meters, respectively. A small num-
ber of meters in these two experiments allows for detailed
examination of the transfer process as well as for accuracy
comparison for each individual meter. On the other hand, the
third data set consisting of 456 meters allows for evaluation
at scale and demonstrates SBCTL forecasting accuracy and
time savings with larger data. The used hardware was differ-
ent for each data set and reflects the increase of data set size.

All of the experiments applied SBCTL with initializations
A and B. Also, Euclidean, Cosine, Manhattan, and DTW
distance with window size of 3, 6, 12, and 24 were eval-
uated. SBCTL was implemented using Python with Pandas
and PyTorch libraries. GRU cells were used in Seq2Seq
RNN because they achieved higher accuracy than LSTM
in single meter forecasting [7]. The hyper-parameters used
for the initial model as well as for all other models were:
Hidden dimension size = 64, Batch size = 256, Epochs = 10,
Optimizer = Adam, Learning rate = 0.001, Encoder size = 8
and Decoder size = 4.

A. EVALUATION PROCESS
For each meter in each experiment, SBCTL was compared to
the traditional machine learning:
� Traditional ML. For each meter, an individual Seq2Seq

RNN model was trained using that meter training data.
The process was repeated with 10 seeds and the model
with the best MAPE was selected for comparisons. As
a large number of models from the two experiments
converged around the 10th epoch, the comparison was
carried out with 10 epochs. For each epoch, the model
was tested on the test set and accuracy was recorded.

� SBCTL. The models are built using SBCTL approach.
In each experiment, the first model is built using the

traditional approach. All other models are built using
SBCTL transfer learning and only trained for 5 epochs
because the training starts from the pre-trained weights.
For each epoch, including 0 epoch (no training on tar-
get), the models were tested on the test set and accuracy
was recorded.

To evaluate model accuracy, Mean Absolute Error (MAE)
and Mean Absolute Percentage Error (MAPE) were selected
because of their frequent use in energy forecasting studies
[1]:

MAE =
1

N 0

N 0X
t=1

jyt � ŷtj (7)

MAPE =
100%

N 0

N 0X
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����yt � ŷt
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where y is the actual value, ŷ is the predicted value, and N 0

stands for the number of test set samples.
Other metrics such as Mean Absolute Error (MSE) and

Root Mean Square Error (RMSE) were also calculated in the
experiments, but they are not shown here as they exhibit the
same patterns as MAE and MAPE.

B. EXPERIMENT ONE
This experiment was performed on MacBookPro with 2.9
GHz Intel Core i7 processor and 16 GB LPDDR3 memory.

1) Data set
Experiment one used a private data set from seven real-world
meters measuring commercial buildings energy consumption
in 15 min intervals. This data set, as well as data sets in
remaining experiments, consist of reading date/time with
corresponding energy consumption. For experiment one, the
total number of readings was: 4 readings in one hour � 24
hours � 487 days = 46,752 for each meter.

Daily consumption profiles for meters 4 and 5 are depicted
in figures 4 and 5, respectively. Meter 4 shows different pat-
terns for weekend and weekdays, whereas meter 5 displays
similar patterns for all days (no weekday/weekend distinc-
tion) but different from meter 4. Although the patterns and
average consumption are different among meters, SBCTL is
able to transfer knowledge among the models.

2) Experiment
The similarity set D contained one year of energy readings
without any additional features. The forecasting set G con-
tained additional generated features (month and day of the
year, day of the month, day of the week, weekend, hour,
season, holiday) and included readings from all 487 days. A
few samples from G are shown in Table 1.

In Similarity Calculation step, the usage readings were
normalized and the distance matrices were calculated. Set
First Target-Source Meter Pair step with initialization A
selected meters 2 and 4 as the meters with the smallest dis-
tance; thus, the first pair can be (2; 4) or (4; 2). Experiments
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TABLE 1: Example Data from Forecasting Data Set

Index Month Day of Year Day of Month Weekday Weekend Holiday Hour Season Usage (kW)

0 6 158 6 0 0 0 0 3 881.36
11661 10 279 5 2 0 0 11 4 1507.47
42978 8 239 27 6 1 0 16 3 983.60

FIGURE 4: Daily load profile - meter 4.

FIGURE 5: Daily load profile - meter 5.

were performed for both transfer paths (2; 4) and (4; 2).
With initialization B, the initial meter was meter 4, and the
transfer path was the same as for initialization A with 4 as
the starting meter. Here, the following steps are described
assuming (4; 2) order. The experiments were performed for
both transfer paths (2; 4) and (4; 2).

Next, in Build Initial Model step, the model for meter 4 is
trained with the training part of g4. After the best model mm

4

for meter m4 was completed, m4 was removed from target
set T and added to source set S.

In Transfer Learning step, model mm
4 was transferred to

meter 2 making mm
2 . The model mm

2 was first tested directly
on the test set of g2 (transfer 0 epoch) and then trained with
the training set of g2 for 5 epochs. Upon completed training,
m2 was removed from the target set T and added to source
set S.

Next, Set Next Source-Target Meter Pair step determines
the order of remaining transfers. In this experiment, initial-
ization A with the first meter 4 and initialization B shared the
same chained transfer path presented in Table 2. The first row
indicates transfer from meter 4 to meter 2; the second row
shows transfer from meter 2 to 7, and so on. The pairs were
chosen to satisfy the condition of minimum distance value
under constraints that one meter belongs to the source set S
and one to the target set T as indicated in line 18, algorithm

1. The process ends when all meters have the corresponding
prediction model.

3) Result
The main objective of the experiments is to compare SBCTL
accuracy with that of traditional machine learning when the
model is trained for each meter individually. Thus, SBCTL is
deemed successful if it is able to achieve similar accuracy to
traditional ML but with reduced computation.

Fig. 6 compares the accuracy of SBCTL and traditional
ML in terms of MAE for the six meters. Meter 4 is not
included because it was the initial meter and, thus, follows the
traditional ML training. The horizontal dashed line indicating
the SBCTL accuracy at 5 epochs is included to ease visual
comparison. It can be seen that when the model is transferred
without additional training (epoch 0), MAE is relatively high.
Nevertheless, MAE drops sharply in epochs 1 and 2, and after
5 epochs, 5 out of 6 meters achieve better accuracy than the
traditional ML and the sixth meter m6 achieves MAE within
0.01 difference. Moreover, after 3 epochs, all meters achieve
accuracy comparable to traditional ML.

In addition to accuracy, it is important to compare compu-
tational cost; thus, the average elapsed time, standard devia-
tion, and variance for traditional ML and SBCTL are shown
in Table 3. For SBCTL, the initial meter 4 is not included as
it is trained in a traditional way. It can be observed that for
SBCTL with three epochs, time was reduced to 10.48s from
365.47s achieved with traditional ML what is about 97%
reduction. Note that traditional training was repeated with 10
different seeds (initializations) while the SBTCL starts from
the single initial state transferred from an already trained
meter.

For the initial pair or meters (4,2), two paths are possible;

TABLE 2: Experiment One: Chained Transfer Path

Step Source Meter Target Meter Euclidean Distance

1 m4 m2 135.2
2 m2 m7 135.5
3 m4 m6 160.4
4 m4 m1 202.9
5 m1 m5 198.4
6 m5 m3 264.0

TABLE 3: Experiment 1: Average Training Time

Traditional SBCTL epoch
10 0 1 2 3 4 5

Time (s) 365.47 0 3.53 7.00 10.48 14.09 17.64
Std.Dev 0.13 0 0.07 0.08 0.11 0.21 0.32
Variance 0.018 0 0.005 0.006 0.012 0.046 0.100
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FIGURE 6: Experiment 1: Test set MAE for SBCTL and traditional ML.

FIGURE 7: Experiment 1: Test set MAPE for the two SBCTL
paths.

starting with meter 4 or with 2 as the initial meter. Irrelevant
of the starting meter, the transfer path, Table 2, remained the
same with the exception of the source and target reversal in
the first row. Fig. 7 shows the comparison between the two
SBCTL paths with 3 epochs and traditional ML: MAPE was
used in contrast to MAE used in Fig. 6 to bring all errors to
similar scales. Meters 2 and 4 are missing the bar for the path
in which they were used as the initial meter and therefore
trained in a traditional way. Both paths resulted in similar
MAPE values; moreover, MAPE values were comparable to
those achieved with traditional ML.

Overall, in experiment one, SBCTL achieved similar accu-
racy to traditional ML while taking only about a fraction of
time.

C. EXPERIMENT TWO

This data set is larger; thus, the experiment was performed
on a computer with 3.80 GHz Intel i7-9800X processor, 32
GB RAM, and NVIDIA GeForce RTX 2080 Ti graphics card.
GPU acceleration was used for training ML models.

1) Data set
This experiment used an open source data set [34] containing
readings from 20 meters recorded in the one-hour intervals.
Readings from the same 487 consecutive days were taken for
each meter: 24� 487 = 11,688 readings for each meter.

2) Experiment
The same process was used as in experiment one. Meter 7 had
the same readings as meter 3 for all time steps; thus, meter 3
was removed from further evaluations. The chained transfer
path for Euclidean distance is shown in Table 4.

3) Result
The starting meter for initialization B was the same as one
of the meters in the initialization A starting pair. The mean
MAPE and MAE across all meters for different distance
metrics are compared in Fig. 8. Different similarity metrics
resulted in different chained transfer paths with exception of
Euclidean and Cosine distances which had the same path;
thus, in Fig. 8 they share the same values. In all metrics,
SBCTL out-performed the traditional machine learning with
Euclidean/Cosine distance achieving the best accuracy.

SBCTL with initialization B and Euclidean distance is
compared to traditional ML for each meter in Fig. 10; the

TABLE 4: Experiment Two: Chained Transfer Path

Step Source Target Distance Step Source Target Distance
1 m7 m2 0.001 10 m19 m17 26.49
2 m7 m6 2.96 11 m19 m1 28.85
3 m6 m20 33.74 12 m20 m13 32.73
4 m20 m18 31.69 13 m16 m12 34.11
5 m18 m19 22.17 14 m12 m11 17.35
6 m18 m16 22.74 15 m5 m8 36.82
7 m18 m5 23.64 16 m13 m4 42.39
8 m19 m15 23.96 17 m8 m10 81.84
9 m19 m14 26.3 18 m10 m9 134.74
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FIGURE 8: Experiment 2: Mean MAPE and MAE for differ-
ent distance metrics.

order of meters in the figure follows the chained transfer path
from Table 4.

Similar to graphs in experiment one, each graph shows the
comparison for the specific meter not including the initial
meter 7. In experiment two, MAPE is used in place of MAE,
to use more similar scales in figures, nevertheless, MAE
exhibited the same patterns. The horizontal line indicates
SBCTL accuracy at 1 epoch as opposed to 3 epochs used
in experiment one because most meters from this data set
already achieve accuracy comparable to traditional ML in the
first epoch. For all metes except meters 4 and 9, direct trans-
fer, without any training with target data (epoch 0) already
achieved comparable MAPE to traditional ML. After the first
epoch, MAPE surpassed the traditional ML MAPE. For me-
ter 9, SBCTL with 0 epoch exhibited high MAPE, but already
after the first epoch, accuracy approached traditional ML
values. For meter 4 traditional ML exhibited lower MAPE
than SBCTL; however, it is important to note that for this
meter MAPE is overall high, irrelevant of the approach used,
what may be caused by high energy consumption variability.

Fig. 9 compares accuracy of traditional ML with SBCTL at
the first and fifth epoch corresponding to the chained transfer
path from Table 4. The first epoch was considered instead
of the third epoch used for experiment one (Fig. 7), because
most models achieved good accuracy already after the first
epoch. It can be seen that SBCTL with one epoch achieved
better accuracy than traditional ML with 10 epochs for all but
two meters (4 and 9).

The average training time is shown in Table 5. Overall,
in experiment two, SBCTL (initialization B, Euclidean dis-
tance) with one epoch achieved 0.55% reduction in MAPE
and 474.88 in MAE compared to traditional ML while taking
less then 1% of time.

D. EXPERIMENT THREE
This experiment was performed on a machine with Intel i7-
9800X processor, 32 GB RAM, and four NVIDIA GeForce

TABLE 5: Experiment 2: Average Training Time

Traditional SBCTL epoch
10 0 1 2 3 4 5

Time (s) 94.53 0 0.88 1.75 2.60 3.48 4.35
Std.Dev 0.19 0 0.01 0.02 0.02 0.03 0.04
Variance 0.04 0 0 0 0.001 0.001 0.001

RTX 2080 Ti graphics cards. As in experiment two, GPU
acceleration was used for training machine learning models.

1) Data set
An open source data set provided by the Building Data
Genome project [35] was used in this experiment. This data
set contains one year of hourly, whole building electrical me-
ter data for 507 non-residential buildings. Meters with miss-
ing data and with less than one year of data were removed
resulting in a set of 456 meters. For each meter there are
24(hours) * 365(days) = 8760 readings. Data were collected
between 2010 and 2015 and, as data for each building spans
only one year, the collection time periods vary among build-
ings. The meters are located in 9 different time zones and
there are five primary use types: office, primary/secondary
classroom, college laboratory, college classroom, and dormi-
tory.

2) Experiment
The challenge with this data set is that it contains only
one year of data and for SBCTL ideally, data set should
have at least one year for training and additional data for
testing. Nevertheless, the last 20% of data was used for
testing and the first 80% for training prediction models and
for calculating similarities. It is expected that this will not
result in as high accuracy as if the hole year of data was used
for training.

While in experiments one and two, accuracy could be
visualized and observed for each meter separately (as in
figures 6 and 10), this is more difficult for experiment three
as it contains 456 meters. Thus, traditional machine learning

FIGURE 9: Experiment 2: Test set MAPE at first and fifth
epoch.
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FIGURE 10: Experiment 2: Test set MAPE for SBCTL and traditional ML.
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TABLE 6: Experiment 3: MAPE and MAE for initializations A and B, for each distance metrics

Traditional Euclidean Cosine Manhattan DTW3 DTW 6 DTW12 DTW24
MAPE-A 30.1% 29.7% 30.6% 27.4% 33.0% 31.9% 36.5% 34.1%
MAPE-B 30.1% 25.1% 22.8% 25.2% 25.8% 27.4% 27.9% 25.9%
MAE-A 7.662 7.661 7.652 7.596 7.553 7.714 7.732 7.737
MAE-B 7.662 7.646 7.500 7.593 7.699 7.650 7.709 7.661

FIGURE 11: Experiment 3: MAPE and MAE for different
initializations and distance metrics.

was performed with up to 30 epochs with early stopping
when the loss function did not decrease in five consecutive
epochs. This allows more epochs to achieve convergence,
and, at the same time, helps remedy overfitting and avoids
higher number of epochs if convergence is achieved earlier.

3) Result

In this experiment, transfer paths were different for the two
initialization approaches A and B. Fig. 11 compares MAPE
and MAE achieved with the two initializations for each
of the distance metrics. The traditional approach does not
have different initializations, thus accuracy for initializations
A and B is the same. In terms of MAPE, initialization B
outperformed initialization A for all distance metrics. This
is slightly different for the MAE, where the initialization A
achieved better accuracy for DTW with window of 3 time
steps (DTW3). Nevertheless, irrelevant of the metrics used,
the overall best model is with initialization B and Cosine
distance.

Table 6 shows the data from Fig. 11 for further com-
parison. It can be observed that the best SBCTL model
(initialization B with Cosine) achieved reduction of 7.3% in
average MAPE and .163 in average MAE in comparison to
traditional ML training.

The average elapsed time for all meters with the traditional
ML and SBCTL are shown in Table 7. SBCTL used only
about 2.6% of time needed to train the models in a traditional
way.

TABLE 7: Experiment 3: Average Training Time

Traditional SBCTL epoch
10 0 1 2 3 4 5

Time (s) 30.33 0 0.16 0.31 0.46 0.62 0.77
Std.Dev 10.24 0 0.01 0.03 0.04 0.05 0.06
Variance 104.78 0 0 0.001 0.002 0.003 0.004

E. DISCUSSION
In all three experiments, SBCTL achieved improved average
accuracy in comparison to traditional ML. Overall, the best
performing model was SBTCL with initialization B (from
the center) and Euclidean distance. This can be observed
from figures 8 and 11 for experiments one and two, whereas
there was no difference among SBCTL approaches in the
experiment one.

In experiments one and two, SBCTL models trained for
5 epoch achieved higher accuracy than traditional ML with
10 epoch. An exception was meter 4 in experiment two;
nevertheless, that meter achieved low accuracy irrelevant of
the approach, possibly because of high data variability. This
demonstrated that transferring weights according to SBCTL
approach is a promising direction for training a large number
of energy forecasting models.

Note that in experiment two SBCTL needed only 1 epoch
to achieve comparable results to traditional ML where it
needed 3 epochs in experiment one. Moreover, in experiment
two, even direct transfer without additional training (epoch
0) achieved good accuracy. The reason for this is a higher
similarity between meters in experiment two. In experiment
one, the lowest Euclidean distance was 135.2 (Table 2) and
the mean was 182.65. Meanwhile, the lowest Euclidean
distance in experiment two was 0.001 (Table 4) and mean
was 34.58.

In all experiments, the time to train SBCTL models was
only a fraction of time in comparison to traditional ML while
they achieved comparable accuracy. Training time reduction
depends on the number of epoch needed after the transfer
what is impacted by the similarity between meters.

SBTCL requires all smart meter data sets to have the
same sampling frequency or the data sets need to be pre-
processed to convert them to the same frequency. If there are
any missing data, they need to be imputed in the preparation
step in order to enable the similarity calculations. As SBCTL
transfers NN weights from one meter to another, and contin-
ues training from those weight, there is a possibility of the
transferred model getting stuck in a local minimum. How-
ever, the presented experiments, even the third one with 456
meters, demonstrate high accuracy in spite of a possibility of
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a local minimum.

VI. CONCLUSION
Extensive smart meter deployments have created opportuni-
ties for energy forecasting on a large scale. Machine learning-
based forecasting typically involves training the model with
historical data from a single building and then using this
model to infer consumption for the same building. As train-
ing is computationally intensive, it is not practical to train
ML models individually for many meters.

This paper proposes Similarity-Based Chained Transfer
Learning (SBCTL) to enable building neural network-based
forecasting models for a large number of smart meters. The
initial model is built in a traditional way whereas all other
models use transfer learning in a chain-like manner. SBCTL
is evaluated with three different data sets: in all experiments,
SBCTL achieves similar accuracy to traditional ML training
while taking only a fraction of time. The best results are
achieved with Euclidean distance and starting from the meter
closest to the center. As illustrated in experiments one and
two, the SBCTL time depends on the number of epochs
needed for convergence after the transfer. When meters are
more similar in terms of their energy consumption profiles,
SBCTL needs fewer epochs and thus, training time is shorter.
The third experiment demonstrates that SBCTL maintains its
high accuracy even with a data set of 456 meters.

Future work will further explore the impact of similarly
on the number of epochs needed after the transfer. Moreover,
possibility to transfer knowledge among data sets of different
duration and with different reading intervals will also be
explored.
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