
Reinforcement Learning Algorithms: An Overview
and Classification

Fadi AlMahamid , Senior Member, IEEE, and Katarina Grolinger , Member, IEEE
Department of Electrical and Computer Engineering

Western University
London, Ontario, Canada

Abstract—The desire to make applications and machines
more intelligent and the aspiration to enable their operation
without human interaction have been driving innovations in
neural networks, deep learning, and other machine learning
techniques. Although reinforcement learning has been primarily
used in video games, recent advancements and the develop-
ment of diverse and powerful reinforcement algorithms have
enabled the reinforcement learning community to move from
playing video games to solving complex real-life problems in
autonomous systems such as self-driving cars, delivery drones,
and automated robotics. Understanding the environment of an
application and the algorithms’ limitations plays a vital role in
selecting the appropriate reinforcement learning algorithm that
successfully solves the problem on hand in an efficient manner.
Consequently, in this study, we identify three main environment
types and classify reinforcement learning algorithms according
to those environment types. Moreover, within each category, we
identify relationships between algorithms. The overview of each
algorithm provides insight into the algorithms’ foundations and
reviews similarities and differences among algorithms. This study
provides a perspective on the field and helps practitioners and
researchers to select the appropriate algorithm for their use case.

I. INTRODUCTION

Reinforcement Learning (RL) is one of the three machine
learning paradigms besides supervised learning and unsuper-
vised learning. It uses agents acting as human experts in a
domain to take actions. RL does not require data with labels;
instead, it learns from experiences by interacting with the
environment, observing, and responding to results.

RL can be expressed with Markov Decision Process (MDP)
as shown in Figure 1. Each environment is represented with
a state that reflects what is happening in the environment.
The RL agent takes actions in the environment, that causes
a change in the environment’s current state generating a new
state and receives a reward based on the results. The agent
receives a positive reward for good actions and a negative
reward for bad actions, which helps the agent evaluate the
performed action in a given state and learn from experiences.

Video games have been one of the most popular RL
applications, and RL algorithms have been mainly tested and
evaluated on video games. However, RL has other applications
and can be used in different domains such as self-driving
cars, natural language processing (NLP), autonomous robotics,
delivery drones, and many others. Furthermore, there are many

https://www.ieee.org/publications/rights/copyright-policy.html

Fig. 1. Markov Decision Process

diverse RL algorithms with different variations. Therefore,
it is imperative to understand the differences between RL
algorithms, select the appropriate algorithm suitable for the
environment type and the task on hand.

The most widely used algorithm is Deep Q-Network (DQN)
with its variations because of its simplicity and efficiency.
Nevertheless, DQN is suitable only for environments with
discrete actions. For example, in autonomous UAV naviga-
tion (self-flying drones), many papers tend to simplify the
environment to enable the use of DQN [1], [2]. However, in
complex real-life environments, DQN would not be suitable
if the environment is dynamic or the required actions are
continuous. Therefore, to assist in matching the RL algorithm
with the task, the classification of RL algorithms based on the
environment type is needed.

Consequently, this study provides an overview of different
RL algorithms, classifies them based on the environment
type, and explains their primary principles and characteristics.
Additionally, relationships among different RL algorithms are
also identified and described. The paper provides a perspective
on the domain and helps researchers and practitioners to
select appropriate algorithms for their use cases. Moreover,
it provides options for selecting a suitable algorithm for the
environment, rather than attempting to simplify the environ-
ment for the algorithm [1], [2].

The remainder of the paper is organized as follows: Section
II introduces RL and discusses RL’s main principles. Section
III classifies RL algorithm and provides their overview. Finally,
Section IV concludes the paper.

II. BACKGROUND

This section first introduces reinforcement learning. Next,
concepts of policy and value functions are described, and

https://orcid.org/0000-0002-6907-7626
https://orcid.org/0000-0003-0062-8212
https://www.ieee.org/publications/rights/copyright-policy.html

finally, experience replay is explained as a commonly used
technique in different RL algorithms.

A. Reinforcement Learning

The RL agent learns from taking actions in the environment,
which causes a change in the environment’s current state and
generates a reward based on the action taken as expressed in
the Markov Decision Process (MDP). We define the probabil-
ity of the transition to state s′ with reward r from taking action
a in state s at time t, for all s′ ∈ S, s ∈ S, r ∈ R, a ∈ A(s),
as:

P (s′, r|s, a) = Pr{St = s′, Rt = r|St−1 = s,At−1 = a} (1)

The agent receives rewards for performing actions and uses
them to measure the action’s success or failure. The Reward
R can be expressed in different forms, as a function of the
action R(a), or as a function of action-state pairs R(a, s).

The agent’s objective is to maximize the expected sum-
mation of the discounted rewards, which drives the agent to
take the selected actions. The reward is granted by adding
all the rewards generated from executing an episode. The
episode (trajectory) represents a finite number of actions and
ends when the agent achieves a final state, for example, when
a collision occurs in a simulated navigation environment.
However, in some cases, the actions can be continuous and
cannot be broken into episodes. The discounted reward, as
shown in equation 2 uses a multiplier γ to the power k, where
γ ∈ [0,1]. The value of k increases by one at each time step
to emphasize the current reward and to reduce the impact of
the future rewards, hence the term discounted reward.

Gt = E

[∞∑
k=0

γkRt+k+1

]
(2)

Emphasizing the current action’s immediate reward and re-
ducing the impact of future actions’ rewards help the expected
summation of discounted rewards to converge.

B. Policy and Value Function

The agent’s behavior is defined by following a policy π,
where the policy π defines the probability of taking action a,
given a state s, which is denoted as π(a|s). Once the agent
takes an action, the agent uses a value function to evaluate
the action. The agent either uses: 1) a state-value function
to estimate how good for the agent to be in state s, or 2) a
action-value function to measure how good it is for the agent
to perform an action a in a given state s. The action-value
function is defined in terms of the expected summation of the
discounted rewards and represents the target Q-value:

Qπ(s, a) = Eπ

[∞∑
k=0

γkRt+k+1 | St = s,At = a

]
(3)

The agent performs the action with the highest Q-value,
which might not be the optimal Q-value. Finding the optimal

Q-value requires selecting the best actions that maximize the
expected summation of discounted rewards under the optimal
policy π. The optimal Q-value Q∗(s, a) as described in
equation 4 must satisfy the Bellman optimality equation, which
is equal to the expected reward Rt+1, plus the maximum
expected discounted return that can be achieved for any
possible next state-action pairs (s′, a′).

Q∗(s, a) = max
π

Q(s, a) (4)

Q∗(s, a) = E
[
Rt+1 + γ max

a′
Q∗(s

′, a′)
]

(5)

This optimal Q-value Q∗(s, a) is used to train the neural
network. The Q-value Q(s, a) predicted by the network
is subtracted from the optimal Q-value Q∗(s, a) estimated
using the Bellman equation and backpropagated through the
network. The loss function is defined as follows:

Target︷ ︸︸ ︷
E
[
Rt+1 + γ max

a′
Q∗(s

′, a′)
]
−

Predicted︷ ︸︸ ︷
E

[∞∑
k=0

γkRt+k+1

]
(6)

C. Experience Replay

In RL, an experience e can be described as the knowledge
produced from the agent performing an action a in a state
s causing a new state s′ and a generated reward r. The
experience can be expressed as a tuple e(s, a, s′, r). Lin
[3] proposed a technique called Experience Replay, where
experiences are stored in a replay memory D and used to
train the agent. Since experiences are stored in the memory,
and some experiences might be of a high importance, they
can repeatedly be reused to train the agent what improves
convergence.

Although experience replay should help the agent theoret-
ically learn from previous important experiences, it entails
sampling experiences uniformly from the replay memory D
regardless of their significance. Schaul et al. [4] suggested the
use of Prioritized Experience Replay, which aims to prioritize
experiences using Temporal Difference error (TD-error) and
replay more frequently experiences that have lower TD-error.

III. REINFORCEMENT LEARNING ALGORITHMS
CLASSIFICATION

While most reinforcement learning algorithms use deep
neural networks, different algorithms are suited for different
environment types. We classify RL algorithms according to
the number of the states and action types available in the
environment into three main categories: 1) a limited number of
states and discrete actions, 2) an unlimited number of states
and discrete actions, and 3) an unlimited number of states
and continuous actions. The three categories, together with
algorithms belonging to those categories, are shown in Figure
2 and discussed in the following subsections.

Fig. 2. Reinforcement Algorithms classification based on the environment type

A. Environments with Limited States and Discrete Actions

The environments with discrete actions and limited states
are relatively simple environments where the agent can select
from pre-defined actions and be in pre-defined known states.
For example, when an agent is playing a tic-tac-toe game, the
nine boxes represent the states, and the agent can choose from
two actions: X or O, and update the available states.

Q-Learning [5] algorithm is commonly used to solve prob-
lems in such environments. This algorithm finds the optimal
policy in a Markov Decision Process (MDP) by maintaining
a Q-Table table with all possible states and actions and
iteratively updating the Q-values for each state-action pair
using the Bellman equation until the Q-function converges to
the optimal Q-value.

State–Action–Reward–State–Action (SARSA) [6] is another
algorithm from this category: it is similar to Q-learning except
it updates the current Q(s, a) value in a different way. In Q-
learning, in order to update the currentQ(s, a) value, we need
to compute the next state-action Q(s′, a′) value, and since
the next action is unknown, then Q-learning takes a greedy
action to maximize the reward [7]. In contrast, when SARSA
updates the current state-action Q(s, a) value, it performs the
next action a′ [7].

B. Environments with Unlimited States and Discrete Actions

In some environments, such as playing a complex game,
the states can be limitless; however, the agent’s choice is
limited to a finite set of actions. In such environments, the
agent mainly consists of a Deep Neural Network (DNN),
usually a Convolutional Neural Network (CNN), responsible
for processing and extracting features from the state of the
environment and outputting the available actions. Different

Fig. 3. DQN using AlexNet CNN

algorithms can be used with this environment type, such as
Deep Q-Networks (DQN), Deep SARA, and their variants.

1) Deep Q-Networks (DQN):
Deep Q-Learning, also referred to as Deep Q-Networks
(DQN), is considered the main algorithm used in environments
with unlimited states and discrete actions, and it inspires other
algorithms used for a similar purpose. DQN usually combines
convolutional and pooling layers, followed by fully connected
layers that produce Q-values corresponding to the number of
actions. Figure 3 [8] shows AlexNet CNN followed by two
fully connected layers to produce Q-value. The current scene
from the environment represents the environment’s current
state; once it is passed to the network, it produces Q-value
representing the best action to take. The agent acts and then
captures the changes in the environment’s current state and the
reward generated from the action.

A significant drawback of the DQN algorithm is overes-
timating the action-value (Q-value), where the agent tends to
choose a non-optimal action because it has the highest Q-value
[9].

a) Double and Dueling DQN (DD-DQN):
Double DQN uses two networks to solve this overestimation

Fig. 4. DQN vs. Dueling DQN

problem in DQN. The first network, called the Policy Network,
optimizes the Q-value, and the second network, the Target
Network, is a replica of the policy network, and it is used
to produce the estimated Q-value [10]. The target network
parameters are updated after a certain number of time steps
by copying the policy network parameters rather than using
the backpropagation.

Another improvement on DQN is Dueling DQN illustrated
in Figure 4 [11]. Dueling DQN tries to define a better way to
evaluate the Q-value by explicitly decomposing the Q-value
function into two functions:
• State-Value function V (s) measures how good is for the

agent to be in state s.
• Advantage-Value function A(s, a) captures how good is

an action compared to other actions at a given state.
The two functions shown in Figure 4 [11], are combined

via a special aggregation layer to produce an estimate of the
state-action value function [11]. The value of this function is
equal to the summation of the two values produced by the two
functions:

Q(s, a) = V (s) +
(
A(s, a)− 1

|A|
∑
a′

A(s, a)
)

(7)

The subtracted term 1
|A|
∑∑∑
a′ A(s, a) represents the mean,

where |A| represents the size of the vector A. This term helps
with identifiability, and it does not change the relative rank
of the A (and hence Q) values. Additionally, it increases the
stability of the optimization as the advantage function only
needs to change as fast as the mean [11].

Double Dueling DQN (DD-DQN) is another DQN algo-
rithm: it combines Dueling DQN with Double DQN to find
the optimal Q-value as suggested originally by Wang et al.
[11] where the output from the Dueling DQN is passed to
Double DQN.

b) Deep Recurrent Q-Networks (DRQN):
Deep Recurrent Q-Network (DRQN) [12] is an extension of
the DQN algorithm, replacing the first fully connected layer

with a recurrent LSTM layer of the same size. Adding the
LSTM layer requires changing the input size from a single
state of the environment to multiple states (frames) as a single
input, which helps to integrate information through time [12].

2) Deep SARSA:
Basic SARSA uses Q learning and is suitable for limited states
and discrete actions environments, as described in subsection
III-A. On the other hand, Deep SARSA for unlimited states
uses a deep neural network similar to DQN: the main dif-
ference is that SARSA computes Q(s′, a′) by performing
the next action a′, which is required to calculate the current
state-action Q(s, a). As shown in Figure 2, extensions of
Deep SARSA are the same as extensions of DQN with the
main difference on how to calculate the next action-state value
Q(s′, a′).

C. Environments with Unlimited States and Continuous Ac-
tions

Although discrete actions are sufficient to move a car or
UAV in a virtual environment, such actions do not provide
a realistic object movement in real-life scenarios. Continuous
actions describe the quantity of movement in different direc-
tions where the agent does not choose from a list of predefined
actions. For example, a realistic UAV movement specifies the
quantity of required change in roll, pitch, yaw, and throttle
values to navigate the environment while avoiding obstacles,
rather than moving UAV using one step in predefined direc-
tions: up, down, left, right, and forward.

Continuous action space requires the agent to learn a
parameterized policy πθ to maximize the expected summation
of the discounted rewards because it is impossible to calculate
action-value for all continuous actions at different states. The
problem is a maximization problem and can be solved using
gradient descent algorithms to find the optimal θ. The value
of θ is updated as follows:

θt+1 = θt + α∇J(θt) (8)

where α is the learning rate and ∇ is the gradient.
The reward function J objective is to maximize the ex-

pected reward using a parameterized policy πθ as follows [13]:

J(πθ) =
∑
s∈S

ρπθ (s) V
πθ (s)

=
∑
s∈S

ρπθ (s)
∑
a∈A

Qπθ (s, a) πθ(a|s)
(9)

Here ρπθ(s) defines the stationary probability of πθ start-
ing from state s0 and transitioning to future states following
the policy πθ for t time steps. Finding the optimal θ that

maximizes the function J(πθ) requires finding the gradient
∇θJ(θ):

∇θJ(θ) = ∇θ
(∑
s∈S

ρπθ (s)
∑
a∈A

Qπθ (s, a) πθ(a|s)
)

∝
∑
s∈S

µ(s)
∑
a∈A

Qπθ (s, a) ∇πθ(a|s)
(10)

Equation 10 can be further rewritten in continuous episodes
since

∑∑∑
s∈S η(s) = 1 as:

∇θJ(θ) = Es∼ρπθ ,a∼πθ
[
Qπθ (s, a) ∇θ lnπθ(at|st)

]
(11)

When the training sample is collected according to the
target policy s ∼ ρπθ and the expected return is generated
for the same policy πθ, the algorithm is referred to as on-
policy algorithm. On the other hand, in off-policy algorithms,
the training sample follows a behavior policy β(a|s), which
is different than the target policy πθ(a|s) [14], while the
expected reward is generated using the target policy πθ. Off-
policy algorithms do not require full rejectories (episodes)
for the training sample and they can reuse past trajectories.
Equation 12 [14] shows how the policy is adjusted to the
ratio between the target policy πθ(a|s) and behaviour policy
β(a|s).

∇θJ(θ) = Es∼ρβ ,a∼β
[πθ(a|s)
βθ(a|s)

Qπθ (s, a) ∇θ lnπθ(at|st)
]

(12)

The policy gradient theorem shown in equation 9 [15] con-
sidered the fundamental base of distinct Policy Gradients (PG)
algorithms such as REINFORCE [16], Actor-Critic algorithms
[17], Trust Region Policy Optimization (TRPO) [18], and
Phasic Policy Gradient [19], Stein Variational Policy Gradient
[20], Proximal Policy Optimization (PPO) [21], and many
others.

1) REINFORCE:
REINFORCE is an acronym for REward Increment =
Nonnegative Factor × Offset Reinforcement × Characteristic
Eligibility [16]. REINFORCE is a Monte-Carlo policy gradi-
ent algorithm that works with the episodic case. It requires
a complete episode to obtain a sample proportional to the
gradient, and updates the policy parameter θ with the step
size α. Because Eπ[Gt|St,At] = Qπ(s, a), REINFORCE
can be defined as [13]:

∇θJ(θ) = Eπ
[
Gt ∇θ lnπθ(At|St)

]
(13)

REINFORCE uses the Monte Carlo method, which suffers
from high variance and, consequently, has slow learning [16].
Adding a baseline to REINFORCE reduces the variance and
speeds up learning while keeping the bias unchanged by
subtracting the baseline value from the expected return Gt
[13].

2) Trust Region Policy Optimization (TPRO):
Trust Region Policy Optimization (TRPO) [18] is a PG algo-
rithm that improves the performance of gradient descent by
taking more extensive steps within trust regions defined by a
constraint of KL-Divergence and performs the policy update
after each trajectory rather than after each state. Proximal Pol-
icy Optimization (PPO) [21] can be considered an extension
of TRPO; it imposes the constraint as a penalty and clips the
objective to ensure that the optimization is carried out within
the predefined range [22].

Phasic Policy Gradient (PPG) [23] extends PPO by includ-
ing a periodic auxiliary phase which distills features from the
value function into the policy network to improve training.
This auxiliary phase enables feature sharing between the
policy and value function while decoupling their training.

3) Stein Variational Policy Gradient (SVPG):
Stein Variational Policy Gradient (SVPG) [20] applies the
Stein variational gradient descent (SVGD) [24] to update
the policy parameterized by θ, which reduce variance and
improves convergence. SVPG improves the average return
and data efficiency when used on top of REINFORCE and
advantage actor-critic algorithms [20].

4) Actor-Critic:
Actor-Critic algorithms are a set of algorithms based on policy
gradients theorem that consist of two components:

1) An Actor responsible for adjusting the parameter θ of
the policy πθ

2) A Critic which employs a parameterized vector w to
estimate the value-function Qw(st, at) ≈ Qπ(st, at)
using a policy evaluation algorithm such as temporal-
difference learning [14]

The actor can be described as the network trying to find
the probability of all available actions and select the action
with the highest value, while the critic can be described as a
network evaluating the selected action by estimating the value
of the new state resulted from performing the action. Different
algorithms fall under the actor-critic category; the main ones
are described in the following subsections.

a) Deterministic Policy Gradients (DPG) Algorithms:
All deterministic policy gradients algorithms model the policy
as a deterministic policy µ(s), rather than stochastic policy
π(s, a) that is modeled over the action’s probability distribu-
tion. We described earlier in Equation 9, the objective function
under a selected policy J(πθ) to be

∑∑∑
s∈S ρπθ(s) V

πθ(s);
however, a deterministic policy is a special case of stochastic
policy, where the objective function of the target policy is
averaged over the state distribution of the behaviour policy as
described in equation 14 [14].

Jβ(µθ) =

∫
S

ρβ(s) V µ(s) ds

=

∫
S

ρβ(s) Qµ(s, µθ(s)) ds

(14)

In the off-policy approach with a stochastic policy, im-
portance sampling is often used to correct the mismatch
between behaviour and target policies. However, because the
deterministic policy gradient removes the integral over actions,
we can avoid importance sampling and the gradient becomes:

∇θJβ(µθ) ≈
∫
S

ρβ(s) ∇θ µθ(a|s) Qµ(s, µθ(s)) ds

= Es∼ρβ
[
∇θ µθ(s)∇aQµ(s, a)|a=µθ(s)

] (15)

Different algorithms build on DPG with improvements;
for example, Deep Deterministic Policy Gradient (DDPG)
[25] adapts DQN to work with continuous action space
and combines it with DPG. On the other hand, Distributed
Distributional DDPG (D4PG) [26] adopts distributed settings
for DDPG with additional improvements such as using N-
step returns and prioritized experience replay [26]. Multi-agent
DDPG (MADDPG) [27] is another algorithm that extends
DDPG to work with multi-agents, where it considers action
policies of other agents and learns policies that require multi-
agent coordination [27].

Twin Delayed Deep Deterministic (TD3) [28] builds on
Double DQN and applies to DDPG to prevent the overesti-
mation of the value function by taking the minimum value
between a pair of critics [28].

b) Advantage Actor-Critic (A3C):
Asynchronous Advantage Actor-Critic (A3C) [29] is a policy
gradient algorithm that uses multi-threads, also known as
agents or workers, for parallel training. Each agent maintains
a local policy πθ(at|st) and an estimate of the value function
Vθ(st). The agent synchronizes its parameters with the global
network having the same structure.

The agents work asynchronously, where the value of the
network parameters flows in both directions between the
agents and the global network. The policy and the value
function are updated after tmax actions or when a final state
is reached [29].

Advantage Actor-Critic (A2C) [29] is another policy gra-
dient algorithm similar to A3C, except it has a coordinator
responsible for synchronizing all agents. The coordinator waits
for all agents to finish their work either by reaching a final state
or by performing tmax actions before it updates the policy and
the value function in both direction between the agents and the
global network.

Actor-Critic with Experience Replay (ACER) is an off-
policy actor-critic algorithm with experience replay that uses
a single deep neural network to estimate the policy πθ(at|st)
and the value function V πθv (st) [30]. The three main advantages
of ACER over A3C are [29]: 1) it improves the truncated
importance sampling with the bias correction, 2) it uses
stochastic dueling network architectures, and 3) it applies a
new trust region policy optimization method [30].

ACER uses an improved Retrace algorithm as described in
Equation 16 [31] by applying truncated importance sampling
with bias correction technique and using the value Qret as

the target value to train the critic by minimizing the L2
error term [30]. In ACER, the gradient ĝacert is computed
by truncating the importance weights by a constant c, and
subtracting Vθv(st) to reduce variance: this is denoted in
Equation 17 [30].

Qret(st, at) = rt + γρ̄t+1

[
Qret(st+1, at+1)−Q(st+1, at+1)

]
+ γV (st+1)

(16)

ĝacert = ρ̄t∇θ lnπθ(at|st)
[
Qret(st, at)− Vθv (st)

]
+ E
a∼π

([ρt(a)− c
ρt(a)

]
∇θ lnπθ(at|st)[

Qθv (s,t , at)− Vθv (st)
]) (17)

Actor-Critic using Kronecker-Factored Trust Region
(ACKTR) [32] is another extension of A3C [29], which
optimizes both the actor and critic by using Kronecker-
factored approximation curvature (K-FAC) [33]. It provides
an improved computation of the natural gradients by allowing
the covariance matrix of the gradient to be efficiently inverted
[32].

c) Soft Actor-Critic (SAC):
Soft Actor-Critic (SAC) aims to maximize the expected re-
ward while maximizing the entropy [34]. SAC ameliorates
the maximum expected sum of rewards defined through
accumulating the reward over states transitions J(π) =∑T
t=1 Es∼ρπ,a∼π

[
r(st, at)

]
by adding the expected entropy of

the policy over ρπ(st) [34]. Equation 18 shows a generalized
entropy objective, where the temperature parameter α controls
the stochasticity of the optimal policy through defining the
relevance of the entropy H(π(.|st)) term to the reward [34].

J(π) =

T∑
t=1

Es∼ρπ,a∼π
[
r(st, at) + αH(π(.|st))

]
(18)

SAC uses two separate neural networks for the actor and
critic, and applies function approximators to estimate a soft
Q-function Qθ(st, at) parameterized by θ, a state value
function Vψ(st) parameterized by ψ, and an adjustable policy
πφ(at|st) parameterized by φ.

d) Importance Weighted Actor-Learner Architecture (IM-
PALA):
Importance Weighted Actor-Learner Architecture (IMPALA)
[35] is an off-policy learning algorithm that decouples acting
from learning and can be used in two different setups: 1) single
learner and 2) multiple synchronous learners.

Using a single learner and multiple actor setup, each actor
generates trajectories and sends each trajectory to the learner,
and receives the updated policy before starting a new trajec-
tory. The learner learns from the actors simultaneously by
saving the received trajectories from the actors in a queue
and generating the updated policy. Nevertheless, actors might
learn an older model because actors are not aware of each other

and because of the lag between the actors and the learner. To
resolve this issue, IMPALA uses a novel v-trace correction
method that considers a truncated importance sampling (IS),
which is the ratio between the learner policy π and the actor
current policy µ. Similarly, in multiple synchronous learners,
the policy parameters are distributed across multiple learners
that work synchronously through a master learner [35].

IV. CONCLUSION

Deep Reinforcement Learning has shown advancement in
solving sophisticated problems in real-life scenarios. The envi-
ronment type of the application has a vital role in selecting an
appropriate RL algorithm that provides good results and per-
formance. In this work, we have identified three environment
types based on the number of actions and states: 1) Limited
states and discrete actions, 2) Unlimited states and discrete
actions, and 3) Unlimited states and continuous actions.

Environments with a limited number of states and limited
actions are considered austere environments and can be solved
using Q-learning and SARSA. Complex environments have
unlimited states representing the environment, and applying
the appropriate algorithm depends on the number of actions.
If the actions are limited (discrete), the value-based algorithms
such as DQN and its variations would be the choice. However,
if the actions are continuous, the policy gradient algorithms
are appropriate as they can learn a parameterized policy that
approximates the solution. This classification helps researchers
and practitioners select appropriate RL algorithms for their
studies and applications.

Further investigation of algorithms performance in differ-
ent use case scenarios is needed: the algorithms should be
compared in respect to accuracy, convergence, computational
resources, and ease of use. Moreover, diverse use cases and
requirements should be considered in the evaluation.

REFERENCES

[1] T. Okuyama, T. Gonsalves, and J. Upadhay, “Autonomous driving
system based on deep q learnig,” in 2018 International Conference on
Intelligent Autonomous Systems (ICoIAS). IEEE, 2018, pp. 201–205.

[2] S. O. Chishti, S. Riaz, M. BilalZaib, and M. Nauman, “Self-driving
cars using cnn and q-learning,” in IEEE 21st International Multi-Topic
Conference, 2018, pp. 1–7.

[3] L.-J. Lin, “Self-improving reactive agents based on reinforcement learn-
ing, planning and teaching,” Machine learning, vol. 8, no. 3-4, pp. 293–
321, 1992.

[4] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” arXiv:1511.05952, 2015.

[5] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no.
3-4, pp. 279–292, 1992.

[6] G. A. Rummery and M. Niranjan, On-line Q-learning using connection-
ist systems. University of Cambridge, 1994, vol. 37.

[7] D. Zhao, H. Wang, K. Shao, and Y. Zhu, “Deep reinforcement learning
with experience replay based on sarsa,” in IEEE Symposium Series on
Computational Intelligence, 2016, pp. 1–6.

[8] A. Anwar and A. Raychowdhury, “Autonomous navigation via deep
reinforcement learning for resource constraint edge nodes using transfer
learning,” IEEE Access, vol. 8, pp. 26 549–26 560, 2020.

[9] H. Van Hasselt, “Double Q-learning,” Advances in Neural Information
Processing Systems 23: 24th Annual Conference on Neural Information
Processing Systems 2010, pp. 1–9, 2010.

[10] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double Q-Learning,” AAAI Conference on Artificial Intelligence,
pp. 2094–2100, 2016.

[11] Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, and
N. De Frcitas, “Dueling Network Architectures for Deep Reinforcement
Learning,” International Conference on Machine Learning, vol. 4, no. 9,
pp. 2939–2947, 2016.

[12] M. Hausknecht and P. Stone, “Deep recurrent q-learning for partially
observable mdps,” arXiv:1507.06527, 2015.

[13] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT Press, 2018.

[14] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic policy gradient algorithms,” in International conference
on machine learning. PMLR, 2014, pp. 387–395.

[15] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy
gradient methods for reinforcement learning with function approxima-
tion,” in Advances in neural information processing systems, 2000, pp.
1057–1063.

[16] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine learning, vol. 8, no. 3-4,
pp. 229–256, 1992.

[17] V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in Advances
in neural information processing systems, 2000, pp. 1008–1014.

[18] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in International conference on machine
learning, 2015, pp. 1889–1897.

[19] R. Raileanu and R. Fergus, “Decoupling value and policy for general-
ization in reinforcement learning,” arXiv:2102.10330, 2021.

[20] Y. Liu, P. Ramachandran, Q. Liu, and J. Peng, “Stein variational policy
gradient,” arXiv:1704.02399, 2017.

[21] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv:1707.06347, 2017.

[22] S.-Y. Shin, Y.-W. Kang, and Y.-G. Kim, “Obstacle avoidance drone by
deep reinforcement learning and its racing with human pilot,” Applied
Sciences, vol. 9, no. 24, p. 5571, 2019.

[23] K. Cobbe, J. Hilton, O. Klimov, and J. Schulman, “Phasic policy
gradient,” arXiv:2009.04416, 2020.

[24] Q. Liu and D. Wang, “Stein variational gradient descent: A general
purpose bayesian inference algorithm,” arXiv:1608.04471, 2016.

[25] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” arXiv:1509.02971, 2015.

[26] G. Barth-Maron, M. W. Hoffman, D. Budden, W. Dabney, D. Horgan,
D. Tb, A. Muldal, N. Heess, and T. Lillicrap, “Distributed distributional
deterministic policy gradients,” arXiv:1804.08617, 2018.

[27] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch,
“Multi-agent actor-critic for mixed cooperative-competitive environ-
ments,” arXiv:1706.02275, 2017.

[28] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approxi-
mation error in actor-critic methods,” in International Conference on
Machine Learning. PMLR, 2018, pp. 1587–1596.

[29] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International conference on machine learning,
2016, pp. 1928–1937.

[30] Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, K. Kavukcuoglu,
and N. de Freitas, “Sample efficient actor-critic with experience replay,”
arXiv:1611.01224, 2016.

[31] R. Munos, T. Stepleton, A. Harutyunyan, and M. G. Bellemare, “Safe
and efficient off-policy reinforcement learning,” arXiv:1606.02647,
2016.

[32] Y. Wu, E. Mansimov, R. B. Grosse, S. Liao, and J. Ba, “Scalable trust-
region method for deep reinforcement learning using kronecker-factored
approximation,” in Advances in neural information processing systems,
2017, pp. 5279–5288.

[33] J. Martens and R. Grosse, “Optimizing neural networks with kronecker-
factored approximate curvature,” in International conference on machine
learning. PMLR, 2015, pp. 2408–2417.

[34] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International Conference on Machine Learning. PMLR, 2018,
pp. 1861–1870.

[35] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward et al.,
“IMPALA: Scalable distributed deep-rl with importance weighted actor-
learner architectures,” in International Conference on Machine Learning.
PMLR, 2018, pp. 1407–1416.

	Introduction
	Background
	Reinforcement Learning
	Policy and Value Function
	Experience Replay

	Reinforcement Learning Algorithms Classification
	Environments with Limited States and Discrete Actions
	Environments with Unlimited States and Discrete Actions
	Deep Q-Networks (DQN)
	Deep SARSA

	Environments with Unlimited States and Continuous Actions
	REINFORCE
	Trust Region Policy Optimization (TPRO)
	Stein Variational Policy Gradient (SVPG)
	Actor-Critic

	Conclusion
	References

